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Colorectal cancer (CRC) is a common malignant tumor in the gastrointestinal tract with
inconspicuous early symptoms, high morbidity and mortality, and poor prognosis. Enteric
bacteria are present in the human intestinal system and have certain functions, which
include the integrity of the epithelial barrier and the enhancement of protective immune
responses. The etiology colorectal cancer is unknown, and the instability of the intestinal
microbiome is one of the main factors in the development of colorectal cancer, which
mainly includes Bacteroides fragilis, Fusobacterium nucleatum, Escherichia coli, and
Enterococcus faecalis. However, the long-term use and abuse of antibiotics have made the
problem of drug resistance a diûcult problem that currently plagues the regulation of
enteric bacteria, as well as a thorny issue in the prevention and treatment of CRC. In this
review, we elucidated the drug resistance of four colorectal cancer-associated enteric
bacteria, namely Bacteroides fragilis, Fusobacterium nucleatum, Escherichia coli, and
Enterococcus faecalis, and discussed the common and diûerent aspects of the resistance
mechanisms of the four intestinal bacteria, with the aim of providing a basis for the
prevention and control of CRC.
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21 ABSTRACT

22 Colorectal cancer (CRC) is a common malignant tumor in the gastrointestinal tract with 
23 inconspicuous early symptoms, high morbidity and mortality, and poor prognosis. Enteric 
24 bacteria are present in the human intestinal system and have certain functions, which include the 
25 integrity of the epithelial barrier and the enhancement of protective immune responses. The 
26 etiology  colorectal cancer is unknown, and the instability of the intestinal microbiome is one of 
27 the main factors in the development of colorectal cancer, which mainly includes Bacteroides 

28 fragilis, Fusobacterium nucleatum, Escherichia coli, and Enterococcus faecalis. However, the 
29 long-term use and abuse of antibiotics have made the problem of drug resistance a difficult 
30 problem that currently plagues the regulation of enteric bacteria, as well as a thorny issue in the 
31 prevention and treatment of CRC. In this review, we elucidated the drug resistance of four 
32 colorectal cancer-associated enteric bacteria, namely Bacteroides fragilis, Fusobacterium 

33 nucleatum, Escherichia coli, and Enterococcus faecalis, and discussed the common and different 
34 aspects of the resistance mechanisms of the four intestinal bacteria, with the aim of providing a 
35 basis for the prevention and control of CRC.
36

37 Keywords colorectal cancer, Bacteroides fragilis, Fusobacterium nucleatum, enterotoxin-
38 producing Escherichia coli, Enterococcus faecalis, drug resistance mechanism
39

40 INTRODUCTION

41 In recent years, the incidence and mortality of colorectal cancer (CRC) have been high (Fig. 
42 1(Bray et al., 2018; Fitzmaurice et al., 2019; Kocarnik et al., 2022; Sung et al., 2021)), and the 
43 incidence cases of colorectal cancer worldwide have reached 1.833 million cases and 896,000 
44 deaths in 2017 alone, and the incidence cases of colorectal cancer in 2019 once rose to 2.17 
45 million cases and deaths of about 1.09 million cases. The incidence cases in 2020 will be about 
46 1.93 million cases and deaths will be about 940,000 cases. In April 2024, the International 
47 Agency for Research on Cancer (IARC) published the latest global cancer statistics for 2022 in 
48 the:CA: A Cancer Journal for Clinicians;, which showed that there were approximately 
49 1,926,000 colorectal cancer cases and 904,000 deaths in 2022(Hossain et al., 2022; Yuxin, 
50 2024). The pathogenesis and progression of colorectal cancer involve a number of mechanisms, 
51 such as abnormal cell proliferation and differentiation, invasion of neighboring tissues and 
52 distant metastasis, and a series of pathophysiological mechanisms, in which many genes and 
53 signaling pathways are involved in the pathogenesis and progression of colorectal cancer, but the 
54 etiology of colorectal cancer is unclear(Ionescu et al., 2023), this is probably the main reason for 
55 the high prevalence of this type of disease, as the unknown etiology limits the effectiveness of its 
56 prevention and treatment strategies, leading to high morbidity and mortality rates.
57 As early as the 1970s, studies have found that gut microbes are closely related to the 
58 development of CRC(Mentella et al., 2020). In recent years, the correlation between gut 
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59 microbiome profiles and colorectal adenoma-cancer sequences has been validated based on high-
60 throughput sequencing and population-based big data analysis, further confirming that changes 
61 in intestinal flora play an important role in colorectal cancer development and progression(Tilg 
62 et al., 2018). Among them, Bacteroides fragilis, Fusobacterium nucleatum, Escherichia coli, and 
63 Enterococcus faecalis are most closely associated with the development of CRC(Bonnet et al., 
64 2014; Feng et al., 2015; Nakatsu et al., 2015; Williamson et al., 2022), The ability to effectively 
65 regulate the abundance of Bacteroides fragilis, Fusobacterium nucleatum, Escherichia coli, and 
66 Enterococcus faecalis in the intestinal tract has become a key component in the prevention and 
67 control of CRC. Along with the long-term use and abuse of antibiotics, the problem of drug 
68 resistance has become a difficult problem in the regulation of intestinal flora, and also a thorny 
69 issue in the prevention and control of CRC. Currently, there are few reports on the drug 
70 resistance of the four CRC-associated intestinal flora and the mechanism of drug resistance(Liu 
71 et al., 2021). The aim of this review is to provide an in-depth discussion on the drug resistance of 
72 four colorectal cancer-associated enteric bacteria, namely Bacteroides fragilis, Fusobacterium 

73 nucleatum, Escherichia coli, and Enterococcus faecalis, as well as the mechanisms of drug 
74 resistance, with the aim of providing a rationale for the prevention and control of CRC.

75 SURVEY METHODOLOGY

76 This review is the result of a systematic literature search on PubMed and Web of Science. It 
77 aimed to find articles related to drug resistance as well as mechanisms of resistance in four 
78 colorectal cancer-associated intestinal flora, namely Bacteroides fragilis, Fusobacterium 

79 nucleatum, Escherichia coli, and Enterococcus faecalis, for the period up to 2024. Articles used 
80 different combinations of search terms including �colorectal cancer or colorectal tumor or CRC�, 
81 �(gastrointestinal microbiome or gut microbiota) and (colorectal cancer or colorectal tumor or 
82 CRC)�, �( Bacteroides fragilis or BF) and (colorectal cancer or colorectal tumor or CRC)�, 
83 �Escherichia coli and (colorectal cancer or colorectal tumor or CRC)�, �(Fusobacterium 

84 nucleatum or Fn) and (colorectal cancer or colorectal neoplasia or CRC)�, �Enterococcus 

85 faecalis and (colorectal cancer or colorectal neoplasia or CRC)�, �(Bacteroides fragilis or BF) 
86 and antibiotics�, �Escherichia coli and antibiotics�, �(Fusobacterium nucleatum or Fn) and 
87 antibiotics�, �Enterococcus faecalis and antibiotics�, �Bacteroides fragilis or BF) and drug 
88 resistance�, �Escherichia coli and drug resistance�, �(Fusobacterium nucleatum or Fn) and drug 
89 resistance�, �Escherichia coli and drug resistance�, �Enterococcus faecalis and drug resistance�, 
90 �(Bacteriophage fragilis or BF) and drug resistance mechanisms�, �Escherichia coli and 
91 resistance mechanisms�, �(Fusobacterium nucleatum or Fn) and resistance mechanisms�, and 
92 �Enterococcus faecalis and resistance mechanisms�. Meanwhile, we reviewed the main 
93 resistance mechanisms of the four colorectal cancer-associated intestinal flora, namely 
94 Bacteroides fragilis, Fusobacterium nucleatum, Escherichia coli, and Enterococcus faecalis, 
95 including mutation of resistance genes, transfer of horizontal genes, and resistance mechanisms 
96 of the exocytosis pump street. We used a search strategy to obtain the titles and abstracts of the 
97 relevant studies that we initially screened and retrieved the full text. We also reviewed relevant 
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98 references in the articles to ensure the comprehensiveness of the studies.

99 OVERVIEW OF COLORECTAL CANCER-ASSOCIATED ENTERIC BACTERIA

100 In recent years, Fusobacterium nucleatum(F. nucleatum), pathogenic Escherichia coli(E. coli), 
101 enterotoxigenic Bacteroides fragilis(B. fagilis), and Enterococcus faecalis(E. faecalis) have been 
102 most widely reported in colorectal cancer-associated enteric bacteria (Fig. 2(Dougherty & Jobin, 
103 2023; Song et al., 2020)). Epidemiologic studies have found a significant positive correlation 
104 between Fusobacterium nucleatum abundance and CRC stage, preferentially enriched in 
105 advanced colorectal cancer tissues(Dougherty & Jobin, 2023; Xu et al., 2021a). Numerous 
106 studies have shown that Fusobacterium nucleatum colonization promotes tumor growth in 
107 ApcMin/+ mice(Chen et al., 2020; Lin et al., 2020; Wang & Fang, 2023). Pathogenic 

108 Escherichia coli (pks+ E. coli) was more prevalent in stool or tissue samples from patients with 
109 colorectal cancer compared to patients with inflammatory bowel disease (IBD) or healthy 
110 controls(Dubinsky et al., 2020). Preclinical studies based on the ApcMin/+ mouse model 
111 suggest that ETBF colonization promotes colitis and distal colon tumor formation(Dougherty & 
112 Jobin, 2023; Song et al., 2020). Enterococcus faecalis is one of the most common commensal 
113 enterococci found in human feces, and studies have shown that it induces migration and invasion 
114 of colorectal cancer cells(Williamson et al., 2022)2

115 OVERVIEW OF DRUG RESISTANCE IN FOUR SPECIES OF ENTERIC BACTERIA

116 Antibiotics were first discovered in the 1920s, and the 1950s and 1960s were the golden years of 
117 antibiotic development (Fig. 3(Hutchings et al., 2019; Lewis, 2020)), when antibiotics were once 
118 the first choice in clinical protocols for dealing with harmful bacteria(Ramirez et al., 2020). 
119 Among them, research on four types of antibiotics related to colorectal cancer has never stopped, 
120 such as cephalosporin antibiotics, which have developed five generations of drugs with different 
121 antibacterial activities(2012b). However, with the emergence of antibiotic abuse and other 
122 phenomena in recent years, the reports of colorectal cancer-associated enteric bacteria resistance 
123 to antimicrobial drugs have gradually increased. Among the existing reports, the studies on the 
124 resistance mechanisms of the above four bacteria are mostly related to their drug-resistant genes. 
125 Based on this, this paper firstly summarizes the resistance profiles of the above four colorectal 
126 cancer-associated bacteria and the resistance mechanisms mediated by resistance genes, and the 
127 results are shown in Table 1(Alauzet et al., 2019; Barlaam et al., 2019; Bartha et al., 2011; Bush 
128 & Jacoby, 2010; Conceição et al., 2014; Edwards & Read, 2000; Eitel et al., 2013; Goldstein, 
129 2014; Grossman, 2016; He et al., 2016; Hiraga et al., 2008; Hussain et al., 2021; Huys et al., 
130 2004; Johnsen et al., 2017; Kierzkowska et al., 2019; Li et al., 2022; Naselli et al., 2022; Patel et 
131 al., 2023; Schwarz et al., 2021; Tamma et al., 2019; Voha et al., 2006; Wang et al., 2000; Yekani 
132 et al., 2022).
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133 Antibiotic Resistance of B. fagilis

134 Studies have shown that enterotoxigenic Bacteroides fragilis is resistant to currently used 
135 antimicrobial drugs to varying degrees(Yuran, 2020). Researchers conducted drug sensitivity 
136 tests on the isolated strains of Bacteroides fragilis, and the results showed that the resistance rate 
137 of Bacteroides fragilis to metronidazole was 1.2%; to chloramphenicol was 6.1%; and to 
138 carbapenems had reached 22.0%(Junhua, 2021). Metronidazole is one of the most commonly 
139 used antibiotics for the treatment of anaerobic infections, especially those of Mimicronium 
140 fragilis. Carriage of the nim gene is responsible for the development of resistance to 
141 metronidazole in this anaerobic bacterium as shown in Table 1.

142 Antibiotic Resistance of F. nucleatum

143 Carbapenems,  inhibitor combinations, metronidazole, clindamycin, and 
144 moxifloxacin are used in clinical practice for the treatment of infections caused by 
145 Fusobacterium(Shilnikova & Dmitrieva, 2015). Studies have demonstrated that F. nucleatum 
146 exhibits a high degree of resistance to tetracycline, doxycycline, metronidazole, clindamycin and 
147 erythromycin(Ardila et al., 2023; Ardila & Vivares-Builes, 2022; Bullman et al., 2017).

148 Antibiotic Resistance of E. coli

149 A resistance analysis based on isolates showed that E. coli was 85.0% resistant to ampicillin and 
150 55.1% resistant to ciprofloxacin, 53.9% resistant to ceftriaxone, 52.7% resistant to 
151 cotrimoxazole, and 52.1% resistant to levofloxacin(Zhen, 2018). Studies have shown that E. 

152 coli is resistant to the usual quinolone antibiotics(Fritzenwanker et al., 2018). This shows that 
153 E. coli is resistant to all common antibiotics. Neonatal Escherichia coli invasive isolates from 
154 developing countries have been reported to be up to 100% resistant to ampicillin and up to 90% 
155 resistant to gentamicin(Cole et al., 2019). In addition, the frequent use of antibiotics and their 
156 combination has led to the gradual development of multidrug resistance in E. coli, and the results 
157 of a multidrug-resistant E. coli showed that the prevalence of multidrug-resistant E. coli isolates 
158 was 57.3% (47/82), with 39 modes of resistance(Kallau et al., 2018).

159 Antibiotic Resistance of E. faecalis

160 The results of a clinical isolation of Enterococcus faecalis showed that among 74 clinical isolates 
161 of Enterococcus faecalis, the antibiotics with a high degree of resistance were mainly 
162 tetracycline and erythromycin, with a resistance rate of 89.2% and 73.0%, respectively; followed 
163 by quinolones ciprofloxacin and levofloxacin, with a resistance rate of 39.2% and 36.5%, 
164 respectively; once again, the high concentration of gentamicin has a resistance rate of 
165 32.4%(Hong, 2019). The results of the analysis showed that most of the Enterococcus faecalis 
166 isolates had a multidrug resistance pattern(Farman et al., 2019). Results of an antibiotic 
167 resistance study of Enterococcus faecalis isolated from clinical and commensal samples from 
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168 Iran showed a multidrug resistance rate of 69.4% in Enterococcus faecalis(Ghaziasgar et al., 
169 2019)2

170 ANTIBIOTIC RESISTANCE MECHANISMS IN FOUR INTESTINAL BACTERIA

171 With the extensive use of antibiotics and long-term use, many bacteria have gradually developed 
172 different degrees of resistance to different antibiotics, and their resistance mechanisms have also 
173 become complicated. Exploring the mechanism of bacterial resistance can help to improve 
174 antibiotics and develop new drugs, and this review will elaborate on the resistance mechanisms 
175 of four colorectal cancer-associated intestinal bacteria.

176 Antibiotic Resistance Mechanisms in B. fragilis

177 It has been reported that isolates of Bacteroides fragilis have multiple resistance determinants, 
178 such as multidrug efflux pumps, cfiA and nimB genes, and activating insertion 
179 sequences(Boyanova et al., 2019).

180 Drug-resistant gene-mediated resistancenim

181 Protein is a determinant of metronidazole resistance, and the nim gene encoding the nim protein 
182 is present on plasmids or chromosomes(Haggoud et al., 1994). Regarding the mechanism of how 
183 the nim gene causes bacterial resistance to metronidazole, experts and scholars believe that the 
184 nim protein, which has the properties of a nitroreductase enzyme, reduces metronidazole to a 
185 nontoxic aminopyrimidazole by transferring six of its own electrons to the nitro group of 
186 metronidazole, thus leading to the development of bacterial resistance to metronidazole(Deyan, 
187 2023). Resistance to carbapenems in isolates of Bacteroides fragilis is mainly due to the 
188 presence of the cfiA gene, which encodes a  (MBL) whose main mechanism 
189 of action is to inhibit  antibiotic activity by hydrolyzing the amide moiety of the 
190 lactam ring(Yekani et al., 2022), cfiA-positive strains usually show resistance to almost all 
191 lactam antibiotics(Wang et al., 2023). The results of the study showed that cfiA was present in 
192 all carbapenem-resistant isolates of Bacteroides fragilis(Gao et al., 2019). It has been shown that 
193 in most strains of B. fragilis, the cfiA gene is not always highly expressed and may be silenced, 
194 but is highly expressed when certain Insertion Sequence (IS) elements or some non-IS-mediated 
195 activation mechanism is mutated upstream of it, leading to high drug resistance in B. 

196 fragilis(Yekani et al., 2022). Among the  antibiotic resistance in B. fragilis mainly 
197 associated with the cepA gene and cfxA it carries,  S et al. showed that 55 out of 123 
198 (44.72%) BFG strains showed phenotypic resistance to ampicillin, and that 23 out of 55 

199 (41.82%) resistant strains carried the  (cepA and cfxA) resistance genes(Niest�pski et 

200 al., 2019). In addition, the researchers found the tetracycline resistance gene tetQ, macrolide and 
201 clindamycin resistance genes ermF in B. fragilis(Junhua, 2021). A genotyping study of clinical 
202 isolates of multidrug-resistant B. fragilis from India showed that these strains tended to express 
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203 combinations of two or more resistance genes, e.g., two different resistance genes were 
204 coexisting in 25.8% of the strains, three different resistance genes were coexisting in 33.8% of 
205 the strains, and four different resistance genes were coexisting in 3.2% of the strains, with 
206 combinations of ermF and cepA being more common. The combination of ermF and cepA was 
207 more common, while cfiA, ermF and cepA were more frequently present in strains containing 
208 three resistance genes(Colney et al., 2021). In summary, the major resistance genes in B. fragilis 
209 were nim, cfiA, cepA, cfxA, tetQ, and ermF; and the major genes that led to the development of 
210 multimandibular resistance in B. fragilis were the simultaneous presence of cfiA, ermF, and 
211 cepA in the strain.

212 Horizontal gene transfer-mediated drug resistance

213 Acquisition of mobile genetic elements such as plasmids carrying drug resistance genes by 
214 bacteria through horizontal gene transfer (HGT) is one of the main ways for them to develop 
215 drug resistance(San Millan, 2018). Studies have shown that antibiotic resistance genes can be 
216 transferred horizontally by a variety of mechanisms, the heaviest of which are transformation, 
217 transduction, and conjugation (Fig. 4)(McInnes et al., 2020).
218 Resistance gene transformation mainly refers to the uptake of naked DNA from the 
219 extracellular environment of B. fragilis by B. fragilis, which is then admixed into the host 
220 genome of the bacterium through homologous recombination(Johnston et al., 2014), As a result, 
221 B. fragilis has also acquired a corresponding antibiotic resistance. According to the study, the 
222 transformation mechanism is largely related to the genome of the recipient bacteria, and these 
223 genes or genomes are involved in exogenous DNA uptake and integration into the chromosome 
224 of the recipient bacteria(Michaelis & Grohmann, 2023). The discovery of vesicles solved the 
225 mystery in the researchers' minds, as free DNA is not stable and its time to remain intact outside 
226 the cell is short, which seems to limit the realization of transformation. The study suggests that 
227 the transport of drug-resistant genes between bacteria is also linked to membrane vesicles, and 
228 that certain drug-resistant genes or  may transfer material by fusing with 
229 cells(Moura de Sousa et al., 2023). Membrane vesicles are spherical structures of 20-250 nm. 
230 Membrane vesicles enable the transmission of drug-resistant genes by fusing with target 
231 cells(McInnes et al., 2020). In vitro production of membrane vesicles containing  by 
232 intrinsically drug-resistant B. fragilis, which then fuses with target cells that ingest the membrane 
233 vesicles to deliver the corresponding resistance genes(Stentz et al., 2015), This leads to the 
234 development of corresponding resistance in the cells of the target bacteria.
235 The mechanism of transduction of drug-resistant genes mainly refers to the transfer of drug-
236 resistant genes between bacteria via phages, which play a central role in mediating the horizontal 
237 transfer of drug-resistant genes(Chiang et al., 2019). According to reports, phage communities 
238 are widely present in the human gut(Shkoporov & Hill, 2019), which carry antibiotic resistance 
239 genes in large numbers(Debroas & Siguret, 2019). It was found that  served as a 
240 human gut-specific phage whose original host was B. fragilis, and the phage was also known as a 
241 mobile macrogenome in the human gut because of its richness in multiple antibiotic resistance 
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242 genes(Ogilvie et al., 2012). The abundance of these phages carrying antibiotic resistance genes 
243 increased significantly in the human gut after antibiotic treatment(McInnes et al., 2020).
244 The mechanism of conjugation of resistance genes mainly refers to the transfer of mobile 
245 genetic elements such as plasmids and integrative splicing elements from one bacterium to 
246 another(McInnes et al., 2020). Conjugative transposons (CTn) are segments of DNA, mobile 
247 genetic elements integrated into chromosomes, which are able to move the relevant resistance 
248 genes to new locations precisely in the same or different DNA molecules in certain bacterial 
249 cells, resulting in the production of the corresponding drug resistance(Boiten et al., 2023; 
250 Partridge et al., 2018). It has been reported that the major resistance genes associated with 
251 B.fragilis, such as cepA for cephalosporins, ermF for MLSB analogs, and tetQ for tetracyclines, 

252 are essentially carried on the chromosome by conjugation transposons(Sóki et al., 2016). Among 

253 them, Boiten KE et al. showed that resistance to tetracycline in B. fragilis increased from an 
254 initial 20% to 80% in 20 years, and that the tetQ gene located on the conjugation transposon may 
255 be the underlying mechanism(Boiten et al., 2023). It has been studied that transposons may also 
256 undergo mutations during the course of bacterial development, Tn5520 is a transposon that is 
257 mobile in B. fragilis. The Tn5520-like transposon in the isolate identified by Cao H et al. belongs 
258 to two new variants (Tn6995 and Tn6996), which differ from the original Tn5220 in that they 
259 have ermF genes, which lead to resistance to streptozotocin(Cao et al., 2022).

260 Overexpression of bacterial multidrug active efflux systems

261 Multidrug efflux pumps play an important role in the process of bacterial drug resistance, in 
262 which bacteria utilize efflux pumps to reduce the concentration of drugs in their own bodies and 
263 develop drug resistance(Huang et al., 2022). Existing studies have identified six drug efflux 
264 system superfamilies, namely, the major facilitator super family (MFS), small multidrug 
265 resistance (SMR), ATP binding cassette (ABC), resistance nodulation and cell division (RND), 
266 multidrug and toxic compound extrusion (MTCE), and resistance nodulation and cell division 
267 (RND), multidrug and toxic compound extrusion family (MATE), and proteobacterial 
268 antimicrobial compound efflux family (PACE)(Zhouxing, 2022). Among them, the PACE family 
269 proteins have a relatively narrow drug-substrate recognition spectrum, which mainly includes 
270 some synthetic biocides such as chlorhexidine and acridine yellow, whereas the transporter 
271 proteins from the RND superfamily recognize a large number of different antibiotics and 
272 biocides(Hassan et al., 2018). According to research, certain exocytosis systems consist of a 
273 series of transporter proteins that remove a variety of foreign substrates from the bacterial cell, 
274 thus reducing the effects of multiple drugs on the bacteria, and may be referred to as multidrug 
275 efflux pumps(Huang et al., 2022). The emergence of multidrug efflux pumps has been reported 
276 to be one of the major causes of multidrug resistance in B. fragilis, and RND-type efflux pumps 
277 and MATE-type efflux pumps are prevalent in wild-type strains of B. fragilis(Ghotaslou et al., 
278 2018b). Studies have shown that overexpression of multidrug efflux pumps is increasingly 
279 closely associated with bacterial drug resistance during clinical treatment of infections(Deyan, 
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280 2023), particularly for the emergence of multidrug-resistant B. fragilis: overexpression of the 
281 efflux pump plays an important role in the resistance of B. fragilis to antimicrobial agents such 
282 as  fluoroquinolones, tetracyclines, fusidic acid, neomycin, metronidazole, and other 
283 virulence compounds, including triclosan, sodium dodecyl sulfate (SDS), and cholestrol 
284 salts(Ghotaslou et al., 2018b)2

285 Mechanisms of Antibiotic Resistance In F. nucleatum

286 Mechanisms of ³-lactamase-mediated antibiotic resistance

287 It was shown that the FUS-1 enzyme found in Fusobacterium nucleatum (F. nucleatum) is the 
288 first of its class D  enzymes(Dupin et al., 2015). Class D  
289 genes, often identified as intrinsic resistance determinants in environmental bacteria, occur in 
290 removable genetic elements carried by clinically important pathogenic bacteria(Yoon & Jeong, 
291 2021), Reported FUS-1 genotype of F. nucleatum from a clinical isolate of human pathogenic F. 

292 nucleatum(Voha et al., 2006).

293 Other resistance mechanisms

294 Studies have shown that exposure to a particular antibiotic interferes with the susceptibility of F. 

295 nucleatum to several antibiotics and may reduce susceptibility to antibiotics with similar 
296 mechanisms of action or the same resistance mechanism(de Souza Filho et al., 2012). de Souza 
297 Filho JA et al. showed that selected  strains were also much less susceptible to 
298 chloramphenicol and metronidazole(de Souza Filho et al., 2012). However, it has been shown 
299 that while resistance to  antibiotics in most Gram-negative bacteria is mediated by 
300 lactamase production, other mechanisms of antibiotic resistance include changes in penicillin-
301 binding proteins, decreased permeability, or increased efflux pump activity(Huemer et al., 2020), 
302 Thus, in the study by de Souza Filho JA et al, it was again noted that no significant differences 
303 were observed in the antimicrobial drug susceptibility patterns of ampicillin and ampicillin-
304 sulbactam, which suggests that cross-resistance between  chloramphenicol, and 
305 metronidazole may indicate the induction of common mechanisms of resistance, such as changes 
306 in cell wall permeability(de Souza Filho et al., 2012).

307 Antibiotic Resistance Mechanisms in E. coli

308 Drug resistance mediated by mutations in drug resistance genes

309 First, it has been shown that mutations in drug-resistant genes are one of the main mechanisms 
310 for the development of drug resistance in E. coli, including spontaneous mutations, 
311 hypermutations, and adaptive mutations(Pulingam et al., 2022), Among them, Rodríguez-
312 Verdugo A et al. showed that spontaneous mutations can be driven by, for example, interfering 
313 with DNA replication, and that resistance to rifampicin in Escherichia coli is achieved by 
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314 mutations in the rpoB gene encoding an RNA polymerase(Rodríguez-Verdugo et al., 2013); 

315 hypermutation confers an evolutionary advantage to the bacterial species during adaptation to 
316 new environments or stressful conditions(Oliver & Mena, 2010); adaptive mutations refer to 
317 mutations at the transcriptional level that occur in the bacterial genome to adapt to changes in the 
318 survival environment, and when the environmental stress is lifted, the bacterial genome returns 

319 to its original condition(Fernández & Hancock, 2012; Pulingam et al., 2022).

320 According to the study, AmpR and AmpC are encoded by the ampR and ampC genes, 
321 respectively, suggesting that the ampR and ampC genes are related, and that AmpR serves as a 
322 transcriptional activator that binds to the cis-trans region upstream of the ampC gene promoter, 
323 thus acting to regulate AmpC(Philippon et al., 2022). Since the transcriptional regulator (AmpR) 
324 expressing AmpC is reportedly not present in E. coli, by what mechanism is the AmpC gene 
325 regulated? Haenni M et al. showed that there are five highly conserved mutations in the promoter 
326 of AmpC, while the mutations in the attenuator are much more frequent, which are mainly 
327 attributed to spontaneous mutations in the promoter and attenuator(Haenni et al., 2014; Kakoullis 
328 et al., 2021). This suggests to us that using promoter or attenuator mutation sites as drug targets 
329 may be an effective strategy to deal with AmpC-type E. coli drug resistance.
330 Hypermutagenic bacteria are microorganisms that have a stronger affinity for spontaneous 
331 mutations due to DNA repair defects or avoidance system errors(Oliver & Mena, 2010), 
332 resulting in greater adaptability to antibiotics. Hypermutagenic phenotypes of E. coli have been 
333 reported earlier(Denamur et al., 2002). According to studies, the mismatch repair system (MMR) 
334 is particularly important in the phenomenon of hypermutation, as it is not only one of the main 
335 causes of bacterial hypermutation, but also one of the main factors in the progression of 
336 colorectal cancer(Jin & Sinicrope, 2022). It has been shown that the most commonly mutated 
337 gene in strains with hypermutated phenotypes of E. coli is the mutHLS gene of the DNA methyl-
338 orientation MMR pathway(Ellington et al., 2006).
339 Adaptive mutation denotes a temporary increase in the viability of a bacterium when it is 
340 attacked by an antibiotic, mainly due to changes in the bacterial genome or protein expression as 
341 a result of other environmental factors to which the bacterium is subjected, such as the nutrient 
342 conditions to which it is subjected or the sub-inhibitory concentration of the antibiotic 

343 itself(Fernández & Hancock, 2012). Simply put, adaptive mutations may be the induced 

344 mechanism by which bacteria produce genetic variability in a stressful state(McKenzie et al., 
345 2000). It was shown that E. coli exposed to sublethal concentrations of streptomycin induced the 
346 expression of recA- and umuDC-independent mutant phenotypes on transfected M13 single-
347 stranded DNA(Pulingam et al., 2022).

348 ³-lactamase-mediated drug resistance

349 Another major mechanism by which E. coli develops resistance to   antibiotics is 
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350 mediated by  activity(Bush, 2018). The Ambler system based on sequence 
351 information indicates that  are classified into four distinct classes called A, B, C, 
352 and D(Tooke et al., 2019). Epidemiologic investigations have shown that the prevalent strains 
353 have different rates and mechanisms of resistance at different times, in different regions, and in 
354 different populations(Xing, 2020). Strains with class A extended-spectrum  
355 genotypes (AmpA-type  are the most common, and class C  (AmpC-
356 type  genotypes are highly resistant, which has attracted extensive interest from 
357 researchers(Poirel et al., 2018).
358 Class A beta-lactamases include penicillinase type 1 (PC1)(Tooke et al., 2019), TEM 
359 (named after Temoneira, the patient from whom the isolate originated)(Datta & Kontomichalou, 
360 1965), Sulfhydryl Variant (SHV)(Chaves et al., 2001), Cefotaximase (CTX-M) , (Bauernfeind et 
361 al., 1990)and Klebsiella pneumoniae carbapenemases (KPC) (Rapp & Urban, 2012), it has been 
362 shown that the key to the ability of these class A  to render antibiotics less effective 
363 is their ability to propagate on plasmids and other removable genetic elements in a range of 
364 Gram-negative bacteria, as well as the fact that they broaden their spectrum of activity as new 
365 substrates are discovered in the clinic, which is also referred to in clinical terms as �extended-
366 spectrum� phenotypic beta-lactamases (ESBLs)(Tooke et al., 2019). The production of extended-
367 spectrum  is the main reason for the resistance of Escherichia coli to  
368 antibiotics, extended-spectrum  are a class of extended-spectrum  that 
369 can hydrolyze penicillins, first to third generation cephalosporins, and monocyclic antibiotics 
370 and have their activities inhibited by extended-spectrum  inhibitors (e.g., clavulanic 
371 acid, sulbactam), etc. At present, the most reported extended-spectrum  are CTX-M-
372 type enzymes (which are divided into five major classes). The most widely reported extended-
373 spectrum  are CTX-M-type enzymes (which can be categorized into five major 
374 groups: CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9, and CTX-M-25)(Seo & Lee, 2021).
375 Finally, with the emergence of multidrug-resistant strains, some highly effective antibiotics 
376 have become �antibiotics of last resort�, with polymyxin E considered to be the last line of 
377 defense against multidrug-resistant and carbapenem-resistant Gram-negative bacteria, but in 
378 recent years there have been an increasing number of reports of colistin (polymyxin E) resistant 
379 bacteria(Hussein et al., 2021). Liu YY et al. revealed by whole plasmid sequencing that 
380 polymyxin E resistance may be caused by the plasmid-mediated mcr-1 gene(Liu et al., 2016). 
381 Liu YY et al. revealed by whole plasmid sequencing that colistin resistance may be caused by 
382 the plasmid-mediated mcr-1 gene(Dadashi et al., 2022). Tigecycline and colistin are the last 
383 antibiotics against carbapenem-resistant bacteria, and it was found that a plasmid encoding the 
384 colistin resistance gene, mcr-1, and the tigecycline-resistance enzyme, tet(X6), existed in the 
385 same strain of E. coli, and that the presence of the two plasmids made E. coli co-resistant to these 
386 two classes of antibiotics(Xu et al., 2021b). Researchers predicted that the emergence of 
387 plasmids co-integrating mcr-1 and tet(X4) would pose a significant threat to humans, Lu X et al. 
388 obtained seven evolutionary plasmids carrying mcr-1 and tet(X4) in vitro and further 
389 demonstrated that the plasmids could be inherited(Lu et al., 2021). Shafiq M et al. Detection of a 
390 broadly resistant E. coli isolate co-carrying plasmid-mediated blaNDM-5 and tet(X4) 
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391 genes(Shafiq et al., 2022).

392 Horizontal gene transfer-mediated drug resistance

393 Tigecycline is used as a broad-spectrum glycylcycline antibiotic for the treatment of E. coli 
394 infections, but tigecycline-resistant strains have emerged clinically. The mechanism of resistance 
395 involves flavin-dependent monooxygenase (tetX), and studies have shown that the emergence of 
396 tetX can increase resistance to tigecycline(Li et al., 2016). The main resistance mechanism is that 
397 tet(X3/X4) can directly inactivate tigecycline potency through hydroxylation of carbon 11a(Cui 
398 et al., 2020)2As tet(X3/X4) is present on mobile plasmids, this leads to horizontal transfer of 
399 resistance across strains and species. Studies suggest that high levels of plasmid-mediated 
400 tigecycline resistance genes tet(X3) and tet(X4) emerged in 2019, which poses a significant 
401 threat to global public health(Li et al., 2023).
402 It was shown that splicing plasmid-mediated horizontal gene transfer is the main 
403 mechanism mediating the spread of antibiotic resistance genes in E. coli(Mota-Bravo et al., 
404 2023). Minja CA et al. showed that out of 51 blaCTX-M-15 positive donor isolates, 45 
405 transferred the plasmid via splicing(Minja et al., 2021). It has been shown that E. coli performs 
406 horizontal gene transfer mainly through DNA released by cell lysis, and that it can transfer DNA 
407 to different bacteria by secreting vesicles loaded with plasmid DNA into the 
408 environment(Cooper et al., 2017; Maeusli et al., 2020).

409 Drug resistance in E. coli mediated by efflux pumps

410 As early as the 1990s, the drug-resistant nodular differentiation family (RND) was identified in 
411 E. coli and is represented by the AcrAB-TolC pump in E. coli (Fig. 5), which mediates bacterial 
412 multidrug resistance.The RND is located in the inner membrane, and as a transporter protein it 
413 has to interact with periplasmic articulation proteins and the outer membrane channel to excrete 
414 drugs directly across the inner, periplasmic, and outer membranes into the External(Li et al., 
415 2015).
416 In the presence of E. coli AcrAB-TolC, drug efflux through the cell membrane forms an 
417 effective permeability barrier due to the presence of low-permeability pore proteins (i.e., �slow 
418 pore proteins�), which are capable of generating multidrug resistance(Li et al., 2015). It was 
419 shown that E. coli AcrAB-TolC is regulated by the multiple antibiotic resistance manipulator 
420 Mar, which is expressed as two separate transcriptional units, one of which is MarRAB, 
421 controlled by MarO, which specifies a Mar deterrent (MarR), an activator (MarA) and a small 
422 protein (MarB), who are respectively encoded by marR, marA and marB, with MarB located 
423 downstream of MarA(Alekshun & Levy, 1999; Weston et al., 2018). Under normal conditions, 
424 MarR represses the MarRAB manipulator by binding to the two palindromic sequences of marO, 
425 but when antibiotics are encountered, repression of MarR is disrupted and transcription of 
426 marRAB occurs.It has been shown that de-repression of the Mar manipulator results in the 
427 expression of MarA: each regulator promoter has a binding site called a � marbox� binding site, 
428 MarA undergoes positive feedback when it binds to DNA sequences upstream of the marbox, the 
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429 repressor site of MarR, so this represses marR and allows marA to be activated. MarA 
430 expression promotes the activation of several genes in its regulator, including the AcrAB and 
431 TolC genes, which increases drug efflux and lead to multidrug resistance(Martin et al., 1999; 
432 Weston et al., 2018). It was shown that drug resistance aspects were affected in strains lacking 
433 the gene encoding the AcrAB-TolC multidrug efflux pump  or (Kobylka et al., 
434 2020).

435 Mechanisms Of antibiotic Resistance In E. faecalis

436 Drug resistance mediated by mutations in drug resistance genes

437 There are two mechanisms of resistance to  antibiotics in Enterococcus faecalis (E. 

438 faecalis): the production of  and the alteration of the affinity of penicillin-binding 
439 proteins for  antibiotics or the overproduction of specific penicillin-binding proteins, 
440 which, according to the study, are mediated by  in E. faecalis(Ono et al., 2005). 
441 Studies have shown that resistance to  antibiotics in E. faecalis can be mediated by the 
442 production of a non-inducible (Herrera-Hidalgo et al., 2023). The presence of 
443 penicillin-binding protein 4 (PBP4) in E. faecalis results in a low affinity for  
444 antibiotics, which leads to a certain degree of resistance to  antibiotics in E. 

445 faecalis(Urban-Chmiel et al., 2022)ÿand PBP4 is considered to be the key molecular basis for 
446 the resistance of E. faecalis to  antibiotics(Lazzaro et al., 2021). Epidemiologic data 
447 suggest that the progressive increase in resistance to  antibiotics in E. faecalis is 
448 attributable to overexpression of PBP4(Lazzaro et al., 2021). PBP4 belongs to the class of 
449 transpeptidases involved in the formation of the peptidoglycan layer; whereas  
450 antibiotics block peptidoglycan biosynthesis via PBP4 acylation(Moon et al., 2018; Timmler et 
451 al., 2022). Further studies revealed that PBP4-mediated resistance to  antibiotics in E. 

452 faecalis was associated with the CroRS two-component signaling system (TCS)(Kellogg et al., 
453 2017). Timmler SB et al. showed a correlation between PBP4 and the CroR system(Timmler et 
454 al., 2022)ÿthe exact mechanism of which requires further experimental confirmation.
455 Vancomycin is commonly used for severe drug-resistant Gram-positive bacterial 
456 infections(2012a)ÿand plays a twofold role in the adjuvant treatment of colorectal cancer: on 
457 the one hand, vancomycin depletes butyrate-producing bacteria in the gut, thereby enhancing the 
458 efficacy of radiotherapy; on the other hand, it inhibits the bacteria that convert primary bile acids 
459 into secondary bile acids, thereby enhancing the efficacy of anticancer therapy(Singh et al., 
460 2020; Yang et al., 2023). Since the first discovery of vancomycin-resistant E. faecalis clone 
461 sequence type 796 (ST796) in Australia in 2011, drug-resistant strains are now widely reported 
462 worldwide(Li et al., 2022). A total of nine vancomycin resistance cluster genes of the Van family 
463 have been identified, with VanA and VanB being the most common among clinical isolates(Raza 
464 et al., 2018; Zalipour et al., 2019). Taji A et al. showed that vanA gene was detected in 37.7% of 
465 E. faecalis isolates(Taji et al., 2019). Strateva T et al. tested and characterized an isolated strain 
466 of E. faecalis and found that the vanA gene cluster was on a segregating overlapping cluster with 
467 two repetitive IS1216E sequences around its flanks, followed by splicing experiments by filtered 
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468 mating assay using E. faecalis JH2-2 as a receptor strain, which showed unsuccessful results in 
469 terms of transferring vancomycin resistance, suggesting that the The possible location of the 
470 vanA gene cluster at the chromosomal position(Strateva et al., 2019). According to the study, the 
471 Tn1549 transposon carries the vanB manipulator on it(Simar et al., 2023). Although there are 
472 fewer reports on VanB, it has attracted much attention from scholars because of its high 
473 detection rate(Sadowy, 2021).
474 The main mechanism of resistance to linezolid in enterococci involves the G2576T 

475 mutation in the 23S rRNA gene(Rodríguez-Noriega et al., 2020)ÿand other mechanisms are 

476 mutations in the L3 and L4 ribosomal proteins as well as in two plasmid vector genes (cfr and 
477 optrA)(Arias & Murray, 2012). According to research, optRA is located in a new gene cluster 
478 containing the chloramphenicol output gene fexA. The protein product of optRA belongs to the 
479 ATP binding cassette (ABC) - F protein superfamily, and its resistance is mediated by ribosome 
480 protection. Compared with other gene determinants such as cfr or 23S rRNA and ribosomal 
481 protein mutations, mutations in optrA are a common cause of oxazolidinone resistance in E. 

482 faecalis(Roy et al., 2020). The research results of Deshpande LM et al. showed that isolates with 
483 chromosome localization of optrA exhibited different array structures. The flank regions of the 
484 optrA arrays of E. faecalis from Thailand and isolates from France were different. From the 
485 results of gene array analysis, it can be seen that with the continuous spread of optrA, a large 
486 degree of gene rearrangement is occurring, and the core genetic elements remain similar. 
487 However, in isolates from different geographical locations, their positions in the array are not the 
488 same(Deshpande et al., 2018). Therefore, the monitoring of the flanking regions of the optrA 
489 array is of great clinical importance.

490 Horizontal gene transfer-mediated drug resistance

491 The genome of E. faecalis was found to be highly plastic, and resistance to other antibiotics, 
492 such as high levels of aminoglycoside resistance, high levels of ampicillin resistance, and 
493 vancomycin resistance, is readily acquired through mutations in resistance genes or through 

494 horizontal transfer of genetic elements conferring resistance determinants(García-Solache & 

495 Rice, 2019). It was confirmed that transposons constitute the majority of the mobile genetic 
496 elements present in the genome of E. faecalis, and that Tn916, as the first confirmed splice 
497 transposon, carries tetracycline resistance and is able to be transferred to the chromosome of the 
498 recipient cell or to a splice plasmid by transposition, and that transposon incorporation into the 

499 splice plasmid increases the frequency of transfer(García-Solache & Rice, 2019).

500 Data from the China Antimicrobial Drug Surveillance Network (CDSN) showed that the 
501 high-level gentamicin resistance rate in E. faecalis ranged from 28.8% to 61.4% from 2005 to 
502 2017, and was mainly mediated by the bifunctional enzyme encoded by the fused aac(6')-aph(2") 
503 gene in E. faecalis, 6'-acetyltransferase-2"-phosphotransferase(Ferretti et al., 1986). The aac(6')-
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504 aph(2") gene is plasmid-borne in most cases and is located on the E. faecalis Tn5281-like 
505 transposon(Zhang et al., 2018). The non-truncated form of Tn5281 consists of a central region 
506 containing the aac(6')-aph(2") gene flanked by inserted inverted repeats of sequence IS256, 
507 whereas the truncated form is the aac(6')-aph(2") 3'- or 5'-end, or both lacking IS256(Zhang et 
508 al., 2018). Daikos GL et al. showed that 24 out of 30 isolates containing the truncated form 
509 transferred gentamicin resistance, while only 3 out of 34 isolates containing the nontruncated 
510 form transferred gentamicin resistance, suggesting that the truncated variant is mobile and more 
511 effective in transferring gentamicin resistance(Daikos et al., 2003).
512 It has been shown that the bacterial type IV secretion systems (T4SSs) are a functionally 
513 diverse translocation superfamily, and that one of its major functional subfamilies is the splicing 
514 system that mediates DNA transfer between bacteria, and that the splicing system can propagate 
515 removable genetic elements that typically encode bacterial resistance to antibiotics(Costa et al., 
516 2021). The transferable plasmids of multidrug-resistant E. faecalis are T4SS with a functional 
517 plasmid-encoded (PE-T4SS) and a chromosome-encoded T4SS (CE-T4SS); compared with PE-
518 T4SS, CE-T4SS exhibits different characteristics in protein structure and can mediate large 
519 genome-wide gene transfer(Hua et al., 2022). The study by Hua M et al. identified a widely 
520 distributed CE-T4SS in E. faecalis, and to better understand the process of gene transfer, the 
521 researchers analyzed the oriT element(Hua et al., 2022). At the initiation site of horizontal gene 
522 transfer, the researchers identified four putative orit with reverse complementary structural 
523 domains, orit1-orit4, and hypothesized experimentally that oriT4 is the required initiation site for 
524 horizontal gene transfer mediated by CE-T4SS in D5165. The investigators selected CE-T4SS+ 
525 reference strain ATCC 19433 as a donor and a popular erythromycin-resistant ST179 strain, 
526 S6008, as a recipient, suggesting that CE-T4SS induces gene transfer in the host(Hua et al., 
527 2022).

528 Multidrug efflux system-mediated drug resistance

529 EfrAB, a heterodimeric multidrug ATP-binding cassette (ABC efflux system family) transporter 
530 protein, causes endogenous resistance to antibiotics including fluoroquinolones in Enterococcus 
531 spp.(Shiadeh et al., 2020). Shiadeh SMJ et al. All ciprofloxacin-resistant E. faecalis isolates 
532 showed varying degrees of overexpression of efrA and efrB genes(Shiadeh et al., 2020). A study 
533 by Esfahani S et al. found no significant relationship between the upregulation of the expression 
534 of the efflux pump and the level of minimal inhibitory concentration, and the researchers found 
535 isolates without any mutations in the expression of efflux genes but with drug resistance, and 
536 furthermore, 23 homologs of the ABC family of transporter proteins were detected in E. faecalis 
537 isolates(Esfahani et al., 2020). The above evidence suggests that the development of 
538 fluoroquinolone resistance may be the result of ABC family transporter proteins but not 
539 necessarily EfrA or EfrB.
540 Tetracycline is one of the most commonly used broad-spectrum antibiotics, and many 
541 bacteria have developed resistance to this antibiotic, the most common mechanism involves 
542 membrane-associated proteins (TetA), which exclude the antibiotic from the bacterial cell before 
543 inhibiting peptide elongation(Ramos et al., 2005). According to research reports, tetracycline 
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544 repressor protein (TetR) family proteins affect the tolerance of E. faecalis to tetracycline by 
545 controlling the expression of tetracycline efflux pump genes, such as the regulation of efflux 
546 pumps by the TetA gene(Gu et al., 2020). TetR proteins control the expression of the tet gene, 
547 the product of which confers bacterial resistance to tetracycline(Ramos et al., 2005). Research 
548 has shown that tetR and tetA are adjacent and oriented differently, and their gene products tightly 
549 control the expression of tetA and tetR(Ramos et al., 2005), TetR homodimers block the 
550 promoter of efflux pump genes by binding to repeat palindromic sequences in the upstream gene 
551 intergenic region using helix  to  In the presence of tetracycline, TetR homodimers interact 
552 with tetracycline and magnesium to form protein ligand complexes, which cause conformational 
553 changes in the TetR ligand complex, leading to the release of TetR homodimers from the 
554 promoter of efflux pump genes. This separation activates the expression of tetracycline related 
555 efflux pumps and squeezes tetracycline out of bacterial cells(Gu et al., 2020).

556 COMMONALITIES AND DIFFERENCES IN DRUG RESISTANCE

557 Consistency of Resistance Mechanisms of the Same Bacteria to Different Types of Antibiotics

558 Studies have shown that the same bacteria can be resistant to multiple antibiotics at the same 
559 time; are the resistance mechanisms similar? The resistance mechanisms of B. fragilis to 
560 carbapenems, tetracyclines and metronidazole are all mediated by efflux pumps(Ghotaslou et al., 
561 2018a; Yekani et al., 2022); the resistance of F. nucleatum to  antibiotics and 
562 chloramphenicol is mediated by the class D  FUS-1(Dupin et al., 2015)and the 
563 acetyltransferase (CAT)(de Souza Filho et al., 2012), respectively, and the associated proteases 
564 are the common mechanisms of resistance in this group of bacteria. The resistance of E. coli to 
565 rifampicin and  antibiotics is due to mutations in the rpoB and ampC genes, 
566 respectively(Kakoullis et al., 2021), it can be seen that mutations in resistance genes are the main 
567 resistance mechanism of E. coli; In previous studies, E. faecalis has developed varying degrees 
568 of resistance to  antibiotics, linezolid, and vancomycin. The resistance mechanisms are 
569 attributed to overexpression of the  antibiotic binding protein PBP4(Lazzaro et al., 
570 2021), the G2576T mutation in the 23S rRNA gene and mutations in the L3 and L4 ribosomal 

571 proteins as well as in two plasmid-borne genes (cfr and optrA)(Rodríguez-Noriega et al., 2020), 

572 and the vanA gene cluster located at chromosomal location in E. faecalis mediated vancomycin 
573 resistance(Strateva et al., 2019), which shows that resistance gene mutations are a common 
574 resistance mechanism in E. faecalis during the development of resistance to different antibiotics.

575 Different Bacteria Have Different Resistance Mechanisms To The Same Antibiotics

576 Are there similarities in the resistance mechanisms of different bacteria facing the same 
577 antibiotic? Both E. coli and B. fragilis are resistant to carbapenem antibiotics, and E. coli 
578 resistance to carbapenem antibiotics is due to carbapenemase production(Nordmann et al., 2011); 
579 whereas B. fragilis resistance to carbapenem antibiotics is mainly due to increased expression of 
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580 efflux pumps(Yekani et al., 2022). The increase in drug resistance of B. fragilis is mainly due to 
581 the horizontal transfer of tetracycline resistance genes(Boiten et al., 2023)ÿwhereas, for E. coli, 
582 flavin-dependent monooxygenase (tetX) leads to an increase in tigecycline resistance(Li et al., 
583 2016)ÿthus, it can be seen that B. fragilis and E. coli have a certain degree of resistance to 
584 either tigecycline or tetracycline, but are not the same in terms of the mechanism of resistance.

585 SUMMARY AND OUTLOOK

586 Colorectal cancer has been one of the threats to human health in the past time, and the intestinal 
587 microbiota has acted as an important environmental factor influencing the occurrence and 
588 development of colorectal cancer in recent years. Certain microorganisms in the human gut 
589 microbiota are pathogenic microorganisms that contribute to the development and progression of 
590 colorectal cancer, such as B. fragilis, F. nucleatum, pathogenic E. coli, and E. faecalis. Clinical 
591 administration of antibiotics is the most common approach for the treatment of these bacteria, 
592 but with the prolonged use of a particular antibiotic or the evolution of pathogenic 
593 microorganisms, resistance has emerged in reports of colorectal cancer-associated flora from all 
594 over the globe, and it can be seen that the emergence of drug-resistant flora does not seem to be 
595 accidental, but rather systematic. The isolates of drug-resistant strains of colorectal cancer-
596 associated flora as well as the detection rate of drug-resistant genes are also described in this 
597 review.
598 In this review we describe the content of B. fragilis, F. nucleatum, E. coli and E. faecalis 
599 associated with colorectal cancer and the antibiotic use associated with them; antibiotic-resistant 
600 isolates found in various parts of the globe as well as detection of resistance genes, it can be seen 
601 that B. fragilis as well as F. nucleatum are highly resistant to metronidazole and carbapenem 
602 antibiotics, among them, B. fragilis is more commonly used in clinical practice with 
603 metronidazole, so most of the detected resistant isolates are related to metronidazole resistance, 
604 F. nucleatum has a higher resistance rate to erythromycin, while research reports show that E. 

605 coli has developed varying degrees of resistance to many antibiotics, E. faecalis has high 
606 resistance to clindamycin in lincosamide antibiotics, and these four bacteria have varying 
607 degrees of resistance to  antibiotics. Therefore, these types of colorectal cancer-related 
608 microbiota are widely present around the world, and their inherent or environmental resistance 
609 cannot be ignored. It is necessary to fully understand their resistance characteristics and provide 
610 more effective prevention and treatment strategies.
611 Secondly, in this review, we describe in detail the unique resistance mechanisms of B. 

612 fragilis, F. nucleatum, E. coli, and E. faecalis, including the resistance mechanisms associated 
613 with  antibiotics, horizontal gene transfer, changes in the expression of active efflux 
614 mechanisms, and changes in the expression of their unique resistance genes. It can be seen that 
615 the four species of bacteria in the resistance mechanism have different mechanisms of 
616 expression, but in general, the effect of drugs on bacteria and bring resistance is not simply a 
617 �behavior�, nor is it simply caused by a gene change, but rather a systematic and complex 
618 linkage changes, some of the specific changes in the mechanism of the change has not been 
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619 thoroughly studied until now. Some of the specific mechanisms of change have not been fully 
620 investigated, but based on our summary of the unique resistance mechanisms of several bacteria, 
621 it is possible to better utilize and manage such antimicrobials. Among the mechanisms of 
622 resistance that we have not described in detail, there are also many that are highly instructive for 
623 the clinical use of antimicrobials, which will increase the chances of treating and preventing 
624 colorectal cancer, and better management of antibiotic exposure and disease prevention in the 
625 environment will undoubtedly reduce the global spread of these resistant bacteria, which will 
626 have far-reaching implications for human health and survival.
627 Finally, we conducted a deeper exploration of the relationship between bacteria and 
628 antibiotics based on the resistance mechanisms of the four bacteria reported in the research. We 
629 discussed whether the resistance mechanisms of different bacteria to the same antibiotic are the 
630 same. Firstly, we found that the four bacteria associated with colorectal cancer have the same 
631 resistance mechanisms to the same antibiotic, indicating that antibiotics have developed the same 
632 resistance in multiple bacteria. We should start from the innovation of antibiotics themselves, 
633 such as clinical combination therapy of  antibiotics and  enzyme inhibitors, to 
634 enhance the efficacy of antibiotics; Secondly, it was found that there are different resistance 
635 mechanisms to the same antibiotic between B. fragile and E. coli associated with colorectal 
636 cancer. This may be related to the antibacterial mechanism of antibiotics against bacteria. 
637 Therefore, starting from the bacteria themselves, antibiotics can be used to target a certain 
638 structure of the bacteria, such as the cell wall or membrane, and relevant drugs can be used to 
639 enhance the antibacterial effect. We also explored from the perspective of the same type of 
640 bacteria that exhibit the same resistance mechanism when facing different antibiotics. This 
641 phenomenon was observed in all four bacteria associated with colorectal cancer, indicating that 
642 bacteria have a universal resistance mechanism to different types of antibiotics. This may lead to 
643 the bacteria developing the ability to resist antibiotics in certain aspects, which may result in the 
644 widespread spread of resistant strains and high drug resistance. At present, there is a trend of 
645 increasing drug resistance in the gut microbiota associated with colorectal cancer. In order to 
646 better treat this life-threatening disease, significant changes should be made in the field of 
647 microbiology. Modern medicine should focus on targeted antibiotic development or combination 
648 therapy for bacteria in the research and improvement of antibacterial drugs, making efforts to 
649 protect human health.
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Figure 1
Changes in global colorectal cancer incidence and deaths, 2017-2022
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Figure 2
Literature reports of intestinal ûora associated with colorectal cancer in the last decade
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Figure 3
Timeline of antibiotic development
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Figure 4
Mechanisms of horizontal gene transfer-mediated drug resistance
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Figure 5
Mechanism of E. coli AcrAB-TolC-mediated eÿux
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Table 1(on next page)

Resistance proûles and resistance mechanisms of four colorectal cancer-associated
enteric bacteria
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1 Table 1:

2 Resistance profiles and resistance mechanisms of four colorectal cancer-associated enteric 

3 bacteria

Bacteria Drug class
Major drug 
resistance

genes

Resistance 
mechanisms

References

enterotoxigenic 
Bacteroides 

fragilis

Carbapenems cfiA The upstream 
region of the 
cfiA gene 
undergoes 
mutations 
through 
insertion 
sequences 
(ISs) elements, 
as ISs induce 
transcription of 
cfiA.

(Alauzet et al., 
2019)

Metronidazole nim nimA-positive 
strains mainly 
reduce 5-Ni to 
its amine 
derivatives, 
thus avoiding 
the formation 
of nitroso 
groups .

(Edwards & 
Read, 2000; 
Yekani et al., 
2022)

Tetracycline tetQ1tetX The tetX gene 
encodes an 
oxidoreductase 
that inactivates 
tetracycline 
under aerobic 
conditions.

(Bartha et al., 
2011)

4

5

6

7
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9 Table 1. (Contd.)

Bacteria Drug class
Major drug 
resistance

genes

Resistance 
mechanisms

References

Clindamycin ermB1

ermF1mefA

erm genetically 
determined 
macrolide 
lincosamide 
streptavidin-type 
methylase, which 
alters the ribosome 
and prevents 
clindamycin from 
binding efficiently to 
the ribosome.

(Johnsen et al., 
2017; 
Kierzkowska 
et al., 2019)

Lincomycin linA linA is an O-
nucleotide 
transferase located in 
NBU2, which is 
mainly mobilized 
into the B. fragilis 
receptor by proteins 
encoded on coupled 
transposons, leading 
to drug resistance.

(Eitel et al., 
2013; Wang et 
al., 2000)

Fusobacterium 

nucleatum

³-lactams blaFUS-1 blaFUS-1 hydrolyzes 
substrates through 
the formation of 
acylases from the 
active-site serine.

(Bush & 
Jacoby, 2010; 
Voha et al., 
2006)

pathogenic 

Escherichia 

coli (E.coli)

³-lactams CTX-M Can encode ultra-
broad-spectrum ³-
lactamases, which 
show resistance to ³-
lactam antibiotics 
through hydrolysis.

(Hussain et al., 
2021; Naselli 
et al., 2022)
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Bacteria Drug class
Major drug 
resistance

genes

Resistance 
mechanisms

References

Rifampicin rpoB Rifampicin binds to 
the beta subunit of 
RNA polymerase to 
inhibit transcription, 
while substitution in 
rpoB inhibits 
rifampicin binding.

(Goldstein, 
2014; Patel 
et al., 2023)

ampC Firstly, the basic 
ampC ³-lactase is 
produced, and then 
the antibiotic 
accumulates cell wall 
degradation products 
and competes with 
UDP-N-acetylpeptide 
for binding to AmpR. 
As the binding of 
UDP-N-acetylpeptide 
to AmpR decreases, 
AmpR undergoes 
conformational 
changes, leading to an 
increase in ampC 
production.

(Tamma et 
al., 2019)

Tetracyclines 
(Tigecycline)

tet(X) Covalent inactivation 
of all tetracyclines is 
achieved by the 
addition of hydroxyl 
groups at position C-
11a, located between 
the C and B rings of 
the tetracycline core.

(Grossman, 
2016)
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Bacteria Drug class
Major drug 
resistance

genes

Resistance 
mechanisms
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PolymyxinE mcr-1 The mcr-1 gene 
encodes a 
phosphoethanolamine 
transferase, which is 
responsible for 
modifying the lipid A 
portion of LPS by the 
addition of 
phosphoethanolamine, 
thereby decreasing its 
binding affinity for 
mucin.

(Barlaam et al., 
2019)

Enterococcus 

faecalis

³-lactams pbp4 Reduced affinity of 
penicillin for pbp4 
occurs through the 
production of ³-
lactamases that can 
hydrolyze and 
inactivate the drug or 
because of point 
mutations in the 
penicillin-binding 
domain.

(Conceição et 

al., 2014; 

Hiraga et al., 

2008)

Oxazolidinones 

(Linezolid)

optrA The optrA gene 

encodes the ABC-F 

protein, which 

generates resistance 

through ribosomal 

protection, 

specifically, active 

translocation of the 

antibiotic from its 

ribosomal target site.

(He et al., 

2016; Schwarz 

et al., 2021)
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Bacteria Drug class

Major drug 

resistance

genes

Resistance 

mechanisms
References

Tigecycline tetM, tetO, tetS Competitively binds 

to bacterial ribosomes 

and interferes with 

tetracycline-ribosome 

binding. Confers 

resistance by 

ribosome protection 

(RP).

(Huys et al., 

2004)

16
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