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Abstract 

To investigate the distribution pattern of regional rainstorm disasters and its impact on vegetation in 

the karst region of Guangxi, two vegetation parameters, fractional vegetation cover (FVC) and net 

primary productivity (NPP), were selected to analyze the spatial response characteristics and forest 

species differences of different vegetation parameters to five levels of rainfall in Karst region of 

Guangxi. , namely moderate rainfall, heavy rainfall, heavy rainfall, heavy rainfall and very heavy 

rainfall. Normalized Difference Vegetation Index (NDVI), fractional vegetation cover (FVC), and 

net primary productivity (NPP), to analyze the spatial response characteristics of different vegetation 

remote sensing parameters to five levels of rainfall, namely, moderate rain, heavy rain, heavy rain, 

heavy rain, and very heavy rain, and the differences of forest species in the karst region of Guangxi. 

The results show: (1) The effects of exceptionally heavy rainfall on vegetation NDVI, FVC and NPP 

were significantly greater than those of other classes of rainfall. (2) The southwestern and central 

parts of the study area are the concentration of high negative impacts of very heavy rainfall and 

heavy rainfall on the remote sensing indices of vegetation. (3) Different levels of rainfall had a 

greater negative effect on NDVI and FVC in economic and broadleaf forests in the study area, while 

eucalyptus forests had a lesser effect. The results suggest targeting focusing vegetation protection 

efforts based on according to geographical and species-specific differencesspecies differences, 

particularly especially in areas with aof high incidence of exceptionally heavy rainfall and regions 

dominated by in areas of economically value and broad-leaved types of vegetation forests. 
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Introduction 

Karst is one of the four major ecologically fragile areas regions in China. Karst landforms are  is widely 

distributed in Guangxi, where these karst areas are characterized by have prominent rocky desertification 

landscape (Chen et al., 2018) and shallow soil layer. In the specialthis unique habitat, vegetation has 

weak ability to bear meteorological disasters (Xu et al., 2012). Under the background of climate warming, 

meteorological disasters happen and develop at a high frequency and high intensity (Zhai et al., 2012; 
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Lim et al., 2023; Pandey et al., 2022), posing a great threat to the ecological environment protection. 

Rainstorm isRainstorms are one of the most significant important meteorological disasters in karst areas 

(Huang et al., 2015; Cahyadi et al., 2021). Assessing their impact in these , and it is of great significance 

to assess the impact of rainstorm in these areasregions is crucial  for controlling the control of rocky 

desertification, vegetation protection and restoration vegetation, and managing the ecological 

environment control. 

At present, a variety of remote sensing vegetation indexes have been developed, among which 

normalized difference vegetation index (NDVI) is the most widely used (Khoroshev et al., 2023; 

Mazengo et al., 2023). Fractional vegetation cover (FVC) means the percentage of the vertical projection 

area of the above-ground portion of vegetation on the ground in the total statistical area within a unit 

area (Gitelson et al., 2002). Net primary productivity (NPP) is the amount of organic matter accumulated 

by green plants per unit area and time, namely the deduction of respiration consumption of plants from 

organic carbon fixed by photosynthesis (Pu et al., 2001). As a spatially explicit indicator (Donmez et al., 

2024), it has been proved proven to be highlya highly effective indicator indicative in reflectingof the 

lushness of plant community growth and its ecological quality (Qian et al., 2020). Meteorological 

conditions are indispensable and important factors affecting vegetation growth (Uffia et al., 2021; Tian 

et al. 2024; Nabizada et al., 2023), and scholars have carried out many studies using remotely sensed 

vegetation indices and meteorological data, which mainly include two major categories of the effects of 

climatic factor averaging and non-averaging (meteorological hazards).. In the research on the average 

state, it is generally believed that temperature exerts a significant effect on vegetation in temperate and 

cold regions, while precipitation exerts a significant effect on vegetation in arid and semi-arid regions 

or areas with obvious differences between dry and wet seasons. In terms of the impact of meteorological 

disasters on vegetation, researchers mainly focus on the impact of drought (Li et al., 2019; Liu et al., 

2021; Zhao et al., 2015; Orimoloye et al., 2021; Ali et al., 2024). 

Vegetation responds sensitively to the changes in precipitation and air temperature (Ahmad et al., 2023). , 

especially iIn the karst region, air temperature and precipitation are important meteorological factors 

affecting the growth of vegetation in the region, and it has been found that the response of vegetation 

NDVI to precipitation is significantly higher than that of air temperature (Wei et al., 2013). In the context 

of climate change, the frequency and intensity of meteorological disasters have increased significantly 

(Zhu and Xiong 2018; Maryono et al., 2023; Putri, 2021), and rainfall, a meteorological element, is 

often presented in the form of torrential rainfall disasters, and it is a frequent, high and heavy situation, 

which is more destructive to soil and water conservation and vegetation growth in the karst region, but 

there are fewer studies on the impact of torrential rainfall on the vegetation in the karst region. In this 

study, based on long-time series satellite remote sensing data and precipitation observation data in karst 

areas of Guangxi, three vegetation remote sensing parameters of normalized difference vegetation index 

(NDVI), fractional vegetation cover (FVC) and net primary productivity (NPP) and five levels of rainfall 

(moderate rain, heavy rain, rainstorm, heavy rainstorm and extremely heavy rainstorm) were inverted 

and calculated, and the temporal and spatial distribution characteristics of effects of different levels of 

rainfall on vegetation in the study area region were analyzed. At the same time, the differences in the 

effects of different levels of rainfall on different forest species were studied to provide a scientific basis 

for the assessment of impact of rainstorm and vegetation protection and restoration in karst areas. 

 

Materials and Methods 

Overview of the study area 

The Guangxi Autonomous Region is situated in the southeastern part of southern China, with a latitude 

range of 20°54'-36°20' north and a longitude range of 104°28'-112°04' east. This area, situated to the 

west of the Yun-Gui Plateau, features intricate topography primarily characterized by mountains and 

hills. Karst landforms are prevalent throughout the region, encompassing 40.9% of the total land area. 
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The vegetation in Guangxi Province exhibits a remarkable diversity, with shrub forests being the most 

widespread (63.40%), followed by broad-leaved forests (17.20%), and bamboo forests being the least 

prevalent (0.88%). The distribution of various forest species in the study area is shown in Fig. 1. 

 

Data 

The data of dDaily temperature and precipitation data from 69 meteorological stations spanning the 

period from during 1961-2020, provided by the which were provided by Guangxi Meteorological 

Information Center, was were used to calculate rainstorm disaster indicators of rainstorm (Table 1). 

Satellite remote sensing data were obtained from the MODIS (Moderate-resolution Resolution imaging 

Imaging spectroSpectro-radiometer) product MOD13Q1 (MODIS/Terra Vegetation Indices 16-Day L3 

Global 250 m SIN Grid), provided by the National Aeronautics and Space Administration (NASA). 

inversion of the National Aeronautics and Space Administration (NASA), MOD13Q1 (MODIS/Terra 

Vegetation Indices 16 - Day L3 Global 250m SIN Grid), a This dataset features a spatial 250 m spatial 

resolution of 250 m and a temporal resolution of 16 d, offering high-quality interval synthesized tic high 

time-series phase data. The data used corresponds to version V006 and covers the period from 2000 to 

2021. Vegetation index product MOD13Q1 (MODIS/Terra Vegetation Indices 16 - Day L3 Global 250m 

SIN Grid), 250 m spatial resolution 16 d interval synthesized high temporal phase data, version V006, 

data time period 2000-2021. The MOD13Q1 remote sensing dataset of Guangxi Karst region was 

preprocessed through a series of steps, (including band extraction, mosaicingmosaicking, projection 

transformation, region extraction, and data format conversion, etc.). This process resulted in a high-

quality NDVI  to obtain the NDVI dataset, which was th reliable quality and monthly further 

synthesized on a to obtain the monthly basis to create a monthly NDVI dataset. Additionally, the  and 

to find the yearly average NDVI values were calculated from this dataset. 

Geographic information data includeincludes Digital Elevation Model (DEM) data of Guangxi, 

administrative boundaries of cities and counties in Guangxi, latitude and longitude coordinates of 

meteorological stations in Guangxi, vector boundaries of informative Guangxi karst areas, and data on 

the distribution of forest species within thein  Guangxi karst areas. 

 

Methods 

Through the use ofUsing terrestrial ecosystem carbon budget (TEC) models, it is possible to compute 

the net primary productivity (NPP) can be calculated  (Chen et al., 2023). The formulas are as follows: 

NPP𝑖𝑗 = GPP𝑖𝑗 − 𝑅𝑖𝑗                                (1) 

GPP𝑖𝑗 = 𝜀𝑖𝑗 × FPAR × PAR𝑖𝑗                             (2) 

NPP𝑖 = ∑ NPP𝑖𝑗
𝑛
𝑗=1                                 (3) 

In the formulas, Where, NPPij, GPPij and Rij (gC·m-2) are respectively net primary productivity, total 

primary productivity and respiratory consumption of vegetation in the jth month of the ith year; 

𝜀𝑖𝑗(gC·MJ-1) is the actual utilization rate of light energy in the jth month of the ith year, reflecting the 

influence of temperature, water and other factors on photosynthesis; FPAR is the proportion of 

photosynthetic active radiation absorbed by vegetation; PARij (MJ·m-2) is the incident photosynthetic 

active radiation in the jth month of the ith year; NPPi (gC·m-2) is the net primary productivity of vegetation 

in the ith year; n is the total number of months in a year, n=12. 

Based on According to the image element linear decomposition model, the vegetation cover is estimated 

by using NDVI, and the pixel image element dichotomy method, i.e., the NDVI value of each image 

pixelelement can be expressed as a combination of the information contributedcontributions from  by 

the two components: parts of the vegetation cover and the non-vegetation cover. This relationship is 
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quantified through , which can be computed by thea transformation of the vegetation cover fraction [32]. 

FVC can be calculated as follows: 

FVC𝑖𝑗 = (NDVI𝑖𝑗 − NDVIs) (NDVIv − NDVIs)⁄                         (4) 

FVC𝑖 =
1

𝑛
∑ FVC𝑖𝑗

𝑛

𝑗=1
                                (5) 

In the formulasWhere, FVC𝑖𝑗(%) is the vegetation cover in the jth month of the ith year; NDVI𝑖𝑗is the 

NDVI in the jth month of the ith year; NDVIs and NDVIv are the NDVI of full soil cover and like meta-

vegetation full coverage, respectively, namely NDVIs=0.05, and NDVIv=0.95, which is set based on the 

characteristics of vegetation in China; FVCi is the vegetation cover in the ith year. According to this 

formula, when NDVI < 0.05, vegetation cover is negative, and there is no vegetation in the area. 

This study utilizes employs Pearson’s correlation analysis to examine the method to investigate the 

relationship between remotely sensed indicators (such as FVC and NPP) of for different vegetation types 

with under varying rainfall conditions levels of rainfall (Chen et al., 2023). The calculation formula is 

as follows: 

R =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)
𝑛
𝑖=1

√∑ (𝑥𝑖−𝑥̅)
2∑ (𝑦𝑖−𝑦̅)

2𝑛
𝑖=1

𝑛
𝑖=1

                                (6) 

In the formulaWhere, R is the correlation coefficient of variables x and y; 𝑥𝑖 is the vegetation remote 

sensing parameters in the ith year; 𝑥̅ is the mean of multi-year vegetation remote sensing parameters; 

𝑦𝑖 is the rainfall in the ith year; 𝑦̅ is the mean of multi-year rainfall. The value range of correlation 

coefficient R is [-1, 1]. The larger the R is, the stronger the correlation between variables is. 

SignificanceThe significance test was conducted by t statistic. 

 

Results and Discussions 

Responses of vegetation remote sensing parameters to different levels of rainfall 

Fractional vegetation cover (FVC) 

The average absolute values of correlation coefficients between FVC and the differentdifferent rainfall 

levels of rainfall (extremely heavy rainstorm, heavy rainstorm, rainstorm, heavy rain and moderate rain) 

were 0.24, 0.19, 0.17, 0.17 and 0.19, respectively. Overall, , and therethese results  was generally a 

indicate a weak correlation (including R and P values). The negative correlation areas accounted for 

63.0%, 61.3%, 39.8%, 41.1% and 44.50%, of which there was a significant negative correlation in 

23.3%, 1.58%, 0.61%, 1.16% and 1.00% of the areas (p<0.05). FVC was mostly negatively correlated 

with extremely heavy rainstormrainstorms and heavy rainstormrainstorms (including R and P values), 

and mainly positively correlated with heavy rain and moderate rain (including R and P values). The 

correlations between FVC and different levels of rainfall levels were significantly different in space. By 

analyzing the regional distribution characteristics of the negative correlation between FVC and rainfall, 

it was found is found that the high-value areas varied by rainfall intensity. Specifically, of the negative 

correlation between FVC and extremely heavy rainstorms was predominantly concentrated in mainly 

distributed in , the southwest, while for and heavy rainstorm, it was concentrated in mainly observed in 

the central region. In contrast, the correlations for rainstorms and moderate rain exhibited similar 

patterns, primarily appearing in the southwest, north, and localized areas of the northeast.the middle, 

while rainstorm and moderate rain were similar, mainly appearing in the southwest, north and local 

northeast. Moreover, the distribution range of heavy rain was slightly larger than that of rainstorms. 

Moderate rain was primarily concentrated in mainly distributed in locallocalized areas of the north, with 

a  and the distribution was also scattered distribution pattern (Fig. 2). The analysis revealed that It is 
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found that FVC  exhibited had the strongest correlation with extremely heavy rainstorm, and extremely 

heavy rainstorm which also had the most pronounced had the most obvious negative impact on 

vegetation in within the study area. Both Eextremely heavy rainstormrainstorms and heavy 

rainstormrainstorms negatively affected a wide range of areasregions. When rainfall levels increased 

changed from rainstorm to heavy rainstorm and from heavy rainstorm to extremely heavy rainstorm, the 

correlation between FVC and rainfall underwent significant changes. had a great change,  Notably, and 

even there was even a shift between positive and negative correlationcorrelations in some regions. 

 

Net primary productivity (NPP) 

In the study area, the absolute values of correlation coefficients (R) between vegetation NPP and 

different levels of rainfall levels (extremely heavy rainstorm, heavy rainstorm, rainstorm, heavy rain and 

moderate rain) were 0.23, 0.19, 0.22, 0.21 and 0.27, respectively. Overall, these values indicate and there 

was generally a weak correlation. The proportion of areas exhibiting a negative correlation areas was 

40.7%, 21.1%, 7.45%, 7.28% and 1.69%, respectively. Among these, among which the negative 

correlation was significant (p<0.05) in 0.44%, 0.29%, 0.01%, 0% and 0% of the areas.  (p<0.05). In 

the study area, NPP was mainly positively correlated with different rainfalls levels of rainfall. However, , 

but the negative correlation areas of extremely heavy rainstormrainstorms were relatively wide, though 

their but the proportion did not was no more thanexceed  50%. Notably, tThere were clear  was an 

obvious spatial differences in the correlation between NPP and different rainfalls levels of rainfall. The 

high-value areas of the negative correlation between NPP and extremely heavy rainstorm wasrainstorms 

were distributed in the central and north-central parts regions of the study area. For , and heavy rainstorm 

wasrainstorms, these areas were  concentrated in the south-central and north-eastern regions, parts of 

the study area, while rainstorms, they  appeared in a few localized areas of parts of the south-central 

partsregion. Heavy rain was distributed in the east-central and north-eastern zones parts of the study 

area, while and the negative correlation areas of moderate rain were scattered across in the north, 

southwest, and east (Fig. 3). The analysis revealed It is found that the correlation between NPP and 

moderate rain was the largeststrongest, with , and moderate rain exhibiting had almost entirely  all 

positive effects on vegetation across in the study area. In contrast, tThe negative effects of extremely 

heavy rainstormrainstorms was were the most obviouspronounced. The negative effect areas showing 

negative effects of different rainfalls levels of rainfall on vegetation NPP were concentrated 

predominantly concentrated in the central region area ofof the study area. 

 

Responses of various forest species to different levels of rainfall  

The responses of FVC of in different forest vegetation types forest species to different varying levels of 

rainfall were significantly different (Fig. 4). In general, with the increase ofas rainfall levels increased, 

the negative correlation between FVC and  of different forest species and rainfall also increased. This 

was particularly evident Especially when rainfall rainfall levels changed from heavy rainstorms to 

extremely heavy rainstorms, where the correlation between FVC and rainfall increased significantly. 

However, the effects of different rainfalls levels on NDVI of rainfall had various effects on NDVI varied 

across of different forest speciesvegetation. For extremely heavy rainstorm, the effects were most 

pronounced in on broad-leaved forest (-0.42) and bamboo forest (-0.40),  were obvious, while the 

impact on it had a small effect on eucalyptus (-0.26) and Chinese fir (-0.27) was relatively small. For 

heavy rainstormrainstorms, the effects on most difference of other forest vegetation types species were 

was not significant, except for bamboo forest (-0.13). In the case of For rainstorm, it had an obvious 

effect on Chinese fir (-0.20) showed a notable response, while and a small effect on eucalyptus (-0.12) 

was less affected. ). For heavy rain and moderate rain, the responses of different forest types species 

were consistent: , that is, the effects on economic forest (-0.19) and broad-leaved forest (-0.18) were 

obvious,exhibited stronger effects, while  while the effect on eucalyptus (-0.11, and -0.12) showed 
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minimal impactwas small. 

The responses of NPP of different forest vegetation types forest species to different levels ofvarying  

rainfall levels were also showed significanttly differentdifferences. Overall, with the increase ofas 

rainfall levels increased, the negative correlation between NPP and of different forest species and rainfall 

increased. , and the correlation between NPP and rainfall increased more significantly as rainfall level 

changed from heavy rainstorm to extremely heavy rainstorm. The effects of different levels of rainfall 

on NPP of different forest species were not consistent. For extremely heavy rainstormrainstorms, the 

impact on effect on eucalyptus forests (-0.21) waswere obviousnotable, while but the effects on 

economic forestforests and broad-leaved forestforests (-0.13) were relatively small. Heavy 

rainstormrainstorms had a n obviousmore pronounced effect on  effect on pine forests (-0.14) and a 

small lesser effect on eucalyptus forests (-0.09). In the case of For rainstormrainstorms, the effect on 

broad-leaved forest (-0.11) showed a stronger response, was big, while that on eucalyptus forests (-0.07) 

were less affected was small. For heavy rain and moderate rain, the sensitivity of different forest species 

vegetation was basically the sameconsistent. 

In conclusion, the comparison of different remote sensing parameters of vegetation shows that there was 

a weak correlation between varying different levels of rainfalls levels and three vegetation remote 

sensing parameters of vegetation. Among these, and the negative correlation was highest with NDVI,  

was the highest, followed by FVC, and lowest with while the negative correlation with NPP was the 

lowest. Across Among different rainfalls levels of rainfall, the negative effecteffects of extremely heavy 

rainstormrainstorms waswere the most obviouspronounced, followed by heavy rainstormrainstorms. In 

contrast, ,the effects  while that of rainstormrainstorms, heavy rain, and moderate rain were was weaker 

and showed had little difference. Among different forest speciesvegetation type, the negative effects of 

different varying levels of rainfall levels on NDVI and FVC were more pronounced in of economic 

forest and broad-leaved forest, while the impact  were more obvious, and the negative effect on 

eucalyptus forest was small. However, while there was no big difference in the negative effects on NPP 

showed minimal differences across forest vegetation typeof different forest species. 

There was a certain difference in the negative impact areas of different levels of rainfalls levels  on 

FVC of various forest species vegetation types (Fig. 5). As rainfalls level increased changed from 

rainstorm to heavy rainstorm, the proportion of negatively impact areaareas forof  different forest 

species vegetation types rose obviously. However, this trend change was less not obvious in the changing 

process of other levels ofpronounced during other transitions of rainfall, such as  rainfall from 

moderate rain to heavy rain, heavy rain to rainstorm, and heavy rainstorm to extremely heavy rainstorm. 

The average negative impact area across of different levels of rainfall on all forest species vegetation 

types due to different rainfalls levels ranged from accounted for 45%-61% . In terms of severity,on 

average, the negative impact followed this hierarchy: namely heavy rainstorm > extremely heavy 

rainstorm > moderate rain > heavy rain > rainstorm. During For extremely heavy rainstorm, the negative 

impact was greater on area of eucalyptus (69%) and broad-leaved forests (66%) compared to was larger 

than that of Chinese fir forest (48%). For heavy rainstormrainstorms, that of broad-leaved forest (66%) 

experienced a higher impact than was larger than that of eucalyptus (57%) and bamboo forests (58%). 

UnderFor rainstorm conditions, that of Chinese fir forest (61%) showed a greater was larger than that 

of negative impact than bamboo forests (26%). In the case of For heavy rain, that of economic forests 

(71%) were more affected was larger than that of eucalyptus forests (18%). Finally, For under moderate 

rain, both that of economic forest (58%) and Chinese fir forests (56%) experienced a greater impact than 

was larger than that of eucalyptus forests (39%). 

The areas negative impacted areas of by different levels of rainfalls level on NPP varied across of various 

forest vegetation type species had a certain difference. In general, as with the change of rainfall levels 

increased from moderate rain to heavy rainstorm, there was an obvious increase in the proportion of 

negative impacted area for most of different forest vegetation type rose significantly. species, However, 
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but the proportion of negatively impacted areas forof economic forest, Chinese fir and pine forests 

decreases declined with the change ofwhen rainfall levels shifted from heavy rainfalls from heavy rain 

to rainstorm. On average, Tthe negatively impacted areas for all of different levels of rainfall on all  

forest species vegetation types ranged from accounted for 2%-39% on average, following the order: 

namely extremely heavy rainstorm > heavy rainstorm > rainstorm > heavy rain > moderate rain. For 

extremely heavy rainstorms, the negative impact area of eucalyptus (62%) was larger than that of 

economic forest (20%). Similarly, Ffor heavy rainstormrainstorms, that ofof the impacted area of 

bamboo forest (45%) exceeded was larger than that of broad-leaved forest (17%) and economic forest 

(14%). For rainstorm, the negative impacted area that ofof bamboo forests (26%) was larger than that 

of pine forests (3%), Economic economic forest (2%) and Chinese fir forest (1%). For heavy and 

moderate rain, the negatively impacted areas across  of different forest vegetation types species were 

relatively was small, with and the proportion ranging ed from 3% to 9% for heavy rain and from 1% to 

3% for moderate rain. 

In summary, from the comparison of different remote sensing vegetation parameters of vegetation 

revealed significant differences , it is found that there was a large difference in the proportion of negative 

impacted  areas across varying between different levels of rainfall levels and three vegetation remote 

sensing parameters of vegetation. The proportion of negatively affected areaareas of for FVC was 53%, 

while ; the proportion of negatively affected area offor NPP, it was smaller, with an  averaginge of 16%. 

For FVC, heavy rainfall had the largest proportion of negative impacted areas, followed by heavy and 

moderate rainfall, while the proportions for heavy and heavy moderate rainfall had were the smallest 

and relatively similar.  proportion of negative impact area. . In contrast, Ffor NPP, the amount of rainfall 

was proportional to the size of the impacted area of impact. Regarding forests vegetation type, the 

proportions For FVC, the proportion of negatively impacted areaareas for FVC waswere higher for in 

economic and broad-leavedleaf forests butand lower in for eucalyptus and bamboo forests. Conversely, 

Ffor NPP, the proportion were of higher negatively affected area was higher for eucalyptus and bamboo 

forests, and lower for in economic and broad-leaved forests. 

 

Discussion 

Generally speaking, areasAreas with sparse vegetation have poor water and soil retention abilitycapacity, 

making them more susceptible and heavy rainfall is not conducive to vegetation growth but will 

aggravateto soil and water loss during heavy rainfall events, which can further hinder vegetation growth  

(Chen et al., 2015; Block and Richter, 2000). In this study, it is was found that the vegetation in the 

northeast, northwest and southeast of the study area exhibited a had an obvious significant negative 

correlation with moderate rain and heavy rain. This suggests that That is to say, inin the ecologically 

sensitive and fragile karst areas, moderate rain and heavy rain may also have an obvious notable impact 

on vegetation, in addition to the effects  except for other levels of higher rainfall levels such as above 

rainstormrainstorms. Rainfall in the karst areas of Guangxi is mainly primarily concentrated in spring 

and summer. , and the spacial The spatial distribution of high-value areas of for annual extremely heavy 

rainstorms, heavy rainstorm,  and rainstorms showed significant had great similarity, as did and that 

ofthe high-value areas for of annual moderate rain and heavy rain.  also had great similarity. The 

northeast region (Guilin City) and the central and western region (Hechi City) of the study area were 

identified as the main rainstorm centers and rainfall concentration areas regions (Fig. 6) (Huang et al., 

2012). The spatio-temporal distribution of areas highly sensitive to vegetation responses areas of 

vegetation  to extremely heavy rainstorm, heavy rainstorm, and rainstorms in the study area was 

significantly different differed significantly from that of areas regions with frequent rainstorm (the center 

and southwest). This indicates that, in addition indicating that apart from theto spatio-temporal 

differences in precipitation (Sun et al. 2021), other factors such as variations the differences in bedrock 

exposure rate across in various karst areas (Chen et al., 2018)  and the complex composition of 
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vegetation types (Pan et al., 2021),  are also key contributors to the pronounced important reasons for 

the large spatio-temporal heterogeneity of vegetation responses to precipitation rainfalls in these regions. 

he areas. 

 

Conclusion 

The results of this study suggest paper show that extremely extraordinarily heavy rainfall has the most 

obvious pronounced negative impacts on different the remotely sensed vegetation indices (FVC and 

NPP) in the Guangxi karst region. Among the two remotely sensed vegetation indices, the negative 

effects of varying different levels of rainfall levels  on FVC waswere significantly greater than that of 

those on NPP. The effectseffects of different rainfall amounts on the two remotely sensed vegetation 

indices showed significant spatial differences, as well as substantial variations in their impacts large 

differences in the effects on different tree species in the study area. Notably, , with generally larger the 

negative effects on the FVC were generally greater s of for economic and broad-leavedleaf forests. 

Additionally, There is also a lag effect of rainfall has a lag effect on vegetation, which was not addressed 

in is not addressed in this study but paper and will be explored in future studiesresearch. 

Due to geographical and species forest vegetation differences, targeted vegetation protection is of great 

importancecrucial, particularly especially in areas with aof high incidence of extremely heavy rainfall 

and in areas regions dominated byof economic and broad-leaved forests. 
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Figure Captions 
Figure 1 Distribution of forest species and meteorological stations in the study area 

Figure 2 Spatial distribution of correlation between FVC and different levels of rainfall in karst areas of Guangxi 

(a) Extremely heavy rainstorm; (b) Heavy rainstorm; (c) Rainstorm (d) Heavy rain (e) Moderate rain 

Figure 3 Spatial distribution of correlation between vegetation NPP and different levels of rainfall in karst areas 

of Guangxi 

(a) Extremely heavy rainstorm; (b) Heavy rainstorm; (c) Rainstorm; (d) Heavy rain; (e) Moderate rain 

Figure 4 Negative correlation between various forest species and different levels of rainfall in the study area 

Figure 5 Proportion of the negative correlation between different forest species and different levels of rainfall in 

the study area 

Figure 6 Spatial distribution of different levels of rainfall in the study area 

(a) Extremely heavy rainstorm; (b) Heavy rainstorm; (c) Rainstorm; (d) Heavy rain; (e) Moderate rain 

 

Table Captions 

Table 1 Indicators of rainstorm levels 


