Interactive effects between soil properties and bacterial communities in tomato rhizosphere under the application of microbial agents (#110350)

First submission

Guidance from your Editor

Please submit by 15 Feb 2025 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

6 Figure file(s)

1 Table file(s)

7 Raw data file(s)

12 Other file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Interactive effects between soil properties and bacterial communities in tomato rhizosphere under the application of microbial agents

Longxue Wei ¹, Dongbo Zhao ¹, Lianghai Guo ¹, Jianjun Guo ¹, Jinying Zhu ¹, Yanting Pei ¹, Peiyan Guan ², Zhihui Guo ¹, Huini Cui ¹, Jiansheng Gao ¹, Yongjun Li ¹, Liang Zhang ¹, Fuyan Wang ¹, Peng Liu ^{Corresp. 1}

Corresponding Author: Peng Liu Email address: wheatpb@163.com

Background To study the impact of microbial agents on the physicochemical properties, enzyme activities and bacterial communities in tomato (Solanum lycopersicum L.) rhizosphere soil, in order to provide a theoretical foundation for the stability of tomato rhizosphere soil microecology and the ecological preservation of farmland soil. **Methods** Tomato rhizosphere soils treated with various microbial agents including *Bacillus subtilis* (FQ T1), Trichoderma harzianum (FQ T2), Bacillus amyloliquefaciens (FQ T3), Verticillium thuringiensis (FQ T4), and Verticillium purpureum (FQ T5), as well as an untreated control (FQ CK), were analyzed. The effects of different microbial agents on the physicochemical properties, enzyme activities and bacterial community structure of tomato rhizosphere soil after two years of continuous cropping were analyzed by using 16S rRNA and ITS highthroughput sequencing techniques. **Results** With the application of microbial agents, microbial agent treatment was beneficial for improving the physicochemical properties and enzyme activity of tomato rhizosphere soil after two years of continuous cropping. Compared with the control FQ CK, to a certain extent, bacterial treatment increased the richness of bacterial communities, the total number of species, and the overall relative abundance of beneficial bacterial phylum and genus. It had a positive impact on microbial structure and function, improved the interaction and stability of species ecological networks, and was conducive to the stability and sustainability of tomato rhizosphere soil microbial ecosystem functions.

Dezhou Institute of Agricultural Science, Dezhou, Shandong, China

² Dezhou College, Dezhou, Shandong, China

Interactive effects between soil properties and bacterial communities in tomato rhizosphere under the application of microbial agents

- 4 Longxue Wei¹, Dongbo Zhao¹, Lianghai Guo¹, JianjunGuo¹, Jinying Zhu¹, Yanting Pei¹,
- 5 PeiyanGuan²,ZhihuiGuo¹,HuiniCui¹,JianshengGao¹,YongjunLi¹,LiangZhang¹,FuyanWang¹,Peng
- 6 Liu¹

7

1

2

3

- 8 ¹Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
- 9 ²Dezhou College, Dezhou, Shandong, China
- 10 Corresponding Author:
- 11 PengLiu¹
- 12 No. 1245 University West Road, Dezhou, Shandong, 253000, China
- 13 Email address: wheatpb@163.com

14 Abstract

- 15 **Background** To study the impact of microbial agents on the physicochemical
- properties, enzyme activities and bacterial communities in tomato (Solanum lycopersicum L.)
- 17 rhizosphere soil, in order to provide a theoretical foundation for the stability of tomato
- 18 rhizosphere soil microecology and the ecological preservation of farmland soil.
- 19 **Methods** Tomato rhizosphere soils treated with various microbial agents including
- 20 Bacillus subtilis (FQ T1), Trichoderma harzianum (FQ T2), Bacillus amyloliquefaciens
- 21 (FQ T3), Verticillium thuringiensis (FQ T4), and Verticillium purpureum (FQ T5), as well as
- an untreated control (FQ CK), were analyzed. The effects of different microbial agents on the
- 23 physicochemical properties enzyme activities and bacterial community structure of tomato
- 24 rhizosphere soil after two years of continuous cropping were analyzed by using 16S rRNA and
- 25 ITS high-throughput sequencing techniques.
- 26 **Results** With the application of microbial agents, microbial agent treatment was
- 27 beneficial for improving the physicochemical properties and enzyme activity of tomato
- 28 rhizosphere soil after two years of continuous cropping. Compared with the control FQ CK, to a
- 29 certain extent, bacterial treatment increased the richness of bacterial communities, the total
- 30 number of species, and the overall relative abundance of beneficial bacterial phylum and genus.
- 31 It had a positive impact on microbial structure and function, improved the interaction and
- 32 stability of species ecological networks, and was conducive to the stability and sustainability of
- 33 tomato rhizosphere soil microbial ecosystem functions.

34 **Keywords:** microbial agents; tomato; bacteria; soil properties; continuous cropping

	4					4 .		
n	tr	$\boldsymbol{\wedge}$	~		\sim	••	$\boldsymbol{\wedge}$	n
		w	u	ш			u	
		•	•	•	•	•	•	

The tomato (Solanum lycopersicum L.) stands as one of the most significant vegetable crops 36 cultivated globally (Singh et al., 2015). With the intensification of intensive production and the 37 38 development of facility agriculture, continuous cropping obstacles such as serious soil-borne 39 diseases have become increasingly prominent, resulting in reduced quality and yield, which seriously restricts the sustainable development of tomato industry (Su et al., 2023). Soil is the 40 41 carrier of plant production and also a fundamental element of the ecological environment. Soil microorganisms act as "regulators" of soil nutrient cycling in the process of nutrient 42 transformation, controlling the direction of soil nutrient cycling, the types of nutrient element 43 compounds, and exchange fluxes (Adomako et al., 2022) (Luo et al., 2019). Soil microbial 44 communities and diversity regulate the multifunctionality of soil ecosystems, thereby influencing 45 the soil's resistance and resilience, which are essential for maintaining soil fertility and 46 sustainable production (Hemkemeyer et al., 2021). Understanding the ecological processes 47 involved in microbial community assembly helps to determine how microbial community 48 49 composition responds to environmental changes (Oksana Coban et al., 2022).(Xu et al., 2015). Continuous cropping can disrupt the microbial community structure in the rhizosphere, impair 50 the survival of beneficial organisms, foster the growth of pathogenic bacteria, intensify the 51 52 occurrence of soil-borne diseases, and subsequently impact crop growth, resulting in yield 53 reduction (Feng et al., 2023). (Xiao et al., 2024). Studies have found that rhizosphere microorganisms are crucial in the onset and control of soil-borne diseases. Plants can recruit 54 55 beneficial microorganisms in the rhizosphere via root exudates, thereby enhancing disease 56 resistance through the antagonism, competition, and induction of systemic resistance by these beneficial microorganisms (Su et al., 2023). Research by Fu et al. indicates that soil-related 57 issues stemming from continuous monoculture have hindered the sustainable development of 58 59 China's tomato industry (Fu et al., 2017). Tomato yield was significantly positively correlated 60 with soil available potassium and soil microbial community functional diversity index. Microbial inoculants are microbial inoculants based on one or more functional or bacterial 61 strains applied to the soil as a substitute for traditional inorganic fertilizers (bio-fertilizers), 62 which can exert biological control of pests and diseases (*Ji. et al., 2023*), or be used for 63 bioremediation (Yang et al., 2023), and enhancement of soil properties (Jiang et al., 2022), and 64

plant resistance (Xiao et al., 2024). While some soil inoculants (e.g. rhizobia) have a long and 65 fruitful history of use (Abdurashytova et al., 2022), other soil inoculants have not performed 66 consistently in the field (Chen et al., 2024). (Leticia L et al., 2024). Bouček Jiří et al. (Bouček 67 Jiříet al., 2023) found that inoculation of tomato plants with Bacillus amyloliquefaciens had a 68 favorable effect on fruit quality; Kamaraj S et al. (Sedhupathi et al., 2022)concluded that the 69 fungi of the cushion mycorrhizal fungus (Rhizobium irregularis), Bacillus subtilis, and 70 Penicillium violetum, the Biocontrol agents (BCA) were able to produce extracellular proteases 71 and form maximal biofilms, which significantly reduced the number of egg masses and root-knot 72 index against tomato root-knot nematodes; Shalaby Tarek A et al. (Shalaby Tarek A et al., 2022) 73 found that Trichoderma harzianum in combination with polybutazole (PBZ) had a significant 74 biochemical control of Trichoderma verticillioides in tomato seedlings. Liu et al., (Liu et al., 75 76 2018) found that Bacillus amyloliquefaciens SQR9 and amino acid-containing organic fertilizer (chicken manure) inhibited tomato diseases by changing the composition of rhizosphere bacterial 77 communities. A more accurate understanding of the ecology and mode of action of inoculant 78 strains is key to optimizing their efficacy and guiding their targeted use to address key 79 80 constraints to crop production (Gu et al., 2024). At present, there are few studies on the characteristics and function prediction of bacterial 81 82 community in rhizosphere soil of tomato under continuous cropping for two years under different microbial agents, which is very important for predicting the role of rhizosphere 83 84 microorganisms in regulating plant-microorganism ecosystem function. In this study, tomatoes with different microbial agents for two years were used as the research object. The effects of 85 microbial agents on the physical and chemical properties of tomato rhizosphere soil and the 86 composition of soil bacterial community structure were investigated by 16S rRNA and ITS high-87 88 throughput sequencing technology, in order to explore the mechanism of rhizosphere bacterial 89 community construction. In a word, the research is helpful to reveal the soil ecological stability mechanism of microbial agents for promoting growth and disease resistance, and to evaluate the 90 practical application effect of different carrier agents in agricultural production, so as to provide 91 theoretical support for the sustainable development of tomato industry. 92 93

Materials & Methods

94

95

Test materials and test site

This experiment was conducted from January 19, 2023 to February 17, 2023 at Xin Sheng

Seed Industry, Pingyuan County, Dezhou City, and from February 19, 2023 to September 2023 96 at the greenhouse of Dazhuang Village, En Township, Pingyuan County, Dezhou City 97 (120.4114°E,30.4406°N), with tomato varieties of "Chun Li" as the test crop, and the previous 98 99 crop in the test site was tomato. The basic physicochemical properties of the soil were organic matter 13.28g·kg⁻¹, total nitrogen 1.12g·kg⁻¹, effective phosphorus 125.55mg·kg⁻¹, and fast-acting 100 potassium 116.37mg·kg⁻¹. 101 Microbial agents for testing: FQ T1: Bacillus subtilis (effective live bacterial count is 102 1.00×109 CFU·mL⁻¹.); FQ T2: Trichoderma harzianum (effective live bacterial count is 103 3.00×10⁷ CFU·mL⁻¹); FO T3: Bacillus amyloliquefaciens (the effective number of live bacteria 104 is 1.00×10^9 CFU·mL⁻¹); FO T4: verticillium chlamvdosporium sp. (the effective number of live 105 bacteria is 2.50×108 CFU·mL⁻¹; FQ T5: Paecilomyces lilacinus (the effective number of live 106 bacteria is $1.00 \times 10^8 \text{CFU} \cdot \text{mL}^{-1}$); five microbial fungicides purchased from the biological plant 107 protection station of the Fruit Yau Agricultural Resources and Beihai Qunlin biological factory 108 109 store; the test was conducted in a plastic greenhouse double-layer thermal insulation facilities cultivation, the greenhouse set up a control (FQ CK) and five microbial agents treatments 110 111 (FQ T1, FQ T2, FQ T3, FQ T4, FQ T5). Planted March 20, April 20 and May 19 inter-root furrow application of five agents (dosage of 150 times the liquid, each time 100mL per plant); 112 113 control conventional management, no agents. Each experimental plot covers an area of 50m², repeated 3 times, randomly arranged, and the field management measures are the same as those 114 115 of local high-yield greenhouses. soil sample collection 116 Soil samples were collected on June 27th, 2023. 117 Firstly, remove the 0-3cm soil on the surface layer, and then take out the plants together 118 119 with the surrounding soil to keep the root system intact; Secondly, fully shake off the soil around 120 the root system, gently brush the soil close to the root system with a sterile brush to remove foreign matters; Then, the rhizosphere soil of three tomato plants was randomly selected, mixed 121 and put into sterile plastic bags, which was one soil sample. The soil samples were divided into 122 two parts after passing a 2mm mesh sieve: one part was stored in an ultra-low temperature 123 freezer at -80 °C for DNA extraction, and the other part was placed in a cool and dry place for 124 natural air drying for the determination of soil physicochemical properties and enzyme activities. 125 Determination of soil physicochemical properties and enzyme activities 126

127	Soil organicmatter content was titrated by redox method after high temperature digestion,
128	Totalnitrogen content was titrated by acid standard solution using semi-trace Kjeldahl method,
129	alkali nitrogen content was titrated by acid standard solution using alkali diffusion method,
130	available phosphorus content was extracted by 0.5mol·L ⁻¹ NaHCO ₃ , and then determined by
131	molybdenum antimony antimonimony colorimetric method, and then detected by TU-1810 UV-
132	Vis Spectrophotometer (Beijing Pudian General Instrument Co., Ltd.), and quick-acting
133	potassium content was detected by TU-1810 UV-Vis Spectrophotometer. The content of
134	availablepotassium was detected by CH ₃ COONH ₄ extraction and then detected by BWB-1 flame
135	spectrophotometer (BWBTechnologies, UK).
136	Soil sucrase was determined by the colourimetric method of 3,5-dinitrosalicylic acid; soil
137	catalase was determined by the titrimetric method of potassium permanganate; alkaline
138	phosphatase was determined by the Sodium Benzene Phosphate colourimetric method. All the
139	steps were performed by the China Rice Research Institute according to the instructions of the
140	corresponding enzyme activity kits provided by Suzhou Keming Biotechnology Co. Ltd, and the
141	samples were colourimetrically determined using a multifunctional enzyme marker (TECAN-
142	Spark 20M).
143	Analysis of microbial diversity measurements of rhizosphere soils of tomatos
144	High-throughput sequencing analyses were performed by Shanghai Meiji Biomedical
145	Technology Co. Ltd: the labelled bacterial universal primer 338F (5'-
146	ACTCCTACGGGGAGGCAGCA-3')-806R (5'-GGACTACHVGGGTWTCTAAT-3') to
147	amplify the soil bacterial 16SrRNA gene region. Afterwards, the raw data were quality filtered
148	and merged on the Illumina MiSeq platform (Illumina, USA) (Chen et al., 2018) ,according to
149	the standard method provided by Majorbio ((Majorbio Shanghai, China)), and then clustered at
150	97% similarity level to obtain the OTU (operational taxonomic unit) (DavideFrancioli et al.,
151	2020). Species annotation were performed on the OTU sequences (BolyenEvan et al., 2019) and
152	the community composition, alpha diversity and relative abundance of the samples were counted
153	at each taxonomic level, while heatmap, Mantel Test network analyses, and Faprotax function
154	prediction analysis were performed within the platform on the correlation between the soil
155	environmental factors and microbial communities to determine the effects of soil environmental
156	factors on the composition of microbial communities.
157	Data processing and analysis of high-throughput sequencing results

185

186

187

188

158	Trimmomatic software was used for quality control of the sequenced raw sequences, and
159	FLASH1.2.11 software was used for double-ended sequence splicing, and UPARSE7.1 software
160	was used for OTU clustering of the sequences based on 97% similarity. Based on the OTU
161	clustering results, the Majorbio Cloud platform was used for further data analysis and
162	information mining, including species community composition analysis,a diversity analysis
163	(including Sobs index, Simpson index, Shannon-Wiener index, Chao1 richness, Abundance-
164	based Coverage Estimator (ACE) and coverage and other indices and performed 16S gene
165	function prediction analysis (COG database).
166	The data were statistically analysed using Excel 2007 and SPSS tatistics 20.0 software,
167	and the soil microbial diversity analysis and visual mapping were performed using Origin2019b
168	and MajorBIO cloud platform, and the OTUs were subjected to multiple sequence comparison.
169	Analysis of variance and multiple comparisons (P<0.05) were performed using one-way
170	ANOVA and Duncan(Duncan's Multiple Range Test, DMRT) method.
171	Results
172	Effects of different microbial agents on soil physicochemical properties and enzyme
172 173	Effects of different microbial agents on soil physicochemical properties and enzyme activities of Tomato
173	activities of Tomato
173 174	activities of Tomato Different microbial agents have varying degrees of effects on the physicochemical
173 174 175	activities of Tomato Different microbial agents have varying degrees of effects on the physicochemical properties and enzyme activities of tomato rhizosphere soil.
173 174 175 176	activities of Tomato Different microbial agents have varying degrees of effects on the physicochemical properties and enzyme activities of tomato rhizosphere soil. The content of available potassium and organic matter in tomato rhizosphere soil treated
173 174 175 176	Different microbial agents have varying degrees of effects on the physicochemical properties and enzyme activities of tomato rhizosphere soil. The content of available potassium and organic matter in tomato rhizosphere soil treated with microbial agents showed significant differences relative compared to the control
173 174 175 176 177	Different microbial agents have varying degrees of effects on the physicochemical properties and enzyme activities of tomato rhizosphere soil. The content of available potassium and organic matter in tomato rhizosphere soil treated with microbial agents showed significant differences relative compared to the control FQ_CK(Fig.1): on average, the content of available potassium in tomato rhizosphere soil treated
173 174 175 176 177 178	Different microbial agents have varying degrees of effects on the physicochemical properties and enzyme activities of tomato rhizosphere soil. The content of available potassium and organic matter in tomato rhizosphere soil treated with microbial agents showed significant differences relative compared to the control FQ_CK(Fig.1): on average, the content of available potassium in tomato rhizosphere soil treated with five microbial agents was 50.56% higher than the control FQ_CK treatment, and the content
173 174 175 176 177 178 179	Different microbial agents have varying degrees of effects on the physicochemical properties and enzyme activities of tomato rhizosphere soil. The content of available potassium and organic matter in tomato rhizosphere soil treated with microbial agents showed significant differences relative compared to the control FQ_CK(Fig.1): on average, the content of available potassium in tomato rhizosphere soil treated with five microbial agents was 50.56% higher than the control FQ_CK treatment, and the content of organic matter was 13.82% higher than the control FQ_CK treatment; Except for the FQ_T2
173 174 175 176 177 178 179 180	Different microbial agents have varying degrees of effects on the physicochemical properties and enzyme activities of tomato rhizosphere soil. The content of available potassium and organic matter in tomato rhizosphere soil treated with microbial agents showed significant differences relative compared to the control FQ_CK(Fig.1): on average, the content of available potassium in tomato rhizosphere soil treated with five microbial agents was 50.56% higher than the control FQ_CK treatment, and the content of organic matter was 13.82% higher than the control FQ_CK treatment; Except for the FQ_T2 treatment, there was a significant difference in total nitrogen content between tomato rhizosphere

the control FQ CK treatment; Except for the FQ T1 treatment, there was a significant difference

in the available phosphorus content of tomato rhizosphere soil after microbial agent treatment

rhizosphere soil treated with microbial agent was on average 30.81% higher than that of the

compared to the control FQ CK treatment. The available phosphorus content of tomato

PeerJ reviewing PDF | (2024:11:110350:0:2:NEW 18 Dec 2024)

control FQ_CK treatment.

201

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

Microbial agent treatment had a certain degree of impact on the enzyme activity of tomato 189 rhizosphere soil. The combination of microbial agent treatment FO T2 and FO T5 showed a 190 significant difference in the sucrose enzyme activity of tomato rhizosphere soil compared to the 192 control FQ CK treatment; The catalase activity in tomato rhizosphere soil treated with microbial agents FQ T2, FQ T3, FQ T4, and FQ T5 showed significant differences compared to the 193 control FQ CK treatment; The alkaline phosphatase activity in tomato rhizosphere soil treated 194 with microbial agents FQ T1, FQ T2, and FQ T3 showed significant differences compared to 195 the control FQ CK treatment; After treatment with microbial agents, the average activities of 196 sucrose enzyme, catalase, and alkaline phosphatase in tomato rhizosphere soil were 7.59%, 197 4.39%, and 15.82% higher than those in the control FO CK treatment, respectively. From this, it 198 can be seen that although microbial agents have different effects on the physicochemical 199 properties and enzyme activities of tomato rhizosphere soil, overall, microbial agent treatment 200 was beneficial to improve the physicochemical properties and enzyme activities of tomato 202 rhizosphere soil in two years of continuous cropping(Fig. 1).

Effects of different microbial agents on the microbial community in tomato rhizosphere soil **Evaluation of Sample Sequencing Depth and OTU Cluster Analysis**

The dilution curve reached the plateau period represents that the sequencing data can cover the microbial community diversity, and the dilution curve can also indirectly reflect the species diversity Richness. Sequencing of bacterial samples yielded a total of 248,652,103,952,463 bases (Fig. 2), with an average sequence length of 418 bp, and OTU sequence similarity was 0.97 and the dilution curve for the USEARCH11-uparse clustered OTU gradually plateaus after 25,000 sequences, suggesting an adequate supply of sequencing data and reliable outcomes, suitable for further analysis.

Alpha diversity of soil bacteria treated with different microbial agents

Alpha diversity denotes the number and diversity of species within a local habitat or ecosystem, typically assessed through Sobs, Simpson, Shannon, Chao1, and ACE indices. The Sobs and Chao1 indices reflect community richness, with higher indices indicating more species, while the Simpson index assesses community diversity, with a higher Simpson value indicating lower diversity. As shown in Table 1, the coverage of soil bacterial samples reached over 98.74%, confirming that the study's findings accurately represent the bacterial community diversity in the samples, and the sequencing results are deemed reliable. There were significant

PeerJ

220	differences in ACE index, Chao1 index and Sobs index between FQ _ T1, FQ _ T5 microbial
221	agent treatment and FQ _ CK treatment. There was no significant difference in Simpson and
222	Shannon index between the microbial agent treatment and the control FQ_CK.
223	Overal, compared with the control FQ _ CK, the application of microbial agents increased the
224	community Sobs and Chao1 index at different levels, indicating that the treatment of microbial
225	agents increased the richness of bacterial communities and the total number of species to a
226	certain extent.
227	Analysis of soil bacterial community structure after treatment with different microbial
228	agents
229	Following the application of different microbial agents, significant changes were observed
230	in the relative abundance of bacterial communities in the soil across all treatment groups (Fig. 3).
231	Rhizosphere soil samples contained bacteria from 40 phylum, 130 classes, 309 orders, 490
232	families, and 877 genus, totaling 1598 species. As illustrated in Fig. 3, at the phylum level, 11
233	rhizosphere soil bacterial phylum exhibited relatively high abundances (>1%), with
234	Proteobacteria and Firmicutes as the predominant phylum, averaging 44.55% across all
235	treatments. In comparison to the FQ_CK treatment, the average relative abundance of
236	Proteobacteria across the five microbial treatments decreased by 2.42%, with the FQ_T1
237	treatment showing the largest reduction at 14.61%. The FQ_CK treatment displayed a higher
238	relative abundance of <i>Proteobacteria</i> at 28.03%; Relative to the FQ_CK treatment, the average
239	relative abundance of Firmicutes across the five microbial treatments increased by 2.22%, with
240	the FQ_T4 treatment showing the largest increase at 4.25%; In comparison to the FQ_CK
241	treatment, the relative abundances of Chloroflexi and Bacteroideta across the five microbial
242	treatments decreased by an average of 4.69% and 1.79%, respectively. Meanwhile, the relative
243	abundances of Actinobacteria and Acidobacteria increased by an average of 1.54% and 2.94%,
244	respectively; Compared with FQ_CK treatment, the relative abundance changes of
245	Myxococcata, Gemmatimonadota, Nitrospira, Verrucomicrobiota, and Entotheonellaeota treated
246	with five bacterial agents were slightly different, but the overall results showed an average
247	increase of 0.21%, 0.16%, 0.05%, 0.02%, and 0.34%, respectively.
248	Fig.S1 shows the dominant genus with relative abundance>1% at genus level and ranking
249	among the top 10. The 10 genus account for 27.03% on average among the treatments. Among
250	them, <i>Bacillus</i> and <i>Paenisporosarcina</i> are the dominant genus with relative abundance of top2,

251	and the unnamed genus account for 42.97% of the 10 genera. Compared with FQ_CK treatment,
252	the relative abundance of <i>Bacillus</i> increased by 52.52% on average; The relative abundance of
253	paenisporosarcina was 0.19 times higher than that of the treatment without application of
254	fungicides for two years; The average relative abundance of Nitrospira in five microbial agents
255	treatment was 2.91% higher than that in FQ_CK treatment. In general, the application of
256	microbial agents increased the relative abundance of Bacillus, Paenisporosarcina and Nitrospira
257	in tomato rhizosphere soil in two years of continuous cropping, and had a certain impact on the
258	composition of bacterial community in tomato rhizosphere soil in two years of continuous
259	cropping
260	Correlation between soil environmental factors and microbial community
261	Mantel Test network heatmap analysis is a correlation analysis of two matrices, which is
262	commonly used in microbiome to analyze the correlation between environmental factors and
263	microbial community structure.
264	In Fig.4, Mantel 'r (absolute value of R) was used to plot the correlation between bacterial
265	community and environmental factors in tomato rhizosphere soil. The Mantel 'r (absolute value
266	of R) of bacterial community and AP (available phosphorus) and TN (total nitrogen) content
267	was between 0.4-0.6, Mantel 'p \leq 0.05, and there was a positive correlation. There was a positive
268	correlation between the bacterial community and the Mantel 'r (the absolute value of R) of CA
269	(catalase activity) and AK (available potassium) content between 0.4 and 0.6, Mantel 'p \geq 0.05.
270	There was a positive correlation between bacterial community and OM (organic matter content),
271	APA (alkaline phosphatase activity) Mantel 'r (absolute value of R) < 0.4, Mantel 'p \geq
272	0.05 ; The bacterial community was negatively correlated with Mantel 'r (absolute value of R) \leq
273	0.4 and Mantel 'p \geq 0.05 of SA (sucrase activity). There were different correlations among the
274	seven environmental factors, and only there was a significant positive correlation between CA (
275	catalase activity) and AP (available phosphorus) content.
276	Analysis of Microbial Function Prediction in Tomato Rhizosphere Soil
277	FAPROTAX software maintains a functional classification database based on species
278	information, which includes more than 80 functional classifications of carbon, nitrogen,
279	phosphorus, sulfur and other element cycles, as well as plant and animal pathogens, methane
280	generation, fermentation, etc., covering more than 4,600 different prokaryotic species. It has
281	good predictive effects on the biochemical cycle processes of environmental samples (LoucaS et

282	al., 2016). At present, many scholars have used FAPROTAX to carry out functional prediction of
283	microorganisms (Li et al., 2024). This study also used FAPROTAX to analyze and predict the
284	functions of bacteria in the rhizosphere soil of tomato treated with different microbial agents in
285	the second year of continuous cropping, and obtained 53 functional groups (Fig. 5). The analysis
286	of functional bacteria with a relative abundance of >1% (average total bacterial proportion of
287	87.74%) showed that chemolithoautotrophic functional bacteria dominated in tomato rhizosphere
288	soil (accounting for 24.98%-33.39% of total bacteria), including Chemoheterotrophy and
289	Aerobic Chemoheterotrophy bacteria; The relative abundance of phototrophic bacteria was
290	relatively low (0.45%-1.91% of total bacteria), and the average relative abundance of
291	phototrophy bacteria treated with the bacterial agent was 7.37% higher than that of the control
292	FQ_CK treatment, which may be related to the promotion of the growth of phototrophic bacteria
293	by the application of the bacterial agent.
294	The total relative abundance of functional microorganisms related to the nitrogen cycle
295	(Nitrate Respiration, Nitrate Reduction, Nitrogen Respiration) was relatively high (averaging
296	8.02% of the total bacteria), and the average relative abundance of nitrogen cycle-related
297	functional bacteria treated with microbial agents was 45.09% higher than that of the control
298	FQ_CK treatment. This might mainly be due to the fact that the application of microbial agents
299	offered a favorable growth environment for these bacteria. The relative abundance of
300	communities with fermentation functional genes (Fermentation) ranged from 3.53% to 6.96%.
301	The total relative abundance of functional microorganisms related to parasites (animal parasites
302	or symbionts, intracellular parasites) averaged 2.08% of the total bacteria. The total relative
303	abundance of functional microorganisms related to decomposition (xylanolysis, cellulolysis,
304	chitinolysis, ureolysis) ranged from 3.30% to 5.51%. Among them, the total relative abundance
305	of decomposition-related functional bacteria in FQ_T1 was the highest, 23.38% higher than that
306	of the control FQ_CK treatment. Functional microorganisms related to human pathogenic
307	bacteria (human pathogens pneumonia, human pathogens all, an average total relative
308	abundance accounting for 2.11% of the total bacteria) and those related to sulfur and manganese
309	oxidation cycles (dark thiosulfate oxidation, dark oxidation of sulfur compounds, manganese
310	oxidation, an average total relative abundance accounting for 3.80% of the total bacteria) were
311	also detected at the sampling sites.

Discussion

312

313	Microbial agents are beneficial for improving the physicochemical properties and
314	enzyme activity of tomato rhizosphere soil
315	The contents of AK (available potassium) and OM (organic matter) in the
316	rhizosphere soil of tomatoes treated with microbial agents showed significant differences
317	compared with the control FQ_CK treatment: The contents of AK (available potassium) , OM
318	(organic matter), TN (total nitrogen), AP (available phosphorus) and the activities of
319	sucrase, catalase and alkaline phosphatase in the rhizosphere soil treated with microbial agents
320	were all higher than those in the control FQ_CK . Changes in soil microbial characteristics that
321	may result from changes in soil chemical properties under two years of continuous cropping
322	(Wang et al., 2013). In contrast, the application of microbial agents could improve the
323	physicochemical properties and enzyme activities in the rhizosphere soil, thereby improving the
324	soil nutrient environment, increasing the abundance of beneficial microorganisms, and exerting
325	microscopic regulatory effects on the ecosystem. This might be that some environmental
326	variables have potential influences on the assembly of rhizosphere microbial communities and
327	play a key role in the construction of rhizosphere microbial communities. The deterministic and
328	stochastic selection of microbial agent treatments regulates the physicochemical properties,
329	enzyme activities and the construction of microbial communities in the rhizosphere soil (CHEN
330	et al., 2021).
331	Microbial agents can enhance the diversity of bacterial microorganisms in tomato
332	rhizosphere soil
333	Soil microbial diversity and network complexity are two important factors affecting
334	ecosystem multifunctionality, and soil microbial diversity plays a positive role in promoting soil
335	multifunctionality (Gong et al., 2024). Compared to the control FQ_CK, the bacteriophage
336	treatment led to an increase in bacterial community richness and total number of species to some
337	extent. This is consistent with the research conclusion of Wang et al. (Wang et al., 2020) who
338	conducted pot experiments on Hubei Haitang with Bacillus FKM10 , which showed an increase
339	in bacterial abundance and diversity and a change in the structure of the soil microbial
340	community in the treatment compared to the control. Proteobacteria and Firmicutes were the
341	common dominant phyla.Compared with the FQ_CK, the relative abundances of
342	Actinobacteriota, Acidobacteriota, Gemmatimonadota and Nitrospirota all increased. Previous
343	studies have shown that Actinobacteriota can inhibit the activity of some pathogenic fungi,

344	promote the activity of microorganisms in the soil that are beneficial to crops, and release a
345	variety of substances in metabolic activities to stimulate the growth and division of plant cells,
346	play an important role in the decomposition and utilisation of organic matter, carbon and nutrient
347	cycling, and have a better salt tolerance to promote the decomposition of plant residues, soil
348	structure formation, seed germination and root growth (HenningSM et al., 2017)(SathyaA et al.,
349	2017). The abundance of Acidobacteriota is highly correlated with soil nutrition and plays an
350	important role in carbon and nitrogen metabolism (HOUL et al., 2018), and is an important flora
351	promoting denitrification (CHEND et al., 2018). Acidobacteriota can also degrade plant residues,
352	participate in the iron cycle and produce active soil metabolites (GLICKBR et al., 2012).
353	Previous studies have pointed out that the relative abundance of Acidobacteriota is closely
354	related to soil pH, and the abundance of Acidobacteriota shows an increasing trend with the
355	decrease of soil pH (Lauber et al., 2009). Changes in the relative abundance of Acidobacteriota
356	can indicate different nutritional strategies of soil bacterial communities; Nitrospirae is greatly
357	related to the oxidation and reduction of nitrate. Among them, Nitrospira as a nitrifying
358	bacterium can oxidize nitrite to nitrate (Feng et al., 2008), and can play a key role in the
359	decomposition of particulate organic matter (García-LópezM.etal et al., 2019); Chloroflexi has
360	strong tolerance to barren and harsh external growth environments and is suitable for growth and
361	reproduction in low-nutrient environments (Zhou et al., 2015). (Huang et al., 2019)(EPELDE L
362	et al., 2015); Acidobacteriota has a significant inhibitory effect on soil organic matter
363	mineralization (Guo et al., 2017). On the contrary, Bacteroidetes is the main participant in soil
364	organic matter mineralization (Guo et al., 2015). This article found that the microbial agent
365	treatments increased the abundance of Acidobacteriota , decreased the relative abundances of
366	Bacteroidetes and Chloroflexi. ,The reason is that Acidobacteriota can achieve neutralization and
367	regulation of alkaline soil through metabolic acid production (Schmalenberger et al., 2013),is a
368	beneficial bacterium in the plant salt resistance mechanism (Xu et al., 2020). Some
369	Acidobacterial microorganisms, as plant growth promoting rhizobacteria (PGPR), can produce
370	plant growth promoting hormones (auxin IAA) and have the ability to produce iron carriers and
371	dissolve phosphate, interact with plants, thereby promoting plant growth (SadafKALAM et al.,
372	2022). Therefore, the increase in the abundances of these beneficial phyla and the decrease in the
373	abundances of harmful phyla after the application of microbial agents can promote the
374	development of soil bacterial communities in a beneficial direction and increase soil activity.

There is an interactive relationship between the bacterial microbial community i	n
tomato rhizosphere soil and soil physicochemical properties and enzyme activity	

The bacterial community was positively correlated with AP (available phosphorus) and TN (total nitrogen) contents; the bacterial community was positively correlated with CA (catalase activity) and AK (available potassium) contents; the bacterial community was positively correlated with OM content (organic matter) and APA (alkaline phosphatase activity); the bacterial community was negatively correlated with SA (sucrase activity); the seven environmental factors had different correlation relationships among each other, and only catalase activity (CA) and available phosphorus (AP) content had a significant positive correlation relationship. A large number of studies have reported that different microbial agents can also change soil physicochemical properties and soil enzyme activities and promote crop growth. Abdelraouf et al. (Abdelraouf Ahmed et al., 2023) greatly improved the soil enzyme activity in the rhizosphere of tomatoes and reduced the infection of tomato Fusarium wilt by exogenous application of nanochitosan encapsulated Pseudomonas. Jia et al. (Jia et al., 2023). cocultured Bacillus subtilis and Pseudomonas fluorescens to synthesize microorganisms for the synergistic biological control of tomato early blight, which could reduce the incidence of diseases, increase biomass, increase the number of potential beneficial bacteria, and significantly change the rhizosphere microbial community.

Microbial agents promote beneficial bacterial functions in the rhizosphere soil of tomato after two years of continuous cropping

Ecological network analysis, as an important means to clarify the interactions among microorganisms, have great significance in exploring the assembly, construction and stability of rhizosphere microorganisms during grassland degradation. The use of microbial agents increased the diversity of fungi and the interaction and stability of species ecological networks, enhanced the ability of microorganisms to resist external environmental disturbances, and contributed to maintaining the stability and sustainability of farmland ecosystem functions (Yu *et al., 2022*). Using FAPROTAX to analyze and predict the functions of tomato rhizosphere soil bacteria, after different microbial agent treatments in the second consecutive year, a total of 53 functional population groups were obtained. Functional bacteria with a relative abundance > 1% (average total bacteria accounted for 87.74%) were selected for analysis. The results showed that chemoheterotrophic functional bacteria in the tomato rhizosphere soil were dominant

(accounting for 24.98% - 33.39% of the total bacteria), including Chemoheterotrophy and Aerobic Chemoheterotrophy bacteria; the average relative abundances of functional bacteria related to the nitrogen cycle and phototrophic bacteria were 45.09% and 7.37% higher than those of the control FQ_CK. The total relative abundances of functional bacteria related to fermentation and decomposition ranged from 7.28% to 11.43%.

The types and effective bacterial concentrations of microbial agents, soil characteristics, planting patterns, different varieties and application techniques all affect the field application effects and sustainability of microbial agents. At present, there are various types of single microbial fertilizers and compound microbial agents in production. The synergy of multiple microorganisms applied in the soil is also an important scientific issue. This study only conducted field experiments on five single microbial agents in the soil of 'Chunli' tomatoes. Whether it has the same effect on other varieties of tomatoes and more than two consecutive years of continuous cropping still needs further study. The persistence of microbial agents in the soil and the relationship between microbial agents and organic fertilizers and chemical fertilizers in plant fruit growth and quality improvement were not involved in this article and will be explored in subsequent experiments.

Conclusions

This study showed that the application of different microbial agents had significant improvement effects on soil physicochemical properties and enzyme activities. At the same time, the composition of the microbial community in the tomato rhizosphere soil changed with the application of microbial agents, and the increase in microbial diversity and the enrichment of beneficial bacteria in the tomato rhizosphere had certain effects on the interaction, stability of the microbial ecological network and resistance to environmental changes. Therefore, in actual production, attention should be paid to maintaining the stability of the tomato rhizosphere soil microecology by applying microbial agents, which may have a certain alleviating effect on continuous cropping obstacles. The findings of this study offered a comprehensive demonstration of the relationship between microbial fertilizers and the diversity of the tomato root microbial community. This was valuable for further understanding the construction process and potential mechanisms of the tomato root microbial community when different microbial fertilizers were used. Additionally, it provided a theoretical foundation for the development of microbial fertilizers, particularly composite microbial fertilizers, for soil improvement. Ultimately, this

- research contributed to stabilizing the microecology of root soil.
- 438 Acknowledgements
- Thanks to everyone who helped with the experiment and the completion of the manuscript.
- 440 References
- 441 Abdelraouf Ahmed Mohamed Nabil, Hussain Akram Abdelmonem & Naguib
- DeyalaM.(2023). Nano-chitosan encapsulated Pseudomonas fluorescens greatly reduces
- Fusarium wilt infection in tomato.Rhizosphere, **25**,100676.DOI:10.1016/j.rhisph.2023.100676
- 444 Abdurashytova, E. R., Melnichuk, T. N., Abdurashytov, S. F., Egovtseva, A. Y., Turin, E.
- N., & Gongalo, A. A. (2022). Adaptability of the Sorghum Bicolor Rhizosphere
- 446 Microbiocoenosis Inoculated by Microbial Agents in Southern Chernozem Soils. Russian
- 447 Agricultural Sciences, 48(3), 212-218. DOI: 10.3103/S1068367422030028
- 448 Adomako, M. O., Roiloa, S., & Yu, F. H. (2022). Potential Roles of Soil Microorganisms in
- Regulating the Effect of Soil Nutrient Heterogeneity on Plant Performance. Microorganisms,
- 450 10(12), 2399. DOI:10.3390/microorganisms10122399
- 451 Applied Soil Ecology, Applied Soil Ecology, 144: 60-67. DOI: 10.1016/j.apsoil.2019.07.009
- 452 BolyenEvan, Rideout Jai Ram, Dillon Matthew R, Bokulich Nicholas A, Abnet Christian C, Al-
- 453 **GhalithGabrielA...CaporasoJGregory.(2019)**. Reproducible, interactive, scalable and extensible
- emicrobiomedatascienceusingQIIME2.Naturebiotechnology, **37**(8), 852-857.DOI:
- 455 10.1038/s41587-019-0209-9
- 456 Bouček Jiří, Kulhánek Martin, Košnář Zdeněk, Podhorecká Klára, Obergruber
- 457 **Michal, Hönig Vladimír... Trakal Lukáš. (2023)**. Is; Bacillus amyloliquefaciens; inoculation
- effective for the enhancement of soil and plant nutrient status and fruit quality of; Solanum
- lycopersicum; L. in the presence of composted organic fertilisers? Archives of Agronomy and
- 460 Soil Science(2),182-196. DOI: 10.1080/03650340.2021.1970747
- 461 Chen Shifu; Zhou Yanqing; Chen Yaru; Gu Jia(2018). fastp: an ultra-fast all-in-one FASTQ
- preprocessor. Bioinformatics, **34**(17), i884-i890. DOI: 10.1093/bioinformatics/bty560
- Chen, Y., Zang, H., Bai, L., Lv, C., Chen, X., Li, S., & Dai, J. (2024). Repeated inoculations
- improve wheat yield through modifying the rhizobacterial communities and nitrogen and
- phosphorus fractions. *Applied Soil Ecology*, **196**, 105287. DOI:

- 466 10.1016/J.APSOIL.2024.105287
- 467 CHEND, WANGH, YANGK, et al. (2018). Performance and microbial communities in a
- combined bioelectrochemical and sulfur autotrophic denitrification system at low
- temperature. *Chemosphere*, **193**: 337-342. DOI:10.1016/j.chemosphere.2017.11.017
- 470 CHENQL, HUHW, YANZZ, LICY, NGUYENBAT, SUNAQ, ZHUYG, HEJZ. (2021). Deterministic
- s election dominates microbial community assembly in termitemounds. Soil Biology and
- 472 Biochemistry, 152:108073.DOI: 10.1016/j.soilbio.2020.108073
- 473 DavideFrancioli,SophieQ.vanRijssel,JaspervanRuijven,AadJ.Termorshuizen,T.E.AnneCot
- ton, Alex J. Dumbrell... Lies je Mommer. (2020). Plant functional group drives the community
- structure of saprophytic fungi in a grassland biodiversity experiment. Plantand Soil, 461, 91–
- 476 105.DOI: 10.1007/s11104-020-04454-y
- 477 EPELDE L, LANZEN A, BLANCO F, Urich T, Garbisu C. (2015). Adaptation of soil
- 478 microbial community structure and function to chronic metal contamination at an abandoned
- Pb-Zn mine. FEMS Microbiology Ecology, 91 (1): 1-11. DOI:10.1093/femsec/fiu007
- 480 Feng, C., Yi, Z., Qian, W., Liu, H., & Jiang, X. (2023). Rotations improve the diversity of
- rhizosphere soil bacterial communities, enzyme activities and tomato yield. *PloS one*, **18**(1),
- 482 e0270944. DOI:10.1371/journal.pone.0270944
- 483 FengDL, WuZC, XuSH. (2008). Nitrification of human urine for its stabilization and nutrient
- recycling.BioresourTechnol, **99** (14): 6299-6304.DOI: 10.1016/j.biortech.2007.12.007
- 485 Fu H, Zhang G, Zhang F, Sun Z, Geng G, Li T.(2017). Effects of Continuous Tomato
- 486 Monoculture on Soil Microbial Properties and Enzyme Activities in a Solar
- 487 Greenhouse. Sustainability. 9(2):317. DOI:10.3390/su9020317
- 488 García-LópezM, Meier-KolthoffJP, TindallBJ, etal. (2019). Analysis of 1,000 Type-Strain
- Genomes Improves Taxonomic Classification of Bacteroidetes. Front Microbiol, 10:
- 490 2083.DOI: 10.3389/fmicb.2019.02083
- 491 **GLICKBR(2012).**Plantgrowth-promotingbacteria:mechanismsandapplications [J].Scientifica,
- 492 **2012**:963401. DOI:10.6064/2012/963401
- 493 GuoW, Andersen MN, QiXB, LiP, LiZY, Fan XY, ZhouY. (2017). Effects of reclaimed water
- 494 irrigation and nitrogen fertilization on the chemical properties and microbial community of
- soil . Journal of Integrative Agriculture, **16**(3):679-690. DOI:10.1016/S2095-3119(16)61391-6

- 496 **GuoYH,GongHL,GuoXY.(2015).** Rhizosphere bacterial community of Typha angustifolia L.
- and water quality in a river wetland supplied with reclaimed water. Applied Microbiology and
- 498 Biotechnology, **99**(6):2883-2893. DOI:10.1007/s00253-014-6182-9
- 499 Hemkemeyer, M., Schwalb, S. A., Heinze, S., Joergensen, R. G., & Wichern, F. (2021).
- Functions of elements in soil microorganisms. Microbiological research, 252, 126832.
- 501 DOI:10.1016/j.micres.2021.126832
- 502 HenningSM, YangJP, ShaoP, etal. (2017). Health benefit of vegetable / fruitjuice-baseddiet:role
- of microbiome. Scientific Reports, 7,2167, DOI:10.1038/s41598-017-02200-6
- 504 HOUL, ZHOUQ, WUQ, et al. (2018). Spatiotemporal changes in bacterial community and
- microbial activity in a full-scale drinking watertreat-mentplant[J]. Science of The Total
- 506 Environment, **625**:449-459. DOI:10.1016/j.scitotenv.2017.12.301
- 507 Ji, C., Liang, Z., Cao, H., Chen, Z., Kong, X., Xin, Z., ... & Li, K. (2023). Transcriptome-
- based analysis of the effects of compound microbial agents on gene expression in wheat roots
- and leaves under salt stress. Frontiers in Plant Science, 14, 1109077-1109077.
- 510 DOI:10.3389/fpls.2023.1109077
- Jia, Y., Niu, H., Zhao, P., Li, X., Yan, F., Wang, C., & Qiu, Z. (2023). Synergistic biocontrol of
- Bacillus subtilis and Pseudomonas fluorescens against early blight disease in tomato. Applied
- 513 Microbiology and Biotechnology, **107**(19), 6071-6083. DOI:10.1007/s00253-023-12642-w
- Jiancai Xiao, Meiyu Cao, Kunyang Lai, Kai Sun, Lin Zhang, Pengchao Gao... Lanping
- Guo.(2024). Unveiling key metabolic pathways in Bacillus subtilis-mediated salt tolerance
- enhancement in Glycyrrhiza uralensis Fisch. through multi-omics analysis. Environmental and
- Experimental Botany, **219**, 105631. DOI: 10.1016/J.ENVEXPBOT.2023.105631
- Jiang, X., Fang, W., Tong, J., Liu, S., Wu, H., & Shi, J. (2022). Metarhizium robertsii as a
- promising microbial agent for rice in situ cadmium reduction and plant growth
- promotion. Chemosphere, **305**, 135427-135427. DOI: 10.1016/j.chemosphere. 2022. 135427
- Jing Zhou, Dawei Guan, Baoku Zhou, Baisuo Zhao, Mingchao Ma, Jie Qin, Xin Jiang,
- Sanfeng Chen, Fengming Cao, Delong Shen, Jun Li. (2015). Influence of 34-years of
- fertilization on bacterial communities in an intensively cultivated black soil in northeast China
- .SoilBiologyandBiochemistry, **90**: 42-51. DOI:10.1016/j.soilbio.2015.07.005
- Lauber CLHamady M, Knight R, Fierer N.(2009). Pyrosequencing-Based Assessment of Soil

526	pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. Appl
527	Environ Microbiol, 75(15): 5111-5120. DOI:10.1128/AEM.00335-09
528	Letícia L. de Paula, Vicente P. Campos, Willian C. Terra, Daniele de Brum, Dustin C.
529	Jacobs, Hung Xuan Bui Johan Desaeger. (2024). The combination of Bacillus
530	amyloliquefaciens and Purpureocillium lilacinum in the control of Meloidogyne
531	enterolobii.Biological Control, 189, 105438. DOI: 10.1016/J.BIOCONTROL.2023.105438
532	Li,D.,Duan,W.,Guo,H.,Zong,J.,Chen,J.,&Wang,J.(2024).High-nitrogen organic fertilizer
533	promotes the growth of bermuda grass(Cynodondactylon),zoysiagrass(Zoysiajaponica)and
534	paspalum grass(Paspalumvaginatum)by enhancing nitrogen use efficiency associated with
535	Bacillus-stimulated bacterial community. Scientia Horticulturae, 329, 113027.
536	DOI:10.1016/j.scienta.2024.113027
537	Liu, H., Xiong, W., Zhang, R., Hang, X., Wang, D., Li, R., & Shen, Q. (2018). Continuous
538	application of different organic additives can suppress tomato disease by inducing the healthy
539	rhizospheric microbiota through alterations to the bulk soil microflora. Plant and soil, 423, 229-
540	240. DOI: 10.1007/s11104-017-3504-6
541	LoucaS, ParfreyLW, DoebeliM. (2016). Decoupling function and taxonomy in the global ocean
542	microbiome.Science, 353, 1272-1277.DOI:10.1126/science.aaf4507
543	Luo, G., Wang, T., Li, K., Li, L., Zhang, J., Guo, S., Ling, N., & Shen, Q. (2019). Historical
544	Nitrogen Deposition and Straw Addition Facilitate the Resistance of Soil Multifunctionality to
545	Drying-Wetting Cycles. Applied and environmental microbiology, 85(8), e02251-18.
546	DOI:10.1128/AEM.02251-18
547	Oksana Coban, GERLINDE B.DE DEYN, MARTINE VAN DER PLOEG. (2022). Soil
548	microbiota as game-changers in restoration of degraded
549	lands.Science, 375, 6584. DOI: 10.1126/science.abe0725
550	Qiong Huang, Jianlei Wang, Cong Wang, Qing Wang. (2019). The 19-years inorganic
551	fertilization increased bacterial diversity and altered bacterial community composition and
552	potential functions in a paddy soil,

- 553 **SadafKALAM,AnirbanBASU&AppaRaoPODILE.(2022).** Difficult-to-culture bacteria in the 554 rhizosphere: The underexplored signature microbial groups.Pedosphere,**32**(01),75-89.
- 555 DOI:10.1016/S1002-0160(21)60062-0

- 556 SathyaA, Vijayabharathi R, GopalakrishnanS. (2017). Plant growth-promoting
- actinobacteria: a new strategy for enhancing sustainable production and protection of grain
- legumes. 3Biotech, 7(2), DOI:10.1007/s13205-017-0736-3
- 559 Schmalenberger, A., O'Sullivan, O., Gahan, J., Cotter, P. D., & Courtney, R. (2013).
- Bacterial communities established in bauxite residues with different restoration histories.
- Environmental science & technology, 47(13), 7110-7119.DOI: 10.1021/es401124w
- 562 Sedhupathi Kamaraj, Kennedy Zackaria John, Shanthi Annaiyan, Akiyama K., Matsuzaki
- K.I., Hayashi H.... Zhou Y.. (2022). Interaction of arbuscular fungus (Rhizophagus irregularis),
- Bacillus subtilis and Purpureocillium lilacinum against root-knot nematode (Meloidogyne
- incognita) in tomato. Indian Journal of Nematology (1), 92-103. DOI: 10.5958/0974-
- 566 4444.2022.00013.0
- 567 Shalaby Tarek A., Taha Naglaa, ElBeltagi Hossam S. ElRamady Hassan. (2022). Combined
- Application of Trichoderma harzianum and Paclobutrazol to Control Root Rot Disease Caused
- by Rhizoctonia solani of Tomato Seedlings. Agronomy (12), 3186-3186. DOI:
- 570 10.3390/AGRONOMY12123186
- 571 Singh N, Siddiqui ZA (2015) Effects of Bacillus subtilis, Pseudomonas fluorescens and
- Aspergillus awamori on the wilt-leaf spot disease complex of tomato. Phytoparasitica 43:61–
- 573 75.DOI:10.1007/s12600-014-0427-0
- 574 Su Lv, Li Huatai, Wang Jing, Gao Wenting, Shu Xia, Sun Xiting... Shen
- Biao. (2023). Composition, function and succession of bacterial communities in the tomato
- 576 rhizosphere during continuous cropping. Biology and Fertility of Soils **59**, (7),723-732.
- 577 DOI:10.1007/s00374-023-01731-7
- 578 Su, L., Li, H., Wang, J., Gao, W., Shu, X.X., Sun, X., Wang, K., Duan, Y., Liu, Y.,
- Kuramae, E.E., Zhang, R., & Shen, B. (2023). Composition, function and succession of
- bacterial communities in the tomato rhizosphere during continuous cropping. *Biology and*
- 581 Fertility of Soils, 59, 723 732. DOI:10.1007/s00374-023-01731-7
- Wang, C., Zhao, D., Qi, G., Mao, Z., Hu, X., Du, B., ... & Ding, Y. (2020). Effects of Bacillus velezensis
- 583 FKM10 for promoting the growth of Malushupehensis Rehd.and inhibiting Fusarium
- verticillioides. Frontiers in microbiology, 10,2889. DOI: 10.3389/fmicb.2019.02889
- Wang, W.J.; Su, D.X.; Oiu, L.; Wang, H.Y.; An, J.; Zheng, G.Y. (2013). Concurrent changes in soil

- inorganic and organic carbon during the development of larch, *Larixgmelinii*, plant ations and
- their effects on soil physicochemical properties. *Environ. Earth Sci.* **69**,1559–1570.
- 588 DOI:10.1007/s12665-012-1990-7
- 589 Xiao, Z., Lu, C., Wu, Z., Li, X., Ding, K., Zhu, Z., Han, R., Zhao, J., Ge, T., Li, G., & Zhu,
- Y. G. (2024). Continuous cropping disorders of eggplants (Solanum melongena L.) and
- tomatoes (Solanum lycopersicum L.) in suburban agriculture: Microbial structure and
- assembly processes. *The Science of the total environment*, **909**, 168558.
- 593 DOI:10.1016/j.scitotenv.2023.168558
- 594 XiaoqianGong, ScottJarvie, JiaWen, NierSu, YongzhiYan, QingfuLiuQingZhang. (2024). Comp
- ared with soil fungal diversity and microbial network complexity, soil bacterial diversity drives
- soil multifunctionality during the restoration process. Journal of environmental management
- 597 1,**354**,20379-120379.DOI:10.1016/J.JENVMAN.2024.120379
- 598 Xu, Z., Yu, G., Zhang, X., Ge, J., He, N., Wang, Q., & Wang, D. (2015). The variations in
- soil microbial communities, enzyme activities and their relationships with soil organic matter
- decomposition along the northern slope of Changbai Mountain. Applied Soil Ecology, **86**, 19-
- 601 29. DOI:10.1016/j.apsoil.2014.09.015
- Yang L, Shi Y, Yang X, Dong L, Lei F, Zheng C, Xie A, Zhang D, Sun L, Sun X.
- 603 (2023). Analysis of Growth and Rhizosphere Soil Changes of Herbaceous Peony Treated with
- a Compound Microbial Agent under Contrasted Soil Conditions. *Horticulturae*. **9**(5):602.
- 605 DOI:10.3390/horticulturae9050602
- 606 Yang Xu, Guanchu Zhang, Hong Ding, Dunwei Ci, Liangxiang Dai & Zhimeng
- **Zhang.** (2020). Influence of salt stress on the rhizosphere soil bacterial community structure
- and growth performance of groundnut (Arachis hypogaea L.). International Microbiology,
- 609 **23**(3):453-465. DOI:10.1007/s10123-020-00118-0
- 410 YuJingjing, CongWei, DingYi, JinLixiao, CongJingZhangYuguang. (2022). Interkingdom
- Plant–Soil Microbial Ecological Network Analysis under Different Anthropogenic Impacts in
- a Tropical Rainforest.Forests.**13**(8),1167.DOI: 10.3390/F13081167
- 613 Zechen Gu, Chengji Hu, Yuxin Gan, Jinyan Zhou, Guangli Tian Limin Gao. (2024). Role of
- Microbes in Alleviating Crop Drought Stress: A Review.Plants (Basel, Switzerland) 13(3),
- 615 384, DOI: 10.3390/PLANTS13030384

Fig.1 Effects of different microbial agents on soil physicochemical properties and enzyme activities of Tomato

Note: Different lowercase letters above the bars indicate significant differences between treatments (P<0.05).

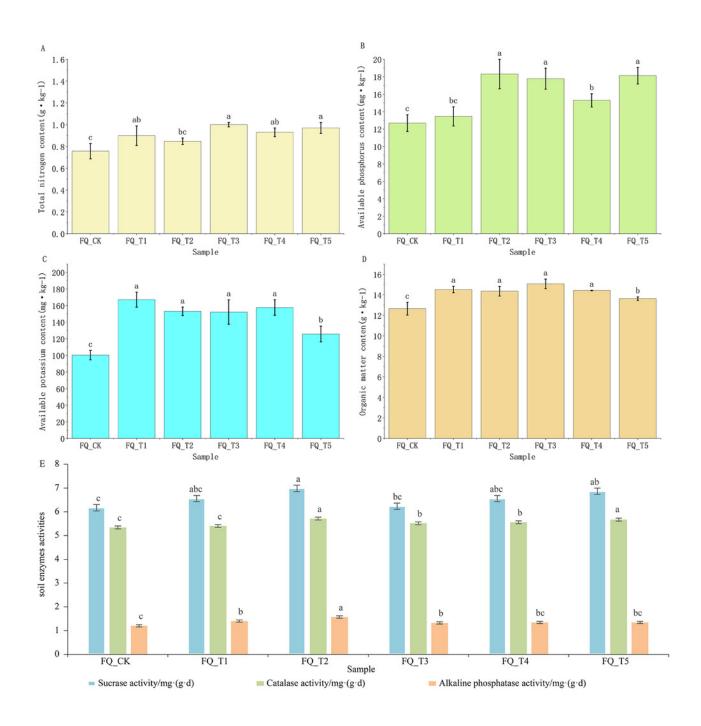


Fig.2 Rarefaction curve

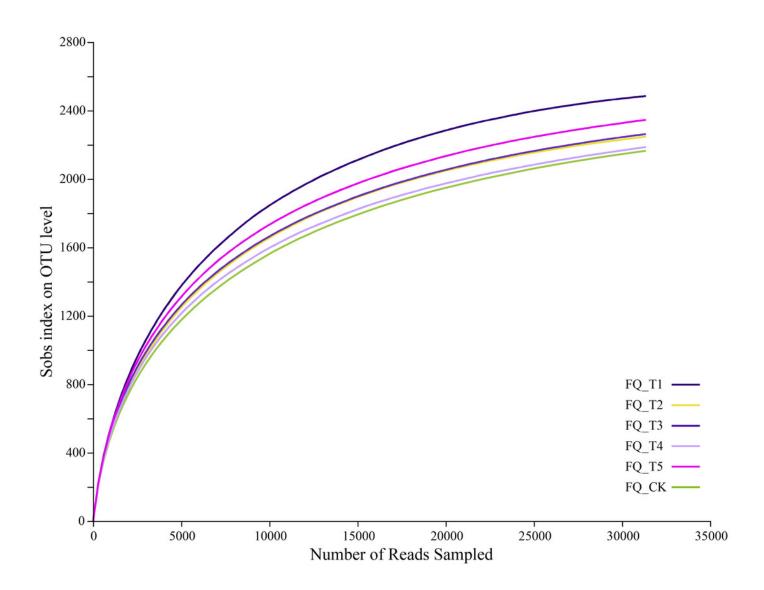


Fig.3 Relative abundance under different treatments in phylum level

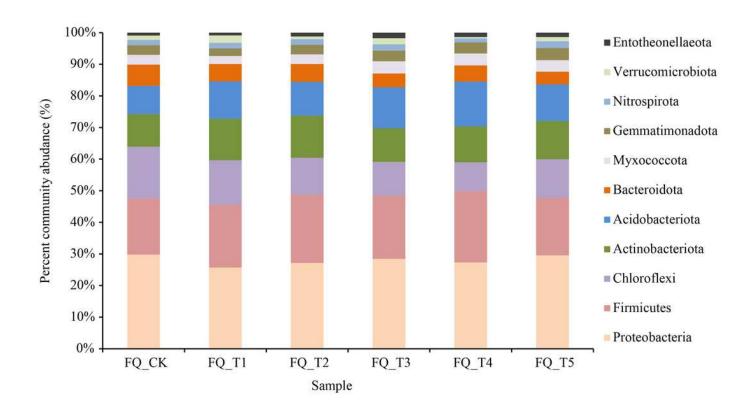


Fig.4 Heatmap of Mantel Test network analysis between tomato rhizosphere bacterial community and environmental factors

Note: Mantel test heatmap: The lines in the graph represent the correlation between communities and environmental factors, while the heatmap represents the correlation between environmental factors; Line thickness: The correlation between community and environmental factors, plotted using Mantel'r (absolute value of R);, Relationship: Positive and Negative are positive and negative correlations between communities and environmental factors; In the heat map, different colors represent positive and negative correlations, color depth represents the magnitude of positive and negative correlations, and the asterisk in the color block represents significance, $*0.01 < P \le 0.05$.

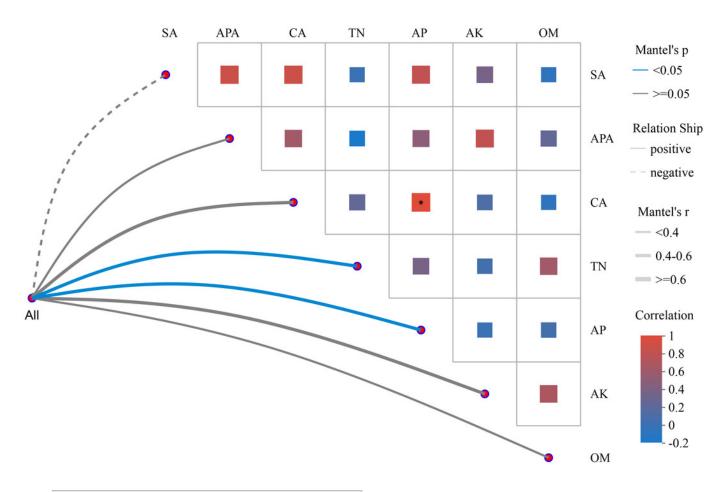
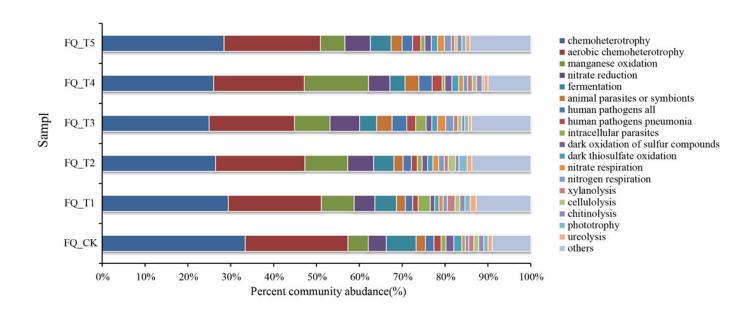



Fig.5 Analysis of Faporax functional prediction of tomato rhizosphere soil microorganisms

Table 1(on next page)

Table 1 Alpha diversity index of microbial community in rhizosphere soil of tomato

Note: Different lowercase letters indicate significant differences between treatments (P<0.05).

Table 1 Alpha diversity index of microbial community in rhizosphere soil of tomato

Sample	ACE index	Chaol index	Shannon index	Simpson index	Sobs index	Cove
FQ_CK	$2449.07 \pm 89.23c$	$2420.22 \pm 63.12b$	6.49 \pm 0.83a	0.0036 ± 0.0024 a	$2164 \pm 57.53c$	
FQ_T1	$2646.10 \pm 16.55a$	$2578.20 \pm 34.07a$	$6.70 \pm 0.26a$	$0.0035 \pm 0.0020a$	$2484 \pm 79.61a$	
FQ_T2	$2475.28 \pm 19.20c$	2461.75 ± 14.95 ab	6.51 \pm 0.82a	$0.0054 \pm 0.0051a$	$2247 \pm 6.94 \text{bc}$	
FQ_T3	2521. 11 ± 33.80 bc	$2517.96 \pm 39.22ab$	6.59 \pm 0.22a	$0.0039 \pm 0.0012a$	$2262 \pm 88.43 \text{bc}$	
FQ_T4	$2478.76 \pm 60.89c$	$2475.56 \pm 92.17ab$	6. 42 ± 0 . $20a$	$0.0078 \pm 0.0038a$	$2186 \pm 72.55c$	
FQ_T5	$2586.71 \pm 41.64ab$	$2564.73 \pm 79.42a$	$6.68 \pm 0.75a$	$0.0031 \pm 0.0011a$	$2345 \pm 83.56b$	

Note: Different lowercase letters indicate significant differences between treatments (P<0.05

1