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ABSTRACT

Objectives. While low birth weight (LBW) is a recognized risk factor for adult
metabolic syndrome, the unique lipid metabolic phenotype of late preterm low birth
weight (LPTB-LBW) neonates—who experience dual exposures to shortened gestation
and intrauterine growth restriction—remains uncharacterized. This study specifically
examines whether the convergence of prematurity and growth restriction synergistically
disrupts lipid metabolic programming.

Methods. Using ultra performance liquid chromatography-tandem mass spectrometry
(UPLC-MS/MS), we compared lipidomic profiles of 88 plasma samples: 45 LPTB-LBW
(34%/7-365/7 weeks, <2,500 g) and 43 later preterm birth-normal birth weight (LPTB-
NBW, 349/7-36°/7 weeks, 2,500—4,000 g) controls. Multivariate orthogonal partial
least squares-discriminant analysis and univariate modeling identified discriminant
lipids. Maternal-neonatal lipid continuity was assessed through Spearman’s correlation
analysis.

Result. A total of 1,173 lipids were identified, categorized into five major lipid classes,
with 349 significantly different lipids detected (324 upregulated and 25 downregulated)
in the LPTB-LBW group. All glycerolipids were upregulated, accounting for 50%
(162/324) of the upregulated lipids. Long-chain polyunsaturated triglycerides (TG)
showed extreme elevations, such as TG (18:2_18:3_18:4) and TG (18:2_20:4_20:5).
Monoglycerides, including MG (18:2) and MG (18:1), were also significantly elevated.
Among glycerophospholipids (GP), 76 species were upregulated, with notable increases
in phosphatidylethanolamines such as PE (O-18:0_22:3) and PE (18:2_22:1), while
PG (20:4_22:6) was significantly reduced. All differentially expressed ceramides, in-
cluding Cer (d26:3/33:1(20H)), Cer (d29:2/30:2(20H)), and Cer (d28:3/31:1(20H)),
were upregulated, whereas sphingosines were downregulated. Cholesterol esters were
decreased, while bile acids, free fatty acids and acylcarnitines were elevated. KEGG
pathway enrichment analysis highlighted significant perturbations in cholesterol, glyc-
erolipid, and sphingolipid metabolism. Maternal high-density lipoprotein cholesterol
(HDLC) levels during early pregnancy showed exclusive negative correlations with
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neonatal lipids, particularly triacylglycerol TG (16:0_18:2_18:2) (r = —0.33, p =0.002),
diacylglycerols, and ceramides, whereas no associations were observed for maternal low
density lipoprotein (LDLC), TC, or TG.

Conclusions. LPTB-LBW neonates exhibit a unique lipidomic phenotype marked by
hyperaccumulation of glycerolipids (e.g., long-chain polyunsaturated TGs), elevated

ceramides, and altered phospholipid species (increased PE, decreased PG). Maternal

HDLC levels negatively correlated with specific neonatal lipids. These findings highlight
early-life lipid alterations in LPTB-LBW infants and the need for further investigation
into their clinical implications.

Subjects Biochemistry, Pediatrics, Metabolic Sciences

Keywords Lipidomics, Later preterm birth-low birth weight, LPTB-LBW, UPLC-MS/MS,
Glycerolipids, Ceramide

INTRODUCTION

Low birth weight (LBW) poses a growing public health challenge in developing countries,
with evidence linking it to adult-onset metabolic and cardiovascular conditions (Warng
et al., 2022). Despite a modest global decline in LBW prevalence (annual reduction rate:
1.2%, 2000-2015), current progress remains insufficient to achieve the World Health
Assembly’s target of a 30% reduction by 2025 (Blencowe et al., 2019; United Nations
Children’s Fund, 2023). Among LBW infants, late preterm birth-low birth weight (LPTB-
LBW) neonates-defined as those born between 34 0/7 and 36 6/7 weeks of gestation with
a birth weight under 2,500 g_represent a critical subgroup exposed to dual developmental
insults: shortened gestation and intrauterine growth restriction (IUGR). IUGR, driven by
maternal malnutrition, placental dysfunction, and comorbidities, constrains fetal growth
trajectories and elevates lifelong cardiometabolic risks (Bendix, Miller ¢~ Winterhager,
2020). Nevertheless, the unique metabolic phenotype of LPTB-LBW neonates remains
poorly characterized, hindering targeted interventions for this vulnerable population.

The Developmental Origins of Health and Disease (DOHaD) posits that adverse
intrauterine environments reprogram organogenesis, elevating lifelong disease risks
(Buklijas & Al-Gailani, 2023). Epidemiological studies consistently associate LBW with
neonatal mortality, childhood stunting, cognitive deficits, and an elevated risk of adult-
onset obesity, type 2 diabetes, and cardiovascular disease (Bianco-Miotto ef al., 2017;
Feng, Osgood ¢ Dyck, 2018; Halli, Biradar ¢ Prasad, 2022). Notably, LPTB neonates face
a 2-3-fold increased risk of acute complications (e.g., hypoglycemia, respiratory distress)
and healthcare utilization (Sharma et al., 2021). Emerging mechanistic studies implicate
dysregulated lipid metabolism as a central mediator of these outcomes. Perturbations in
lipid storage (e.g., triglycerides), membrane signaling (e.g., phospholipids), and bioactive
sphingolipids (e.g., ceramides) have been linked to insulin resistance and inflammatory
cascades in developmental programming models (Chaurasia ¢ Summers, 2021; Povel et
al., 2011). Yet, despite their clinical relevance, comprehensive lipidomic phenotyping of
LPTB-LBW neonates is conspicuously absent from the literature.
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Recent advances in lipidomics have revolutionized our understanding of neonatal
metabolic programming. These studies underscore the critical role of lipid metabolism
in fetal development, neurogenesis, and immune function (Delhaes et al., 2018). Studies
reveal that lipid-related pathways (e.g., linoleic and arachidonic acid metabolism) are
disrupted in both SGA and LGA infants, with U-shaped metabolites (e.g., cuminaldehyde)
and linear metabolites (Zhai et al., 2023). Animal models further highlight dysregulated
fatty acid metabolism and PPAR«a/CYP4A14 signaling in LBW individuals (Li et al., 2018;
Zhou et al., 2023), while human cohorts demonstrate persistent metabolic abnormalities
(e.g., propionylcarnitine) tied to insulin resistance in adulthood (Metrustry et al., 2018).
MR-based metabolomic analyses of IUGR pregnancies reveal a disrupted maternal-fetal
lipid axis, characterized by maternal hypocholesterolemia and fetal accumulation of
atherogenic lipoproteins, suggesting a transgenerational programming effect Miranda et al.
(2018). Urinary metabolomics have identified distinct signatures associated with various
neonatal outcomes, including IUGR and bronchopulmonary dysplasia (BPD) (Dessi et
al., 2011; Fanos et al., 2014). For example, studies have observed a significant decrease in
histidine levels and the ornithine/citrulline ratio in the BPD group. Additionally, the ratios
of acylcarnitines C3/C0 and C5/CO0 were also significantly reduced (Guo et al., 2024b).
While these studies provide valuable insights into lipid metabolism in specific neonatal
populations, the lipidomic signatures of LPTB-LBW neonates—particularly their interplay
with maternal lipid metabolism—remain largely unexplored, limiting our ability to identify
early biomarkers and develop targeted therapeutic strategies for this high-risk subgroup.

To address this critical knowledge gap, we employed a broadly targeted lipidomics
approach utilizing ultra-performance liquid chromatography-tandem mass spectrometry
(UPLC-MS/MS) to comprehensively profile peripheral blood samples from neonates:
LPTB-LBW cases and later preterm birth-normal birth weight (LPTB-NBW) controls. Our
study aims to: (1) delineate the unique lipidomic signature of LPTB-LBW neonates, and
(2) investigate transgenerational associations between maternal early-pregnancy lipids and
neonatal lipid profiles.

MATERIAL AND METHODS

Study population and sample collection
This case-control study enrolled neonates delivered at a tertiary hospital in Beijing, China,
between July 2019 and April 2023 (Fig. 1). The case group comprised LPTB-LBW neonates,
defined as gestational age 34°/7-36°/7 weeks with birth weight <2,500 g. The control group
consisted of LPTB-NBW neonates matched by gestational age (34°/7-36%/7 weeks), sex,
maternal age at delivery, and delivery hospital, with birth weights between 2,500-4,000 g.
Exclusion criteria included maternal smoking or alcohol consumption during pregnancy,
in vitro fertilization conception, multiple pregnancies, or congenital anomalies.
Clinico-demographic data were extracted from the hospital’s electronic medical record
system, including neonatal parameters: birth weight, delivery mode, and paternal age;
Maternal characteristics: ethnicity, gravidity, parity, last menstrual period date, height,
pre-pregnancy weight, pre-pregnancy body mass index (BMI), and weight at delivery; and
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Figure 1 Workflow of study.
Full-size &l DOI: 10.7717/peerj.19542/fig-1

perinatal factors: delivery season and maternal lipid profiles at 10—14 weeks gestation:
total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDLC), low density
lipoprotein (LDLC).

Plasma samples were collected within 4 h postpartum prior to clinical interventions,
aliquoted into sterile EP tubes and frozen at —80 °C until subsequent analysis.The study
was approved by the Ethics Committee of China-Japan Friendship Hospital (number:
2023-KY-057). Parental informed consent was obtained in writing from each participant.

Sample preparation

Plasma samples were thawed from —80 °C storage and vortexed for 10 s. A 50 uL aliquot of
each sample was transferred into labeled centrifuge tubes. Lipid extraction was performed
by adding one mL of lipid extraction solution (MTBE: MeOH = 3:1, V/V) containing
the internal standards and vortexing the mixture for 15 min. After adding 200 pL of
water, samples were vortexed for 1 min and centrifuged at 12,000 rpm for 10 min at 4 °C.
The supernatant was collected and dried, followed by resuspension in 200 pL of lipid
reconstitution solution (acetonitrile: isopropanol = 1:1, V/V) for LC-MS/MS analysis.

UPLC-MS/MS

The lipidomic analysis was performed using an ExionLC AD Ultra Performance
Liquid Chromatography (UPLC) system (SCIEX, https:/sciex.com.cn/) coupled with

a QTRAP®6500+ tandem mass spectrometer (SCIEX) as previously described (Liu

et al., 2025). Chromatographic separation was conducted on a Thermo Accucore™
C30 column with a mobile phase consisting of acetonitrile/water (60/40, V/V) and
acetonitrile/isopropanol (10/90, V/V), each containing 0.1% formic acid and ammonium
formate. The flow rate was set to 0.35 mL/min, and the column was maintained at 45 °C.
The gradient conditions are outlined in the detailed supplementary methods.

Mass spectrometry analysis employed electrospray ionization (ESI) s in positive and
negative ionization modes. Optimized declustering potential (DP) and collision energy
(CE) were applied for each lipid-specific multiple reaction monitoring (MRM) transition.
Lipids were identified via retention time (RT) and precursor/product ion pairs matched
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against the in-house MetWare database. Quantitation was performed in MRM mode, where
precursor ions were isolated in Q1, fragmented in Q2, and characteristic product ions were
filtered in Q3 to enhance specificity. Peak area integration of the chromatographic peaks
for all detected ions was performed using MultiQuant software, with peak areas serving
as the relative content of each lipid. A correction was applied to the peaks based on the
lipid retention time and peak shape across different samples, ensuring accuracy in both
qualitative and quantitative analysis. Missing values were addressed by filling them with
one-fifth of the minimum value for each lipid. To ensure the reliability of the lipidomic
data, quality control (QC) samples containing known concentrations of internal standards
were analyzed (detailed information is provided in Table S1). The response variability of
the internal standards, represented by the coefficient of variation (CV), was kept below
15%, indicating a stable and reliable analytical process. Total ion chromatograms (TICs) of
QC samples were also used to assess the reproducibility of lipid extraction and detection.
Figure S1 demonstrates the excellent repeatability of sample extraction and detection
processes through the overlay of total ion chromatograms (TIC) from various QC samples.

Statistical analysis

All statistical analyses were performed using R software (version 4.3.4; R Core Team, 2023).
Baseline characteristics of neonates were summarized as means and standard deviations
(mean £ SD) for continuous variables, and group comparisons were performed using the
Mann—Whitney U test or Student’s ¢-test. Categorical variables were presented as counts
(percentages) and analyzed using the chi-square test. Unsupervised principal component
analysis (PCA) was conducted using the prcomp function in R to explore the lipid
metabolism profiles of the two groups. Differential lipid identification was based on both
univariate and multivariate analyses. was utilized to execute Orthogonal partial least squares
discriminant analysis (OPLS-DA) was performed using the MetaboAnalystR package in
R to construct a predictive model and calculate Variable Importance in Projection (VIP)
scores. Lipids with VIP >1, fold change (FC)>1.2 or <0.83 and P-value <0.05 were
considered significant differential metabolites. Metabolic pathway enrichment analysis
was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.
Spearman’s correlation coefficient was used to evaluate associations between neonatal lipid
levels and maternal lipid profiles during early pregnancy, including TC, TG, HDL-C, and
LDL-C.

RESULTS

Clinical characteristics

A total of 88 neonates were included in the study, with 45 in the LPTB-LBW group and
43 in the LPTB-NBW group. Demographic characteristics are summarized in Table 1.
No significant differences were observed between the two groups in gender, gestational
age (249.27 £6.58 days vs. 250.49 £5.29 days, p=0.341) and parental variables, including
maternal nationality, gravidity, parity, last menstrual period, height, weight at delivery,
pre-pregnancy weight, pre-pregnancy BMI, BMI classification, delivery season, delivery
mode, and paternal age (all p > 0.05). The LPTB-LBW group had significantly lower birth
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Table 1 Clinical characteristics of the study subjects.

Variables Overall LPTB-LBW LPTB-NBW p
(N =88) (n=45) (n=43)

Infant characteristics
Gestational age (days), mean &+ SD 249.86 +5.98 249.27 £ 6.58 250.49 £+ 5.29 0.341
Birth weight (g), mean £ SD 2,477.50 £ 371.10 2,194.11 £ 253.52 2,774.07 £ 204.54 <0.001
Sex = Male, n (%) 50 (56.8) 27 (60.0) 23 (53.5) 0.688
Maternal characteristics

Nations = the Han plural, n (%) 81(92.0) 41 (91.1) 40 (93.0) 1
Age at delivery (years), mean £ SD 32.70 £ 4.15 32.67 £4.52 32.74 +3.78 0.931
Gravidity (times), mean + SD 1.95+1.53 1.96 £ 1.80 1.95 £ 1.21 0.995
Parity (times), mean & SD 1.32 £ 0.56 1.22 £0.42 1.42 £ 0.66 0.099
Last menstruation season, n (%) 0.555

Autumn 21(23.9) 11 (24.4) 10 (23.3)

Spring 15 (17.0) 9 (20.0) 6 (14.0)

Summer 31 (35.2) 17 (37.8) 14 (32.6)

Winter 21(23.9) 8 (17.8) 13 (30.2)
Hight (cm), mean &+ SD 163.00 + 4.63 162.67 £+ 4.38 163.35 + 4.91 0.493
Maternal weight when delivery (kg), mean + SD 68.69 +9.51 69.89 £9.78 67.43 +9.17 0.227
Pre-pregnancy weight (kg), mean £ SD 57.32 £ 7.68 58.10 = 7.43 56.50 & 7.95 0.331
BMI (kg/mz), mean + SD 21.96 + 3.07 22.16 £ 2.55 21.74 £+ 3.55 0.53
BMI classification, n (%) 0.652

Fat 14 (15.9) 7 (15.6) 7(16.3)

Thin 6 (6.8) 2 (4.4) 4(9.3)

Normal 68 (77.3) 36 (80.0) 32 (74.4)
Delivery season, n (%) 0.403

Autumn 25 (28.4) 16 (35.6) 9 (20.9)

Spring 20 (22.7) 8 (17.8) 12 (27.9)

Summer 26 (29.5) 12 (26.7) 14 (32.6)

Winter 17 (19.3) 9 (20.0) 8 (18.6)
Delivery mode, n (%) 0.433

Cesarean section 47 (53.4) 27 (60.0) 20 (46.5)

Obstetric forceps 4(4.5) 2 (4.4) 2 (4.7)

Spontaneous delivery 37 (42.0) 16 (35.6) 21 (48.8)
Paternal age (years), mean & SD 34.02 £ 5.25 34.07 £ 5.43 33.98 £5.12 0.937

weight (2,194.11 £ 253.52 g vs. 2,774.07 4= 204.54 g, p<0.001) compared to the LPTB-NBW

group.

Widely targeted lipidomic profiling
Lipidomic profiling identified 1,173 lipid species classified into six major lipid classes: 510
glycerophospholipids (GP), 319 glycerolipids (GL), 235 sphingolipids (SP), 78 fatty acids
(FA), 29 sterol lipids (ST), and two prenol lipids (PR) (Fig. 2).
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Figure 2 Classification of identified 1,173 lipids.
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Differential lipid analysis

The PCA score plot revealed distinct clustering patterns between the two groups (Fig. 52).
OPLS-DA analysis confirmed a significant separation (Fig. 3A), with model validation
parameters indicating robust explanatory power and predictive reliability (R*X = 0.584,
R%Y = 0.978, and Q> =0.651; Fig. 3B).

A total of 349 lipids exhibited significant differential expression, including 324 up-
regulated and 25 down-regulated lipids (Fig. 4A, Table S2). Among the 32 perturbed lipid
subclasses, GL (162/349, 46.4%) were the most affected, followed by GP (87/349, 24.9%)
and SP (75/349, 21.4%); (Fig. 4B).

As detailed in Fig. 4C and Table S2, comprehensive lipidomic profiling revealed
distinct metabolic perturbations. All differentially expressed GLs (153/162, 94.4%)
were upregulated, with long-chain polyunsaturated triglycerides (TG) constituting the
predominant subclass. Striking upregulation was observed for TG (18:2_18:3_18:4) (FC
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=333.5,p = 1.84x 1073, VIP = 3.89) and TG (18:2_20:4_20:5) (FC = 943.6, p = 0.0059,
VIP = 3.72). Monoglycerides (MG) and diglycerides (DG) were also significantly elevated,
including MG (18:2) (FC = 108.9, p = 3.00x 1078, VIP = 4.26) and DG (18:1_18:2) (FC
=1.99,p =9.72x107°, VIP = 1.99).

Among sphingolipids, 82.7% (62/75) of differential ceramides showed marked
upregulation. Key species included Cer (d26:3/33:1(20H)) (FC = 191.14, p = 3.28x 1078,
VIP = 4.11), Cer(d29:2/30:2(20H)) (FC = 151.10, p = 4.53x 1077, VIP = 4.08), and
Cer(d28:3/31:1(20H)) (FC = 3.00, p = 1.80x% 1074, VIP = 2.06). Conversely, sphingoid
bases such as SPH(d18:1), SPH(d18:2), and SPH(d18:0) were uniformly downregulated.

The majority of GPs (76/87, 87.4%) exhibited upregulation. Phosphatidylethanolamines
(PE) showed pronounced increases, exemplified by PE (18:2_22:1) (FC = 473.8, p =
6.54x 1077, VIP = 3.84) and PE (0-18:0_22:3) (FC=71.67, p = 5.61x10~°, VIP = 4.16).
Conversely, phosphatidylglycerol PG (20:4_22:6) (FC = 0.08, p = 5.13x10717, VIP =
4.33) and PE (O-16:1_22:1) (FC = 0.71, p = 3.79x 107>, VIP = 2.14) were significantly
reduced.

Free fatty acids demonstrated significant upregulation in FFA(18:2) and FFA(20:5).
Acylcarnitines, including C6:1 (FC = 1.81, p = 0.003, VIP = 1.81) and C8:1 (FC =1.38, p
= 0.002, VIP = 1.41), were predominantly elevated. Notably, two bile acids—glycocholic
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Table 2 Maternal serum lipid levels during early pregnancy.

Lipid levels Overall LPTB-LBW LPTB-NBW P
(N =88) (n=45) (n=43)
TC (mmol/L), mean £ SD 4.46 £0.76 4.41 £ 0.68 4.51£0.83 0.530
TG (mmol/L), mean £ SD 1.13 + 0.38 1.10 £ 0.39 1.16 £ 0.38 0.476
HDLC (mmol/L), mean + SD 1.56 + 0.27 1.58 +0.22 1.54 +0.32 0.494
LDLC (mmol/L), mean + SD 2.48 +0.45 2.46 + 0.40 2.51 £0.51 0.630
Notes.

TC, total cholesterol; TG, triglycerides; HDLC, high density lipoprotein; LDLC, low density lipoprotein.

acid and taurocholic acid—sharked significant increases, while cholesteryl esters were
consistently downregulated.

Among the top 20 VIP-ranked lipids, only two species—PG (20:4_22:6) and PE (O-
16:1_22:1)—were downregulated, whereas others (e.g., MG (18:2), PE (0-18:0_22:3),
and Cer (d26:3/33:1(20H))) showed robust upregulation (Fig. 4D). Notably, TG
(18:2_20:4_20:5) demonstrated the most pronounced upregulation in the top 10 FC-ranked
lipids (Fig. S3).

KEGG classification of differentially expressed lipids demonstrated that the metabolic
pathways (ko01100) contained the highest proportion of dysregulated lipid species (92.7%
of annotated lipids, Fig. 5A). Subsequent enrichment analysis further highlighted significant
alterations in lipid-related metabolic processes, including: cholesterol metabolism
(ko04979), glycerolipid metabolism (ko00561) and sphingolipid metabolism (ko00600)
(Fig. 5B).

Association between neonatal different lipid and maternal early lipid
levels

Asshownin Table 2, maternal lipid levels during early pregnancy—including TC, TG, HDL-
C, and LDL-C—did not differ statistically between the two groups (all p >0.05). Correlation
analysis between maternal early lipids and neonatal top 50 VIP-ranked differential lipids
revealed that HDLC was the only maternal lipid parameter significantly associated with
neonatal lipid levels (p <0.05) (Fig. 6). HDL-C exhibited negative correlations with specific
neonatal lipids, particularly TG, DG, ceramides, and PE. The strongest inverse correlation
was observed between maternal HDL-C and TG(16:0_18:2_18:2) (r = —0.33, p = 0.002)
(Table S3). In contrast, maternal LDL-C, TC, and TG showed no significant correlations
with neonatal lipids (all p > 0.05).

DISCUSSION

This study delineates a unique lipidomic signature in LPTB-LBW neonates, characterized
by glycerolipid overload, glycerophospholipid remodeling, sphingolipid imbalance, and
sterol/fatty acid perturbations. These findings highlight a unique metabolic phenotype
shaped by the dual insults of prematurity and IUGR, with maternal HDLC emerging as a
novel modifier of fetal lipid programming.

The marked upregulation of GLs, particularly long-chain polyunsaturated triglycerides
and monoglycerides, dominates the lipidomic profile of LPTB-LBW neonates. TGs such
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Figure 5 The KEGG pathway analysis. (A) KEGG classification chart, showing metabolic pathways an-
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as TG (18:2_18:3_18:4) and TG (18:2_20:4_20:5) exhibited extreme elevations (FC
> 300), suggesting a compensatory mechanism for energy storage under conditions of

intrauterine nutrient deprivation. This aligns with IUGR-associated fetal adaptations,
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Figure 6 Correlation analyses of the first 50 differential lipids and maternal lipid metabolism levels.
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where limited glucose availability drives hepatic de novo lipogenesis and TG synthesis
to preserve energy reserves (Anam et al., 2022; Geidl-Flueck ¢ Gerber, 2023). However,
excessive TG accumulation may reflect impaired mitochondrial S-oxidation, as evidenced
by concurrent elevations in acylcarnitines (e.g., C6:1, C8:1), indicative of incomplete
fatty acid oxidation. The dominance of polyunsaturated TGs further implies altered
desaturase activity, potentially modulated by placental insufficiency-induced hypoxia or
maternal-fetal fatty acid transfer dysregulation. Notably, our findings contrast with term
IUGR neonates who typically show TG depletion (Miranda et al., 2018). This dichotomy
highlights gestational age-specific adaptations: where term IUGR mobilizes lipids for
immediate energy needs, LPTB-LBW neonates prioritize lipid storage to buffer against
extrauterine growth challenges. TG (18:2_20:4_20:5) demonstrated the highest fold-change
(FC=943.6), positioning it as a candidate biomarker for metabolic surveillance.

The observed phosphatidylethanolamine elevation and phosphatidylglycerol depletion
in LPTB-LBW neonates align with established mechanisms of membrane adaptation
under developmental stress. As the second most abundant phospholipid in eukaryotic
membranes, PE synergizes with phosphatidylcholine (PC) to maintain bilayer integrity
and fluidity (Dawaliby et al., 2016; Li et al., 2023). Our findings demonstrate a significant
upregulation of PE species (e.g., PE (18:2_22:1)), which aligns with its essential function
in maintaining membrane fluidity and supporting cellular proliferation under nutrient
restriction. This compensatory elevation may facilitate membrane expansion required for
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postnatal catch-up growth in LPTB-LBW neonates. In contrast, PG(20:4_22:6) exhibited
a significant reduction in LPTB-LBW neonates, despite upregulation of other PG species.
While PG constitutes only 1-2% of total phospholipids in most tissues, it is selectively
enriched in pulmonary surfactant (accounting for up to 11% of alveolar hypophase lipids)
and ranks second only to PC in maintaining alveolar stability (Okano ¢ Akino, 1979; Soll &
Ozek, 2010). PG(20:4_22:6) deficiency may impair surfactant function and mitochondrial
integrity, though clinical sequelae (e.g., respiratory dysfunction) require longitudinal
validation.

The observed upregulation of ceramides and most glycosphingolipids, concomitant with
a reduction in sphingosine, suggests a coordinated rewiring of sphingolipid metabolism
in LPTB-LBW neonates. Ceramides serve as central intermediates in the biosynthesis
and catabolism of all sphingolipids, including complex glycosphingolipids, acting as
precursors for most sphingolipid species (Sumimers, Chaurasia ¢ Holland, 2019). This
metabolic shift may support cellular homeostasis and repair processes, potentially aiding
in the maintenance of membrane integrity and nutrient recycling. However, this metabolic
shift may facilitate cellular homeostasis and repair, excessive ceramide accumulation has
been associated with the induction of apoptosis (Chaurasia ¢ Summers, 2021; Wilkerson
et al., 2024). Lipidomic screenings in large clinical cohorts have further revealed strong
correlations between elevated serum and tissue levels of ceramides and/or dihydroceramides
and obesity-related comorbidities, including insulin resistance, type 2 diabetes, and major
adverse cardiovascular events (Neeland et al., 2018). Additionally, studies have identified a
correlation between maternal obesity and altered ceramide cycling levels in both mothers
and their offspring at 4 years of age (Ledn-Aguilar et al., 2019). These findings emphasize
the dual role of ceramides in neonatal development—supporting adaptive processes while
posing potential pathological risks—and highlight the need for longitudinal studies to
explore their long-term implications in LPTB-LBW populations.

In this study, we observed significant upregulation of two differential free fatty acids
(FFAs), namely FFA(18:2) and FFA(20:5), alongside elevated levels of most acylcarnitines,
such as C6:1 in LPTB-LBW neonates. The elevation of FFA(18:2) and FFA(20:5), both
polyunsaturated fatty acids, may indicate heightened lipolysis or altered fatty acid
mobilization to meet energy demands and support membrane biogenesis during catch-up
growth. These FFAs serve as substrates for acylcarnitine synthesis, facilitating mitochondrial
fatty acid B-oxidation (Xiong, 2018). The concurrent rise in medium-chain acylcarnitines
(e.g., C6:1 and C8:1) supports this hypothesis, as acylcarnitines shuttle fatty acids into
mitochondria for energy production, a critical process in neonates facing nutritional
deficits.

In parallel, the upregulation of GCA and TCA suggests enhanced bile acid synthesis,
possibly driven by increased hepatic cholesterol catabolism via cytochrome P450 enzymes
(e.g., CYP7A1) (van Best et al., 2020). Bile acids play a pivotal role in lipid emulsification
and absorption, potentially compensating for limited nutrient availability in LPTB-LBW
neonates by optimizing intestinal efficiency. Conversely, the downregulation of cholesterol
esters—a key storage form of cholesterol—may reflect a shift in cholesterol flux toward
bile acid production rather than esterification. Cholesterol is an essential structural
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component of cell membranes and a precursor for steroid hormones, transmembrane
signaling molecules, and cellular proliferation (Guo et al., 2024a). Moreover, maternal
dyslipidemia and elevated cholesterol biosynthesis during early pregnancy have been
associated with an increased risk of delivering SGA neonates (Kim et al., 2021). This
metabolic profile aligns with KEGG pathway annotations indicating active cholesterol
metabolism, suggesting a compensatory mechanism to redirect cholesterol into bile acid
synthesis under developmental constraints. The observed lipidomic shifts in LPTB-LBW
neonates—marked by elevated phosphatidylethanolamine (PE), reduced PG(20:4_22:6),
reprogrammed sphingolipid metabolism, and the differential regulation of free fatty acids
(FFAs), acylcarnitines, bile acids, and cholesterol esters—collectively illustrate a systemic
metabolic trade-off under developmental stress. The upregulation of polyunsaturated fatty
acids (e.g., FFA(18:2), FFA(20:5)) and acylcarnitines may prioritize energy metabolism
and membrane fluidity to support catch-up growth, while increased bile acids and
reduced cholesterol esters reflect hepatic adaptations to nutritional constraints. However,
diminished cholesterol ester pools could impair steroidogenesis and membrane lipid
reserves, potentially predisposing these neonates to long-term neuroendocrine and
cardiovascular risks. These findings underscore the need for longitudinal studies to evaluate
whether early lipidomic alterations increase susceptibility to metabolic comorbidities, such
as insulin resistance or atherosclerosis, in later life.

Our study identifies a novel transgenerational axis linking maternal lipid metabolism
to neonatal lipidomic reprogramming. Specifically, maternal first-trimester HDL-C
levels exhibited a selective inverse correlation with neonatal atherogenic lipids—most
prominently TG(16:0_18:2_18:2)—while maternal LDLC, TC, and TG showed no
associations. During pregnancy, maternal metabolism undergoes significant adaptations
to meet the nutritional and energy demands of both the mother and fetus. These metabolic
adaptations include elevated levels of total cholesterol, low-density lipoprotein cholesterol
(LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides, particularly
during later stages of gestation (Wiznitzer et al., 2009). Placental trophoblasts play a crucial
role in fetal development by absorbing glycerol and free fatty acids generated through
enzyme-catalyzed hydrolysis of HDL and LDL. These lipids are subsequently re-esterified
to form fats essential for fetal growth (von Versen-Hoeynck ¢ Powers, 2007). HDL is
critical for maintaining intra-follicular cholesterol homeostasis, a process essential for
embryo development (Fujimoto et al., 2009). Studies have found that adjusted birth weight
was negatively correlated with maternal HDLC levels starting from the 10th gestational
week in overweight or obese women (Misra, Trudeau ¢» Perni, 2011). Recent research has
demonstrated an inverse relationship between maternal serum HDLC concentrations and
birth weight at the 224th and 36th weeks of gestation. Elevated HDLC levels at the 36th
gestational week have been associated with an increased risk of SGA neonates. Changes in
maternal HDLC levels throughout pregnancy were linked to reduced neonatal size (Wang
et al., 2020). Our findings reveal, for the first time, an association between maternal HDLC
levels in early pregnancy and endogenous cholesterol biosynthesis, highlighting the link
between lipid metabolism in LPTB-LBW neonates and maternal lipid profiles during early
gestation.
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Despite the use of real-case data and efforts to minimize biases, this study has certain
limitations. These limitations include the single-center design and relatively small sample
size, which may affect the generalizability of the findings. Additionally, the analysis of
antenatal lipids was limited to a single time point in early pregnancy, restricting the ability
to assess lipid changes throughout gestation. Future studies involving longitudinal sampling
across preconception, pregnancy, and the postnatal period could provide deeper insights
into lipid trajectory patterns and the causal relationships between LPTB-LBW lipids and
maternal lipid levels.

CONCLUSION

This study delineates the unique lipidomic signature of LPTB-LBW neonates, revealing
synergistic disruptions in lipid metabolism driven by dual exposures to prematurity
and intrauterine growth restriction. Key findings include hyperaccumulation of
glycerolipids—notably long-chain polyunsaturated triglycerides—and ceramides,
alongside altered glycerophospholipid profiles (elevated PE, reduced PG) and perturbed
sphingolipid/cholesterol metabolism. Notably, maternal HDLC levels during early
pregnancy inversely correlated with neonatal triglycerides and ceramides, implicating
transgenerational lipid regulation as a modifiable risk factor. Our findings underscore the
need for longitudinal studies to evaluate the clinical impact of these lipid alterations and
explore targeted interventions to mitigate metabolic risks in this vulnerable population.
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