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ABSTRACT
Background:Montane environments in Neotropical regions are known for their rich
diversity of amphibians, but the ecological drivers behind this diversity along
altitudinal gradients remain poorly understood. We investigated the effects of the
altitudinal range and local environmental variables on the taxonomic, phylogenetic,
and functional alpha and beta diversity of anuran assemblages along an altitudinal
gradient in the Atlantic Forest of northeastern Brazil.
Methods: We characterized the richness, abundance, taxonomic, functional, and
phylogenetic diversity of anurans in 24 transects within the interior of the forest
along an altitudinal range of 200–950 m in the Private Reserve of Natural Heritage
(RPPN) Serra Bonita, southern Bahia state, northeastern Brazil. For each transect, we
measured the following environmental variables: altitude, leaf litter depth and cover,
canopy opening, number of tank-bromeliads, number of trees, and mean air
temperature.
Results: We found 36 anuran species distributed in 10 families. Altitudinal strata
plays an important role in explaining anuran abundance, with direct-developing
frogs being the most abundant species. The number of tank-bromeliads was
interpreted as having the most substantial support to explain the anuran abundance,
lineage richness and functional diversity, whereas leaf litter depth influenced the
dominant lineages. Additionally, altitude significantly influenced taxonomic and
phylogenetic dissimilarity. Lastly, we found an inverse pattern of altitudinal
Rapoport’s rule, in which species with optimal altitudes in the highlands exhibit a
lower range-size distribution, likely due to habitat specialization or micro-endemism
at higher altitudes.
Conclusion: Altitude significantly influenced the abundance, taxonomic
composition, and phylogenetic diversity of anuran communities, with higher
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elevations supporting a greater number of individuals and distinct evolutionary
lineages. In contrast, functional diversity did not vary with altitude, suggesting
functional redundancy, where different species perform similar ecological roles,
thereby maintaining community resilience. Local factors, such as the number of
tank-bromeliads and leaf litter depth, were also key variables shaping community
structure. Given the high species turnover and the presence of unique evolutionary
lineages, especially in the highlands, conservation efforts should prioritize the
protection of the entire montane habitat to sustain the ecological and evolutionary
processes that support this exceptional biodiversity. Understanding how species are
distributed and identifying the most important filters of anuran diversity along
altitudinal gradients in the Atlantic Forest is essential for developing management
plans and conservation actions in this threatened region that harbors one of the
world’s most remarkable assemblages of anurans.

Subjects Biodiversity, Ecology, Zoology
Keywords Amphibia, Taxonomic diversity, Phylogenetic diversity, Functional diversity, Species
turnover, Species richness, Altitudinal gradient, Rapoport’s rule

INTRODUCTION
The distribution of organisms along geographic gradients has aroused interest among
biologists since the middle of the 19th century (Darwin, 1839; Von Humboldt, 1849;
Wallace, 1878). Environmental conditions along altitudinal gradients might affect the local
biota, resulting in fauna and flora zonation (Ricklefs, 1993). Hence, how mountains’
environmental changes influence species richness, abundance, and composition is a reason
for debates and studies in different parts of the world to the present day (e.g., Rahbek et al.,
2019; Villacampa et al., 2019; Carvalho-Rocha, Peres & Neckel-Oliveira, 2021; Liu et al.,
2022).

Historically, altitudinal gradients were supposed to reflect latitudinal patterns as
suggested by several authors (MacArthur, 1972; Begon, Harper & Townsend, 1990; Stevens,
1992). Two main patterns of species richness have been widely documented across taxa:
(1) a monotonic decrease in species richness with increasing altitude (Terborgh, 1977;
Hunter & Yonzon, 1993), and (2) a unimodal pattern, where species richness peaks at
intermediate elevations (Rahbek, 1995;McCain, 2009; Grytnes & McCain, 2013). The latter
is often explained by the Mid-Domain effect, which predicts higher species overlap in the
middle of a bounded domain (Colwell & Hurtt, 1994; Colwell & Lees, 2000). However, the
drivers of these patterns are complex and multifaceted, involving interactions between
climatic, spatial, evolutionary, and biotic factors (McCain & Grytnes, 2010). Additionally,
there is variation in these patterns across different taxonomic groups. For instance, plants
and non-flying small mammals frequently show mid-elevation peaks, while reptiles often
exhibit decreasing trends in species richness with increasing altitude (Grytnes & McCain,
2013). In contrast, bats display both patterns (monotonic decline and mid-elevation peaks)
in similar proportions across studies (Grytnes & McCain, 2013).

Dias et al. (2025), PeerJ, DOI 10.7717/peerj.19561 2/30

http://dx.doi.org/10.7717/peerj.19561
https://peerj.com/


Because amphibians generally have a complex life cycle, with an aquatic larval stage
followed by metamorphosis into an arboreal, semi-aquatic, or terrestrial adult, cutaneous
respiration, and inhabiting different microhabitats, they are considered one of the most
sensitive groups to environmental changes among vertebrates (Duellman & Trueb, 1994;
Wells, 2007). Thus, they are interesting models for understanding how environmental
variables influence the structure and distribution of the community. However, as in most
other groups, these patterns are contentious in mountain frogs. For instance, some studies
found richness peaks at intermediate altitudinal bands (Hu et al., 2011; Carvalho-Rocha,
Peres & Neckel-Oliveira, 2021), others a monotonic decrease of species richness with
increasing altitude (Khatiwada et al., 2019; Siqueira et al., 2021; Siqueira, Vrcibradic &
Rocha, 2025), and the absence of a relationship between richness and altitude (Goyannes-
Araújo et al., 2015; Araújo et al., 2025).

Regarding species distribution patterns, one of the most notorious hypotheses to explain
the influence of the latitudinal gradient on their distribution is Rapoport’s Rule (Stevens,
1989). It assumes species from higher latitudes occur in wider latitudinal ranges than
species from lower latitudes (Rapoport, 1975; Stevens, 1989). This hypothesis was also
extended (Stevens, 1992) and tested for altitudinal gradients for different taxonomic groups
(e.g., Almeida-Neto et al., 2006; Kim et al., 2019; Araújo et al., 2025; Kohlmann, Arriaga-
Jiménez & Portela Salomão, 2021). In amphibians, this assumption also remains an
unsolved issue, with different patterns observed regarding their distribution in altitudinal
gradients (e.g., Goyannes-Araújo et al., 2015; Khatiwada et al., 2019; Chettri & Acharya,
2020; Araújo et al., 2025; Siqueira et al., 2021).

Although studies dealing with anurans from mountains in northeastern Brazil have
been increasing recently (e.g., Xavier & Napoli, 2011; Roberto et al., 2017; Rojas-Padilla
et al., 2020; Araújo et al., 2025; Bastos & Ramos, 2022), the main drivers of species richness
and distribution in most of these altitudinal gradients are still unknown. Among them, the
Serra Bonita RPPN (Private Natural Heritage Reserve) complex, in Bahia state, is one of
the amphibians’ hotspots in the Atlantic Forest (Dias et al., 2014), but little is known about
the influence of the altitudinal and environmental conditions influencing anuran
communities, including their species composition, functional roles, and phylogenetic
lineages. Understanding these patterns may provide valuable insights for conservation
planning (Pimm & Brown, 2004).

Here, we investigate the multidimensional diversity and distribution patterns of anurans
along an altitudinal gradient in the Serra Bonita RPPN complex, Bahia state, northeastern
Brazil. First, we tested how altitudinal range and local environmental variables influence
anuran abundance as well as their taxonomic, functional, and phylogenetic diversity and
composition. We expect amphibian diversity to decrease with increasing altitude
(Lomolino, 2001; Siqueira & Rocha, 2013) and hypothesize that anuran abundance,
multidimensional diversity, and composition will be related, as frogs are among the most
sensitive vertebrates to local environmental dynamics (Hopkins, 2007). Finally, we tested
whether species distribution follows the predictions of Rapoport’s rule for altitudinal
ranges, expecting that species with optimal altitudes at high elevations would have a wider
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distribution along the gradient due to their greater adaptation to extreme conditions in the
highlands (Stevens, 1992).

MATERIALS AND METHODS
Study area
Anuran sampling was conducted in the Serra Bonita RPPN complex in Camacan and Pau
Brasil municipalities, Bahia state, northeastern Brazil (−15.3836 S, −39.5502 W). It is a
montane complex covering a total area of 7,500 hectares in the Atlantic Forest with an
altitudinal gradient ranging from 200 to 950 m (Fig. 1). The vegetation is composed of a
mosaic with different succession stages of secondary forests interspersed with cocoa crops
and pastures (see Dias et al., 2014 for a detailed description of the study area).

Sampling methods
We conducted monthly field trips over six consecutive days from December 2009 to
November 2010. Four altitudinal bands were defined: 200–300 (low), 400–500 (mid),

Figure 1 Schematic map of the Serra Bonita RPPN complex, showing the transects sampled along
the altitudinal gradient. Map built using the Google Satellite tool from QGis 3.34.6 (©2024 Google
Earth). Full-size DOI: 10.7717/peerj.19561/fig-1
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600–700 (mid-high), and 800–900 (high) m, and six 100 m long linear transects in the
forest interior were marked in each band, giving a total of 24 transect sampling locations. A
700 m long main track was marked out within each altitudinal band, and 100 m transects
were placed perpendicular to this track (Fig. 1). The installation site of the first transect was
determined by a draw within 100 m from the start of the main trail. In addition, we
randomly determined the side of the main trail (right or left) where each transect would be
installed. Then, the other transects were installed systematically 100 m away from each
other and on the opposite side of the previous transect. We did not set up transects near
the forest edge or in water bodies to focus on species in the forest interior, with a minimum
distance to the edge of 300 m. Sampling was carried out by active visual and acoustic search
(Heyer et al., 1994; Rödel & Ernst, 2004) conducted by two researchers for 40 min in each
transect during the night. All transects were inspected once every sampling month.

For each transect, we measured the following environmental variables: altitude, leaf
litter depth (LLD) and cover (LLC), canopy opening (OCA), number of tank-bromeliads
(BRO), including both epiphytic and terrestrial bromeliads, number of trees (NTR), and
air temperature (T). On each transect, five points were marked for collecting the variables
(LLC, LLD, and OCA) at 10, 30, 50, 70, and 90 m from the beginning of the transect. At
each of these points, a 1 × 1 m plot was established on each side of the trail and assigned
values from 0 to 4 (0 = 0–20%; 1 = 20–40%; 2 = 40–60%; 3 = 60–80%; and 4 = 80–100%) to
represent the percentage of leaf litter cover. In the center of these plots, we measured the
leaf litter depth. A hemispherical photo of the canopy was taken at 1.20 m above ground
level at each of the five points marked on the transects to assess the canopy opening. These
photos were later analyzed with the Gap Light Analyzer 2.0 program. We counted all
bromeliads (up to 5 m in height) and trees (>5 cm in circumference at breast height) that
were within 1.5 m on either side of the transect. The air temperature was measured at the
beginning and end of each transect sampling with a digital thermometer with an accuracy
of 0.5 �C. The air temperature was the average between the temperatures at the beginning
and end of each collection.

This research was approved by the Ethical Committee on Animal Use at the
Universidade Estadual de Santa Cruz (CEUA-UESC 006/09). The specimens were
collected under authorization (ICMBio #13708) granted by Instituto Chico Mendes de
Conservação da Biodiversidade (ICMBio/SISBIO) from the Ministério do Meio Ambiente
(MMA) of Brazil. Voucher specimens were deposited in the herpetological collection of the
Museu de Zoologia da Universidade Estadual de Santa Cruz (MZUESC), Ilhéus, Bahia
state, Brazil, and are listed in Appendix I of Dias et al. (2014). Anuran nomenclature and
distribution follow Frost (2024), whereas the species conservation status is according to
IUCN (2024).

Phylogeny and functional traits
The phylogeny of the species in this study was constructed from the phylogeny for
amphibians available in Time Tree 5 (Kumar et al., 2022). Species not found within the
base phylogeny were assigned as polytomies using the V.PhyloMaker package in R
(Jin & Qian, 2019; R Core Team, 2024).
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We considered the following functional traits for each species: body size (snout-vent
length, in mm), habitat preference (forest, open area, or both), calling site (forest floor,
lentic waters, lotic waters, shrubs, bromeliads, canopy), reproductive mode (following
Nunes-de-Almeida, Haddad & Toledo, 2021), habit (arboreal, cryptozoic, phytotelmata,
semi-arboreal, and terrestrial) and activity period (diurnal, nocturnal) (Appendix). Data
were compiled following Haddad et al. (2013) and further complemented with our own
in-field observations. These traits were chosen to represent different aspects of the species’
interaction with its environment (González et al., 2016).

Data analyses
The species abundance in each transect was determined as the total abundance of species
collected for each transect during the sampling duration (cumulative abundance). We
assessed the efficiency of our sampling by estimating sampling coverage (SC) (Chao et al.,
2014). Since comparing biodiversity requires similar sampling coverage across all
assemblages (transects), we calculated SC along transects and compared their 95%
confidence intervals (Cumming, Fidler & Vaux, 2007; Cultid-Medina & Escobar, 2019).
After confirming that SC values overlapped across all transects (0.86–0.97), we proceeded
with the diversity comparisons using observed values (Chao et al., 2014).

We estimated the taxonomic, functional, and phylogenetic diversity of anuran species
using the Hill number framework (Chao et al., 2021). This approach partitions each
dimension of diversity into three measures: 0D, which represents species, lineage or
functional group richness; 1D, which corresponds to the effective number of abundant
species, lineages or functional groups and reflects overall diversity; and 2D, which captures
the effective number of highly abundant or dominant species, lineages or functional
groups. Since a higher number of dominant species indicates greater evenness in
abundance distribution, 2D may also be interpreted as a measure of species, lineages or
functional groups evenness (Hill, 1973; Jost, 2006). These estimations were carried out
using the iNEXT.3D package of R (Chao, 2024; R Core Team, 2024).

We used abundance and multidimensional diversity data to fit generalized linear
models (GLMs), with Altitude, LLD, LLC, OCA, BRO, NTR, and T as explanatory
variables. For discrete variables (i.e., abundance and species richness—0TD), we fitted
Poisson and negative binomial models, while for continuous variables (i.e., all other
response variables), we fitted Gaussian and Gamma models with a logarithmic link
function (Buckley, 2015). In all cases, we first fitted a global model including all variables,
ensuring that residuals were not overdispersed, exhibited no heteroscedasticity patterns or
independence violations, and followed a uniform distribution when simulated (Hartig,
2016). We then removed variables with a variance inflation factor (VIF) exceeding 10
(Zuur et al., 2009). If the confidence intervals of the VIF values for two or more high VIF
variables overlapped, we tested alternative global models by removing one variable at a
time and compared them using the corrected Akaike information criterion for small
samples (AICc), retaining the model with the lowest AICc value. From the global model,
we identified the top models—those combinations of explanatory variables that provided
the best trade-off between model fit and complexity—using the dredge function from the
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MuMin package (Barto�n, 2010). The top models were defined as those with a ΔAICc < 2.
When multiple models fell within this threshold, we selected the one with the fewest
parameters as a pragmatic choice among equally supported alternatives (Zuur et al., 2009;
Burnham & Anderson, 2010; Richards, 2015). If the null model was within this subset, we
favored it, as it represents the simplest possible explanation consistent with the data—
namely, randomness (Richards, 2015). Model residuals were assessed using the
performance package in R (Lüdecke et al., 2019; R Core Team, 2024). For all cases in which
the selected model was not the null model, we assessed the presence of spatial correlation
in the residuals using Moran’s test (Negrete-Yankelevich & Fox, 2015).

To assess differences in species composition, functional groups, and lineages across
transects, we followed the approach proposed by Cardoso et al. (2014a). This method
extends the Jaccard index (Carvalho et al., 2013) to account for phylogenetic and
functional traits, yielding three specific versions: taxonomic beta (Tβ), equal to Jaccard
index, phylogenetic beta (Pβ) and functional beta (Fβ) (Cardoso et al., 2014b). To assess
how environmental variables influence dissimilarity between transects, we fitted
generalized dissimilarity models (GDMs, Ferrier et al., 2007), incorporating the same
explanatory variables as in the GLMs, along with transect geographic distance (in meters).
The importance of each variable in the GDMs was evaluated by sequentially removing
them and refitting the model. Model validity was assessed based on its p-value, the
percentage of deviance explained, and the explanatory power in cross-validation tests
(1,000 iterations) (Mokany et al., 2022). Dissimilarity analyses were performed using the
BAT package, while GDMs were fitted with the gdm package, all within the R environment
(Cardoso et al., 2014a; Fitzpatrick et al., 2015; R Core Team, 2024). The R code used to
perform the alpha and beta multidimensional diversity analyses, as well as the datasets for
this work, is available in the Supplemental Files.

To understand the anuran species distribution patterns in the studied mountain, we
measured the maximum and minimum altitude where each anuran species was recorded
to estimate their range-size distribution (the highest altitude minus the lowest altitude
where each species was recorded). We give a range of 100 m to species recorded at a single
sampling point (Kim et al., 2019). The optimal altitude of each species might be
understood as the local where it has a maximum abundance (Whittaker, 1967); thus, we
used two methods to calculate it: the average of the altitudinal range of each species (see
Stevens, 1992) and the “Specimen method” (to consult Almeida-Neto et al., 2006 for more
details about formulas and methods). Then, we first assessed the normality of the data
distribution using the Shapiro-Wilk test and evaluated the homoscedasticity with the
Fligner-Killeen test. As the residuals of our data did not meet the assumptions of normality
and homoscedasticity required for simple linear regression, we opted for the
non-parametric Kernel regression test (Nadaraya, 1964;Watson, 1964) to investigate if the
anuran distribution along the mountain studied follows Rapoport’s rule using the three
methods cited above. These analyses were performed using the R packages mgcv
(Wood, 2023) and vegan (Oksanen et al., 2016).
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RESULTS
We registered 1949 individuals belonging to 36 anuran species (Table 1) nested in the
following ten families (number of species in parentheses): Brachycephalidae (3), Bufonidae
(2), Craugastoridae (1), Eleutherodactylidae (1), Hemiphractidae (1), Hylidae (21),
Leptodactylidae (1), Microhylidae (1), Odontophrynidae (1), and Strabomantidae (4). Of
these species, about 80% are restricted to the Atlantic Forest, and Brachycephalus pulex is
listed as endangered (EN), while Bokermannohyla lucianae is considered vulnerable (VU)
to extinction (IUCN, 2024). The dominant species were Pristimantis vinhai (n = 781),
Haddadus binotatus (n = 197) and Pristimantis sp. 1 (n = 195), all of which are
direct-developing species. In contrast, the other seven species (Aplastodiscus ibirapitanga,
Boana pombali, Chiasmocleis crucis, Dendropsophus novaisi, Ischnocnema verrucosa, and
Physalaemus erikae) had only one individual recorded each. Transect sampling coverage
ranged from 0.86 to 0.97, indicating a relatively high level of sampling completeness
(Table 2).

Detailed data on abundance and taxonomic, functional, and phylogenetic diversity
values for each transect are presented in Table 2. Transect abundance was significantly and
positively associated with altitude (p-value = 0.003, Fig. 2A) and the number of tank
bromeliads (BRO, p-value = 0.009, Fig. 2B). In contrast, for taxonomic diversity (qTD), the
null model was selected in all cases (ΔAICc < 2, Figs. 2C–2E). Although alternative models
included explanatory variables with significant associations, they were not clearly better
supported than the null model, suggesting weak evidence for the effect of those variables.
For lineage richness (0PD), we found a significant positive relationship with the number of
tank bromeliads (p-value = 0.007, Fig. 2F). For lineage diversity (1PD), the null model was
the selected model (Fig. 2G). Finally, the number of dominant lineages exhibited a
significant positive association with leaf litter depth (LLD, p-value: 0.036, Fig. 2H). For
functional diversity (qFD), communities with greater richness (0FD), diversity (1FD) and
greater number of dominant (2FD) functional groups, were related to a greater number of
tank bromeliads (p-value < 0.05 for all cases, Figs. 2I–2K). Table 3 presents the metrics for
all models with a ΔAICc < 2, for each response variable. None of the selected alpha
diversity models, different of null model, showed evidence of spatial correlation in the
residuals (Moran I < 0.3, p-value > 0.05 in all cases).

The average species composition dissimilarity between transect pairs was 0.58, while
phylogenetic and functional composition dissimilarities were 0.47 and 0.50, respectively.
Taxonomic dissimilarity was significantly and positively associated with altitude
(p-value = 0.003), with altitude contributing almost monotonically to taxonomic
differentiation among transects (Fig. 3A). Similarly, phylogenetic dissimilarity was
significantly and positively correlated with altitude (p-value = 0.006), with this effect being
particularly pronounced among transect pairs above 600 m in elevation (Fig. 3B).
Additionally, we detected a marginally significant relationship between phylogenetic
dissimilarity and geographical distance (p-value = 0.092, Fig. 3C). In contrast, functional
dissimilarity between transects showed no significant association with any of the
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Table 1 Anuran species found in the Serra Bonita RPPN complex, Bahia state, northeastern Brazil.

Taxa IUCN Distribution

BRACHYCEPHALIDAE

Brachycephalus pulex Napoli, Caramaschi, Cruz, and Dias, 2011 EN At

Ischnocnema sp. (gr. parva) NA ?

Ischnocnema verrucosa (Reinhardt and Lütken, 1862) LC At

BUFONIDAE

Rhinella crucifer (Wied-Neuwied, 1821) LC At

Rhinella hoogmoedi Caramaschi and Pombal, 2006 LC At

CRAUGASTORIDAE

Haddadus binotatus (Spix, 1824) LC At

ELEUTHERODACTYLIDAE

Adelophryne sp. NA ?

HEMIPHRACTIDAE

Gastrotheca pulchra Caramaschi and Rodrigues, 2007 LC At

HYLIDAE

Aplastodiscus ibirapitanga (Cruz, Pimenta, and Silvano, 2003) LC At

Aplastodiscus weygoldti (Cruz and Peixoto, 1987) LC At

Boana crepitans (Wied-Neuwied, 1824) LC W

Boana faber (Wied-Neuwied, 1821) LC At

Boana pombali (Caramaschi, Pimenta, and Feio, 2004) LC At

Bokermannohyla circumdata (Cope, 1871) LC At

Bokermannohyla lucianae (Napoli and Pimenta, 2003) VU At

Dendropsophus anceps (Lutz, 1929) LC At

Dendropsophus novaisi (Bokermann, 1968) LC At, Ce

Ololygon strigilata (Spix, 1824) LC At

Phasmahyla spectabilis Cruz, Feio, and Nascimento, 2008 LC At

Phyllodytes maculosus Cruz, Feio, and Cardoso, 2007 LC At

Phyllodytes melanomystax Caramaschi, Silva, and Britto-Pereira, 1992 LC At

Phyllodytes wuchereri (Peters, 1873) LC At

Phyllodytes sp. NA ?

Phyllodytes magnus Dias et al. 2020 LC At

Phyllodytes megatympanum Marciano, Lantyer-Silva, and Solé, 2017 LC At

Phyllomedusa burmeisteri Boulenger, 1882 LC At

Scinax eurydice (Bokermann, 1968) LC At

Trachycephalus mesophaeus (Hensel, 1867) LC At

Trachycephalus nigromaculatus Tschudi, 1838 LC At, Ce

LEPTODACTYLIDAE

Physalaemus erikae Cruz and Pimenta, 2004 LC At

MICROHYLIDAE

Chiasmocleis crucis Caramaschi and Pimenta, 2003 LC At

ODONTOPHRYNIDAE

Proceratophrys schirchi (Miranda-Ribeiro, 1937) LC At

(Continued)
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environmental variables analyzed (p-value > 0.05 for all cases). Table 4 presents the metrics
for all fitted GDMs.

Additionally, we found a significant influence of the optimal altitude of each anuran
species on their range-size distribution considering both Stevens’s midpoint method

Table 1 (continued)

Taxa IUCN Distribution

STRABOMANTIDAE

Bahius bilineatus (Bokermann, 1975) LC At

Pristimantis vinhai (Bokermann, 1975) LC At

Pristimantis sp. 1 NA ?

Pristimantis sp. 2 NA ?

Note:
IUCN conservation status: LC, least concern; EN, endangered; VU, vulnerable; and NA, not applicable; and distribution
in Brazilian biomes: At, Atlantic forest; Ce, Cerrado; and W, wide distribution.

Table 2 Sampling coverage (SC), abundance, and taxonomic (qTD), phylogenetic (qPD), and
functional (qFD) diversity metrics of anurans across the transects analyzed in this study.

Transect SC Altitude Abundance 0TD 1TD 2TD 0PD 1PD 2PD 0FD 1FD 2FD

21 0.95 238 79 12 7.08 5.52 3.96 2.00 1.57 5.64 2.99 2.46

22 0.86 282 55 13 5.80 3.51 4.18 1.91 1.46 5.02 2.66 1.98

23 0.88 293.5 42 10 4.94 3.38 3.49 1.86 1.48 4.44 2.76 2.31

24 0.94 300 47 8 5.44 4.57 3.27 2.01 1.60 4.47 3.02 2.74

25 0.98 284 79 8 3.25 2.10 2.97 1.58 1.31 3.50 1.90 1.55

26 0.95 299 64 10 6.83 5.85 3.77 2.06 1.61 4.26 2.91 2.63

41 0.94 400 48 9 5.06 3.74 3.89 1.98 1.52 4.00 2.91 2.50

42 0.9 410 38 9 5.69 4.38 3.69 1.98 1.52 4.85 3.04 2.41

43 0.92 415 59 13 8.14 6.18 5.85 2.38 1.68 5.38 3.40 2.74

44 0.93 421.5 54 11 6.54 4.81 3.85 1.98 1.56 4.41 2.79 2.37

45 0.9 449 61 13 8.13 6.32 4.37 2.12 1.60 5.04 3.34 2.83

46 0.94 463 46 9 6.21 5.16 3.20 1.99 1.58 4.23 3.04 2.64

61 0.99 619.5 77 9 5.37 3.94 3.63 1.93 1.49 4.10 2.62 2.19

62 0.97 608.5 65 9 3.10 1.87 3.53 1.64 1.33 4.04 2.09 1.65

63 0.97 684.5 77 10 6.72 5.32 3.65 2.08 1.59 3.81 2.89 2.55

64 0.98 672 91 9 3.97 2.51 3.70 1.78 1.42 4.27 2.27 1.85

65 0.88 694 42 10 5.81 4.06 3.36 1.92 1.52 3.85 2.67 2.31

66 0.92 698 51 11 5.50 3.36 3.77 1.94 1.51 5.26 2.97 2.32

81 0.97 838 98 14 8.76 6.82 4.62 2.16 1.62 5.14 3.67 3.25

82 0.97 896 143 15 7.23 4.59 5.46 2.11 1.53 5.77 3.61 2.85

83 0.97 910 139 10 2.62 1.68 4.11 1.53 1.24 4.46 1.92 1.50

84 0.98 933.5 160 12 4.44 3.24 4.70 1.75 1.38 4.53 2.78 2.36

85 0.97 919 211 15 5.82 4.12 5.20 1.92 1.49 5.36 3.09 2.71

86 0.98 913 123 13 7.75 5.90 4.95 2.23 1.57 5.01 3.74 3.37
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(F = 21.84, r2 (adj.) = 0.788, p =< 0.0001) and the Specimen method (F = 13.62,
r2 (adj.) = 0.726, p =< 0.0001). Therefore, anurans with optimal altitudes in the highlands
exhibited a lower range-size distribution (Fig. 4).

Figure 2 Relationships between environmental variables and alpha diversity of anurans in Serra Bonita. Models describing the relationships
between environmental variables and (A, B) anuran abundance, (C) species richness, (D) species diversity, (E) number of dominant species,
(F) lineage richness, (G) lineage diversity, (H) number of dominant lineages, (I) functional group richness, (J) functional group diversity, and
(K) number of dominant functional groups. Solid lines indicate statistically significant relationships (a < 0.05), while dashed lines represent
non-significant relationships where the null model was the most parsimonious. (A) Illustrates the relationship between altitude and abundance while
keeping the number of tank bromeliads constant (21.58 bromeliads); (B) the relationship between the number of tank bromeliads and abundance
while maintaining a constant altitude (568.38 m). Full-size DOI: 10.7717/peerj.19561/fig-2
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Table 3 Top models (ΔAICc < 2) for each alpha diversity response variable.

Abundance

Model—Distribution family: Negative binomial k AICc ΔAICc Weight

Altitude + Number of tank-bromeliads + Leaf litter depth 5 220.90 0.00 0.27

Altitude + Number of tank-bromeliads* 4 221.13 0.23 0.24

Altitude + Number of tank-bromeliads + Leaf litter depth + Number of trees 6 221.46 0.56 0.20

Altitude + Number of tank-bromeliads + Leaf litter coverage + Leaf litter depth 6 221.64 0.73 0.19

Altitude + Number of tank-bromeliads + Leaf litter coverage + Leaf litter depth + Number of trees 7 222.82 1.92 0.10

Species richness (0D)

Model—Distribution family: Poisson k AICc ΔAICc Weight

Number of tank-bromeliads 2 111.62 0.00 0.68

Null model* 1 113.11 1.49 0.32

Species diversity—effective number of abundant species (1D)

Model—Distribution family: Gaussian k AICc ΔAICc Weight

Null model* 2 94.91 0.00 0.13

Number of tank-bromeliads + Leaf litter depth 4 94.96 0.05 0.13

Leaf litter coverage 3 95.06 0.16 0.12

Leaf litter depth 3 95.41 0.51 0.10

Number of tank-bromeliads + Air temperature 4 95.51 0.60 0.10

Number of tank-bromeliads 3 95.53 0.62 0.09

Number of tank-bromeliads + Leaf litter depth + Air temperature 5 95.87 0.96 0.08

Canopy opening 3 96.06 1.16 0.07

Number of tank-bromeliads + Leaf litter coverage + Air temperature 5 96.30 1.39 0.06

Leaf litter coverage + Canopy opening 4 96.39 1.48 0.06

Number of tank-bromeliads + Leaf litter coverage 4 96.62 1.71 0.05

Dominant species—effective number of dominant species (2D)

Model—Distribution family: Gaussian k AICc ΔAICc Weight

Null model * 2 89.02 0.00 0.15

Leaf litter coverage 3 89.05 0.02 0.15

Number of tank-bromeliads + Air temperature 4 89.64 0.61 0.11

Leaf litter depth 3 89.82 0.79 0.10

Number of tank-bromeliads + Leaf litter coverage + Air temperature 5 89.93 0.90 0.10

Number of tank-bromeliads 3 90.53 1.50 0.07

Canopy opening 3 90.54 1.52 0.07

Number of tank-bromeliads + Leaf litter depth 4 90.74 1.71 0.06

Leaf litter coverage + Canopy opening 4 90.76 1.74 0.06

Number of tank-bromeliads + Leaf litter depth + Air temperature 5 90.78 1.76 0.06

Leaf litter coverage + Air temperature 4 90.91 1.88 0.06

Lineage richness (0PD)

Model—Distribution family: Gamma (link = “log”) k AICc ΔAICc Weight

Number of tank-bromeliads* 3 48.40 0.00 0.63

Number of tank-bromeliads + Leaf litter coverage 4 49.43 1.03 0.37
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DISCUSSION
Our results revealed that altitude plays a significant role in structuring anuran
communities along the altitudinal gradient in the Atlantic Forest of southern Bahia,
affecting abundance, taxonomic composition, and phylogenetic diversity. Frog abundance
increased with altitude, but we found no significant relationship between species richness
and altitude. This pattern contrasts with previous studies that frequently report a decline in
species richness and abundance with increasing altitude in the Atlantic Forest, or a peak in
richness at intermediate altitudes (e.g., Carvalho-Rocha, Peres & Neckel-Oliveira, 2021;

Lineage diversity—effective number of abundant lineages (1PD)

Model—Distribution family: Gaussian k AICc ΔAICc Weight

Leaf litter depth 3 −7.51 0.00 0.18

Leaf litter depth + Canopy opening 4 −7.15 0.36 0.15

Number of tank-bromeliads + Leaf litter depth 4 −6.98 0.53 0.14

Canopy opening 3 −6.46 1.06 0.11

Null model* 2 −6.32 1.20 0.10

Number of tank-bromeliads + Leaf litter depth + Air temperature 5 −5.97 1.54 0.08

Leaf litter coverage + Canopy opening 4 −5.88 1.64 0.08

Leaf litter coverage 3 −5.82 1.69 0.08

Number of tank-bromeliads + Leaf litter depth + Canopy opening 5 −5.76 1.76 0.08

Dominant lineages—effective number of highly abundant lineages (2PD)

Model—Distribution family: Gaussian k AICc ΔAICc Weight

Leaf litter depth* 3 −38.01 0.00 0.72

Leaf litter depth + Canopy opening 4 −36.15 1.86 0.28

Functional-group richness (0FD)

Model—Distribution family: Gaussian k AICc ΔAICc Weight

Number of tank-bromeliads* 3 46.22 0 1

Functional-group diversity—effective number of abundant functional groups (1FD)

Model—Distribution family: Gaussian k AICc ΔAICc Weight

Number of tank-bromeliads* 3 34.93 0 0.4

Number of tank-bromeliads + Leaf litter depth 4 35.68 0.74 0.27

Number of tank-bromeliads + Air temperature 4 36.46 1.53 0.18

Number of tank-bromeliads + Number of trees 4 36.93 1.99 0.15

Dominant functional-groups—effective number of dominant functional groups (2FD)

Model—Distribution family: Gaussian k AICc ΔAICc Weight

Number of tank-bromeliads* 3 32.03 0 0.39

Number of tank-bromeliads + Leaf litter depth 4 32.95 0.92 0.25

Number of tank-bromeliads + Air temperature 4 33.24 1.21 0.21

Number of tank-bromeliads + Number of trees 4 33.93 1.9 0.15

Note:
The model with the fewest parameters was selected (indicated with *). k, Number of parameters; AICc, Akaike information criterion corrected for small sample sizes;
ΔAICc, difference in AICc relative to the best-supported model; weight, model weight.
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Figure 3 Splines illustrating the relationships between environmental variables and transect
dissimilarity, as predicted by generalized dissimilarity models (GDMs). The peak values of each spline
indicate the total dissimilarity explained by a given variable while holding all others constant. The shape of
the spline represents how dissimilarity varies along the environmental gradient. (A) Relationship between
altitude and taxonomic dissimilarity, (B) relationship between altitude and phylogenetic dissimilarity,
and (C) relationship between geographic distance (m) and phylogenetic dissimilarity. Solid lines
denote statistically significant relationships (a < 0.05), while dashed lines indicate marginally significant
relationships (p-value between 0.05 and 0.1). Relationships with functional dissimilarity were not significant
and, therefore, were not included in the plot. Dissimilarities were calculated using the taxonomic, phylo-
genetic, and functional versions of the Jaccard index. Full-size DOI: 10.7717/peerj.19561/fig-3

Table 4 Specification and metrics of the dissimilarity models (GDMs) for taxonomic, phylogenetic, and functional beta diversity (Jaccard-
based—βcc distances) between transects.

Response variable Model p-value Explained deviance (%) Explained cross-validation (%) Predictor p-value

Taxonomic beta (Tβ) 0.00 51.24 34.67 Altitude 0.00

Phylogenetic beta (Pβ) 0.00 46.26 36.93 Altitude 0.00

Geographic distance 0.09

Functional beta (Fβ) 0.00 30.24 9.44 Altitude 0.39

Geographic distance 0.19

Canopy opening 0.62

Number of tank-bromeliads 0.36

Air temperature 0.72

Number of trees 0.69

Note:
Variables in bold indicate statistically significant relationships (p-value < 0.05), while italicized variables indicate marginally significant relationships (0.05 > p-value < 0.1).
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Matavelli et al., 2022; Santos-Pereira & Rocha, 2025; Siqueira et al., 2021; Siqueira,
Vrcibradic & Rocha, 2025). In addition to altitude, local environmental variables, such as
the number of tank bromeliads and leaf litter depth, were key factors in structuring the
communities. This finding is consistent with studies highlighting the importance of local
factors, such as the availability of specific microhabitats, in maintaining diversity along
altitudinal gradients (e.g., Siqueira et al., 2021; Carvalho-Rocha, Peres & Neckel-Oliveira,
2021;Wang et al., 2022; Zhao et al., 2022). Furthermore, we observed an inverse pattern to
Rapoport’s rule, with species at higher altitudes exhibiting narrower range-size

Figure 4 Anurans’ species occurrence and abundance along the altitudinal gradient studied in the
Serra Bonita RPPN complex, state of Bahia, northeastern Brazil. (A) The upper panel shows the
altitudinal distribution of each sampled point, and (B) the lower panel shows the abundance of observed
species (log x + 1 for better visualization) at each point. Full-size DOI: 10.7717/peerj.19561/fig-4
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distributions, likely reflecting habitat specialization or microendemism. These results
underscore the complexity of diversity patterns along altitudinal gradients and emphasize
the need for multidimensional approaches to understand the mechanisms underlying the
structuring of these communities.

We recorded 36 anuran species by sampling strictly forested environments, excluding
lentic or lotic water bodies. Most herpetofaunistic studies on anurans have focused on
areas near ponds, where most species rely on water for reproduction (Wells, 2007).
However, anurans also depend on forested environments for essential resources such as
food and shelter (Duellman & Trueb, 1994). By sampling in the forested environments of
the Serra Bonita RPPN complex, we recorded almost half of the anuran fauna known for
this mountain (Dias et al., 2014). In addition, the anurans’ species richness found in this
study aligns with that reported in other checklists for forested environments of the Atlantic
Forest (Rojas-Padilla et al., 2020; Protázio et al., 2021; Lima et al., 2021; Siqueira et al.,
2022; Souza-Costa et al., 2024), highlighting the critical role of natural forests in
maintaining anuran diversity.

Influence of altitude on multidimensional alpha diversity of anurans
Our findings do not support a relationship between species richness and altitude, which
contrasts with the commonly observed patterns of either a mid-elevation peak or a
monotonic decline in montane amphibian communities (Carvalho-Rocha, Peres & Neckel-
Oliveira, 2021; Matavelli et al., 2022; Dahl et al., 2024; Khatiwada et al., 2019; Bassetto
et al., 2024; Siqueira et al., 2021; Siqueira, Vrcibradic & Rocha, 2025). In tropical mountain
ecosystems, species richness generally decreases at higher elevations due to harsh
environmental conditions, such as lower temperatures, reduced primary productivity,
limited available area, and resource scarcity (Rahbek, 1995, 2005; McCain, 2005, 2009).
However, in some low-elevation montane systems (~1,000–1,200 m), species richness may
increase with altitude (Naniwadekar & Vasudevan, 2007), or remain relatively stable across
the gradient (Goyannes-Araújo et al., 2015), as observed also in our study. This pattern of
high species richness in low-elevation montane systems may be more prevalent in
mountains below 1,000 m than previously recognized in the literature. Most studies
examining broader altitudinal ranges, which often report a hump-shaped distribution for
anurans, describe an initial increase in species richness up to approximately 1,000 m,
followed by a decline at higher elevations (Carvalho-Rocha, Peres & Neckel-Oliveira, 2021;
Matavelli et al., 2022; Dahl et al., 2024). Thus, in moderately elevated tropical mountains,
environmental conditions may remain conducive to supporting amphibian diversity even
at upper elevations.

While most studies report a decline in anuran abundance with increasing elevation
(Khatiwada & Haugaasen, 2015; Khatiwada et al., 2019; Villacampa et al., 2019; Carvalho-
Rocha, Peres & Neckel-Oliveira, 2021), our findings reveal a contrasting pattern: a
significant positive relationship between altitude and anuran abundance, with the
highlands harboring the highest number of individuals. This result may be linked to local
factors in our study area, particularly the increased availability of tank bromeliads with
altitude, which emerged as a key predictor of anuran abundance (see discussion below).
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Additionally, since our study area does not exceed 1,000 m in elevation, the uppermost
sites still provide favorable conditions for the persistence and proliferation of species,
particularly those with direct development, mitigating the restrictive effects of extreme
cold observed at higher altitudes. Up to this altitudinal range, we hypothesize that anuran
communities still benefit from milder temperatures and high humidity, reducing
physiological stress and promoting greater frog abundance. However, a comprehensive
meta-analysis and future studies involving mountainous areas with a higher altitudinal
range may shed more light on this issue in the future.

The highest abundance of Terrarana frogs, such as brachycephalids, craugastorids, and
strabomantids, might be associated with the fact that direct-developing frogs usually lay
eggs on the forest floor, and thus are independent of water bodies (Nunes-de-Almeida,
Haddad & Toledo, 2021). These species were generally more abundant and diverse in the
highland areas, where lentic ponds are scarce. This pattern has also been reported in other
studies examining altitudinal gradients (Naniwadekar & Vasudevan, 2007; Siqueira,
Vrcibradic & Rocha, 2025). The milder temperature and higher humidity should ensure
additional protection against desiccation of their eggs deposited in the environment,
contributing to the increased reproductive success of these species at higher altitudes. In
contrast, leptodactylids and microhylids had one species registered for each family. Some
anurans in the Atlantic Rainforest (e.g., leptodactylids) build foam nests close to ponds to
deposit and incubate egg clutches, which will hatch into tadpoles and then metamorphose
into frogs (Haddad & Prado, 2005). At the same time, other species (e.g., microhylids)
present explosive reproduction, fossorial or semi-fossorial behavior, and low dispersal
capacity in the environment, characteristics that make it difficult to sample adults in the
field (Peloso et al., 2014; De Sá et al., 2019). Thus, perhaps this might be the reason for the
low abundance of leptodactylids and microhylids that were restricted to lowland areas, as
well as most of the species that use lentic ponds for breeding. The steepness of the terrain
may hinder the formation of lentic ponds along the altitudinal gradient, decreasing the
availability of suitable sites for the species that breed in these environments. Lastly, Hylidae
was the most diverse family across the altitudinal range, with 21 species (58%) recorded.
Neotropical anuran communities typically exhibit high hylid diversity (Duellman, 1988), a
pattern reflected in both montane regions (Carvalho-Rocha, Peres & Neckel-Oliveira, 2021;
Matavelli et al., 2022; Santos-Pereira & Rocha, 2025) and lowland areas of the Atlantic
Forest (e.g., Mira-Mendes et al., 2018). The dominance of hylids might be associated with
mountain streams or aerial aquatic habitats (e.g., tank-bromeliads) for developing eggs and
tadpoles. Since reproductive modes are essential to understanding the distribution of
anurans in altitudinal environments (Siqueira et al., 2021), these results might be directly
associated with such reproductive strategies.

We found no statistically significant relationship between altitude and the different
dimensions of alpha-diversity—taxonomic, phylogenetic, and functional. This suggests
that, at least within the evaluated elevation range and transects, species richness and
community structure remain relatively consistent along altitudinal gradient, supporting
similar ecosystem functions and maintaining a comparable number of associated lineages
and functional groups. This stability is likely maintained through functional redundancy,
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where functionally equivalent species occupying similar niches at different altitudes
compensate for changes in species composition. High-altitude environments often exhibit
a reduction in taxonomic and functional diversity (Graham et al., 2014; Villacampa et al.,
2019; Zhao et al., 2022; Siqueira, Vrcibradic & Rocha, 2025), which may lead to the loss of
specific ecological functions. However, highlands are also characterized by
microendemism, with species exhibiting unique traits—such as specialized reproductive
modes or distinct physiological adaptations—that can partially compensate for reduced
taxonomic diversity in terms of functional contributions to the ecosystem, while
simultaneously enhancing phylogenetic diversity in these regions through the presence of
distinct evolutionary lineages.

Role of local environmental variables
Mountainous regions, despite covering only ~25% of the Earth’s land surface, play a
critical role in sustaining global biodiversity, harboring more than 85% of the world’s
species of amphibians, birds, and mammals, many of which are endemic to these
environments (Rahbek et al., 2019). In the Atlantic Forest, different mountains are
considered hotspots of anuran diversity (e.g., Forlani et al., 2010; Dias et al., 2014; Roberto
& Loebmann, 2016), but little is known about the main drivers of the anuran communities.
Our results support that the number of tank-bromeliads plays an important role in anuran
abundance, phylogenetic and functional diversity. The physical structure of some
bromeliads enables rainwater to accumulate in the central tank and leaves axils, creating an
important microhabitat for some anuran species from a wide variety of families (Peixoto,
1995; Juncá & Borges, 2002; Lehtinen, 2004; Sabagh, Ferreira & Rocha, 2017; Zocca,
Ghilardi-Lopes & Ferreira, 2024). This complex architecture provides microhabitats for a
diverse range of organisms, serving as sites for refuge, foraging, and even development
(Rocha et al., 2000; Lopez, Alves & Rios, 2009). Some frog species, such as those in the genus
Phyllodytes, spend their entire lifecycle within bromeliads (Peixoto, 1995). In the present
study, six species of Phyllodytes were recorded, underscoring the importance of bromeliads
as a critical resource for specialized anurans. Additionally, some species (e.g.,
Bokermannohyla lucianae, Pristimantis sp. 2) were observed using bromeliads as
vocalization sites in the study area. The role of the number of bromeliads in the anuran
community was already highlighted in other studies (e.g., Bastazini et al., 2007; Silva,
Carvalho & Bittencourt-Silva, 2011; Sabagh, Ferreira & Rocha, 2017).

We found a positive association between leaf litter depth in the transects and the
number of dominant lineages (2PD). Transects with greater leaf litter depth had an
equitable distribution of abundances among lineages. Previous studies have reported high
anuran species richness associated with leaf litter, with species from different families
utilizing litter verticality in distinct ways (e.g., Siqueira et al., 2009; Bruscagin et al., 2014;
Rievers, Pires & Eterovick, 2014). Thus, greater leaf litter depth may facilitate the
coexistence of a higher number of species from different lineages that rely on this
microhabitat. In contrast, in environments with shallower leaf litter, spatial limitations
could increase competitive pressures, potentially leading to the local exclusion of certain
lineages or reduction of their abundances (Ovaskainen, Knegt & Mar-Delgado, 2016),
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particularly for those lineages that depend not only on the litter surface but also on its
vertical structure. Additionally, moisture levels in the leaf litter may act as a limiting factor,
influencing species distribution. Deeper layers retain higher humidity, providing a stable
microhabitat for species dependent on moist environments. In contrast, shallow leaf litter
tends to be drier, which may restrict the presence of many species. This could explain why
only a subset of species is commonly found in shallow leaf litter environments. These
species may exhibit distinct dehydration and rehydration rates compared to other
terrestrial anurans, enabling them to thrive in drier, less humid conditions (Dabés et al.,
2012). Thus, leaf litter moisture can act as an environmental filter, shaping anuran
community distribution.

In addition to the availability of tank bromeliads, leaf litter and reproductive modes,
temperature is often considered a key factor shaping anuran community structure along
altitudinal gradients. Amphibians are highly dependent on climate due to their
ectothermic metabolism, making temperature a key factor shaping geographic distribution
and diversity patterns (Hopkins, 2007; Duellman & Trueb, 1994). Temperature decreases
with elevation, and these two variables are highly correlated (r2 = 0.97 in this study). A
~3 �C difference in air temperature was observed between lowland areas and the summit of
Serra Bonita. The thermal variation establishes physiological stress gradients that act as
environmental filters, limiting species occurrence to altitudinal ranges within their thermal
tolerances. Consequently, species adapted to warmer lowland climates are gradually
replaced by those specialized in colder, more humid conditions at higher elevations. This
pattern reflects niche partitioning and the sensitivity of anurans to thermal fluctuations,
underscoring the role of abiotic factors in structuring montane communities. Evidence
from other studies in tropical altitudinal gradients suggests that temperature is a key driver
of beta diversity in anuran communities (Amador, Soto-Gamboa & Guayasamin, 2019;
Carvalho-Rocha, Peres & Neckel-Oliveira, 2021;Matavelli et al., 2022; Bassetto et al., 2024).
However, in our study, we found no evidence that air temperature contributes more to
community structuring than other local variables. Future studies incorporating
temperature measurements across different microhabitats may provide a more refined
understanding and help explain the different levels of amphibian diversity.

Species composition and turnover along the altitudinal gradient
Despite the lack of significant associations between species richness, community structure,
and environmental variables, we observed approximately 60% taxonomic dissimilarity
between transects. This dissimilarity was primarily driven by altitudinal variation,
indicating that while species richness and community structure remain relatively constant
across elevations, species composition shifts along the altitudinal gradient. Similar patterns
have been reported for other amphibian communities in tropical regions (Amador,
Soto-Gamboa & Guayasamin, 2019; Villacampa et al., 2019). The results for phylogenetic
diversity followed a similar pattern, although with a more pronounced effect above 600 m
elevation. While lineage richness and the number of dominant lineages were not linked to
elevation but rather to local environmental factors (specifically, number of
tank-bromeliads and leaf litter depth), variations in lineage composition among transects
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were significantly driven by elevation and marginally influenced by geographic distance.
These findings are consistent with (Wang et al., 2022), who reported a positive relationship
between phylogenetic dissimilarity and elevational divergence. Likewise, Azevedo et al.
(2021) found that amphibian phylogenetic dissimilarity increases monotonically over
distances of 0–500 km, a considerably greater distance than that analyzed in this study, yet
consistent with our findings. We found no significant relationship between functional
dissimilarity and environmental variation across transects, suggesting that the same
ecological functions are maintained along the environmental gradient, regardless of local
differences. These findings contrast with those of Wang et al. (2022), who reported an
increase in functional dissimilarity with elevation. However, their study covered a gradient
from 0 to 2,200 m, whereas the variation in functional dissimilarity in our study may not
have been broad enough to detect a significant association with any variable.

We observed that the anuran composition was influenced by the altitudinal gradient in
which some frogs were found at specific altitudes. For instance, Rhinella hoogmoedi,
Dendropsophus novaisi, Trachycephalus nigromaculatus, and Physalaemus erikae were
restricted to the lowest altitudinal bands; Chiasmocleis crucis and Bahius bilineatus
occurred just at mid-altitudes; and Brachycephalus pulex, Ischnocnema verrucosa,
Pristimantis sp. 1, Gastrotheca pulchra, Aplastodiscus ibirapitanga, A. weygoldti,
Bokermannohyla lucianae, andOlolygon strigilatus occurred only at higher altitudes. Other
species were found throughout the altitudinal range (see Fig. 4). Species composition
changes in anuran communities in response to altitudinal gradients have already been
reported for different mountains worldwide (e.g., Hu et al., 2011; Zancolli,
Steffan-Dewenter & Rödel, 2014; Matavelli et al., 2022). Environmental conditions in
montane ecosystems vary across the range (Lomolino, 2001; Tito, Vasconcelos & Feeley,
2020), and therefore, different environmental filters might influence the species
composition.

Rapoport altitudinal rule
Our results did not corroborate Rapoport’s altitudinal rule, in which range sizes increased
with altitude (Stevens, 1992). Instead, we observed an inverse pattern where anurans, with
their midpoints at lower elevations, tend to cover broader elevational range sizes. Although
supported in some studies (Chen et al., 2020; Matavelli et al., 2022), the anurans’
distribution in altitudinal gradients seems to be inconsistent with the original predictions
of Rapoport’s rule (e.g., Goyannes-Araújo et al., 2015; Khatiwada et al., 2019; Siqueira
et al., 2021; Dahl et al., 2024). Our results suggest that species with optimal altitudes in the
highlands exhibit a lower range-size distribution. In particular, this may reflect a habitat
specialization or microendemism at higher altitudes (Siqueira et al., 2021). In addition,
anurans’ occurrence and abundance might be associated with environmental
characteristics (Almeida-Gomes, Rocha & Vieira, 2016; Araújo, Guzzi & Ávila, 2018;
Pereira-Ribeiro et al., 2020, this study). However, considering local and global scales,
further studies are still needed to understand the principal filters driving anuran
distribution in montane ecosystems.
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Conclusions and implications for conservation
Future projections indicate that climate change may significantly impact the functional
and phylogenetic diversity of amphibians in lowland regions of the Atlantic Forest, driving
species migration toward higher-altitude climate refuges (Lourenço-de-Moraes et al.,
2019). Although our study found relative stability in functional diversity along the
altitudinal gradient—suggesting that functional redundancy may buffer montane
communities from immediate climate-driven declines—this resilience may be temporary.
Over time, the influx of new species into higher elevations could alter competitive
dynamics and disrupt ecosystem stability. These findings underscore the urgent need to
conserve high-altitude areas in the region to preserve evolutionary potential and maintain
ecosystem resilience in the face of ongoing climatic shifts. Additionally, implementing
long-term monitoring programs in these high-altitude areas is essential to track the
impacts of species migrations, assess changes in community composition, and detect
emerging threats. Such efforts would provide critical data to inform adaptive
conservation strategies and ensure the protection of these vital refuges in a rapidly
changing climate.

The drivers of anuran distribution in Neotropical forests are influenced by local factors.
In our study area, we observed a high abundance of bromeliads at higher elevations, and
our analyses identified them as important drivers of diversity. Most areas of the
Atlantic Forest reveal a lower bromeliad diversity, which could be why they have yet to be
pointed out as the main diversity drivers in other areas (Paz et al., 2020). Additionally, our
study also identified leaf litter depth as a positive driver of lineage evenness in the study
area. Our findings support the notion that local factors, such as the presence of
bromeliads and leaf litter, contribute to maintaining diverse amphibian lineages and
functions within tropical forests. This insight may help identify key factors for amphibian
conservation in disturbed landscapes, agroforestry systems, and areas undergoing
ecological restoration. Understanding anurans’ distribution and diversity patterns along
altitudinal gradients and local factors that promote the maintenance of these patterns and
diversity is essential to establish effective and targeted actions for conserving this
taxonomic group. In addition, inventories with efforts directed only at forest environments
can evidence a high species diversity and reveal the presence of little-known species and
restricted endemics (e.g., Brachycephalus pulex, Pristimantis spp., Ischnocnema spp.). In
the mountainous complex of Serra Bonita, any conservation initiative should prioritize
habitat protection in both lowland and highland areas, as each altitudinal stratum has a
unique species composition.
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