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ABSTRACT

Fermentation of rice can enhance the release of bioactive ingredients and generate
diverse microbial metabolites contributing to various functional properties. Previous
studies have demonstrated that the mixture of selected microorganisms called “De-
E11 starter,” comprised of Rhizopus oryzae, Saccharomyces cerevisiae, Saccharomy-
copsis fibuligera and Pediococcus pentosaceus yields fermented unpolished black rice
sap (FUBRS) with a melanogenesis inhibition activity. To further understand this
fermentation process, we characterized FUBRS and profiled its metabolite composition
in comparison to unfermented unpolished black rice (Un-FR), recognizing the sub-
stantial enzymatic activity of FUBRS microorganisms and their potential for extensive
metabolite production. The results indicated that fermentation decreased the pH,
increased total acid content and elevated reducing sugar content. Moreover, significant
alterations in phytochemical profiles were observed in FUBRS. In terms of biological
activity, fermentation significantly enhanced antioxidant and tyrosinase/melanogenesis
inhibitory activities. Untargeted metabolomic analysis utilizing orthogonal projections
to latent structures discriminant analysis (OPLS-DA) revealed a clear differentiation
in metabolite profiles between FUBRS and Un-FR. Volcano plot analysis (>2-fold
change) indicated a general increase in metabolites, including sugars, phenolic acids,
organic acids, and fatty acids, after fermentation. Quantitative analysis confirmed the
accumulation of p-hydroxybenzoic acid, lactic acid, acetic acid, and succinic acid,
that are all known melanogenesis inhibitors. This study provides valuable insights
into the characteristics and metabolite profile of FUBRS, and informing strategies for
optimizing the fermentation processes to enhance the production of melanogenesis and
tyrosinase inhibitory compounds, and identifying key metabolites as critical biomarkers
for monitoring and controlling these processes. Together, they will facilitate the efficient
and reproducible generation of high-efficacy ingredients for the cosmetic, nutraceutical,
and potentially pharmaceutical industries.
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INTRODUCTION

Fermentation has been associated with nutrition-promoting effects for food and is also
beneficial for producing or increasing the liberation and bioavailability of phytochemical
components in food materials (Annunziata et al., 2020). Fermentation is a process in
which large molecules are catabolized into other, typically simpler, compounds by
microorganisms, leading to marked biochemical changes in the substrate composition. In
addition, the microbial strains used in the fermentation process also produce additional,
often beneficial, compounds, such as proteins, amino acids, antibiotics, probiotics, and
antioxidants, which can result in an increased biological activity and bioavailability (Sharma
et al., 2020). Hence, the microorganism composition plays a significant if not crucial role in
the fermentation process. Besides microorganisms, raw materials also influence the quality
of fermented products.

Rice (Oryza sativa L) is the pivotal staple food in several countries, especially in Asia. The
varieties of rice are usually divided into white rice and pigmented rice. Recently, pigmented
rice varieties have received increasing amounts of attention from consumers because of
their higher beneficial nutritional and functional attributes than white rice (Samyor, Das ¢
Deka, 2017) and, especially, their higher level of phytochemical compounds (Samyor, Das
¢ Deka, 2017). Thus, the use of pigmented rice as a raw material for fermentation provides
a variety of fermented rice products that are enriched in nutrients with potential benefits
for physiological activities.

The fermented rice sap from various pigmented rice cultivars, especially fermented
purple plain rice, showed a high free radical scavenging activity, as well as tyrosinase
and matrix metalloprotenase-2 (MMP-2) inhibition activities (Ruksiriwanich et al.,
2011). Likewise, solid-state fermentation of black rice bran with Aspergillus awamori
and Aspergillus oryzae increased the level of total phenolic compounds and the antioxidant
and tyrosinase inhibitory activities compared to the unfermented rice (Shin et al., 2019).
Earlier research showed that the fermented unpolished black rice sap (FUBRS) obtained
from unpolished black rice (UBR) and a specific mix of microbes called “De-E11 starter”
(which includes Rhizopus oryzae E1101, Saccharomyces cerevisiae E1103, Saccharomycopsis
fibuligera E1102, and Pediococcus pentosaceus E1104), which was isolated from the selected
loogpang E11, reduced melanin production, while UBR increased melanin levels in B16F10
melanoma cells compared to untreated cells. Moreover, FUBRS was linked to a decreased
tyrosinase activity, an essential enzyme in melanogenesis, and the decreased expression level
of the melanogenesis related protein; whereas the unfermented rice (Un-FR) did not show
any melanogenesis inhibition or tyrosinase inhibitory activity (Sangkaew ¢ Yompakdee,
2020). In addition, the metaproteomic and metatranscriptomic analyses revealed that the
defined microorganisms in FUBRS produced various enzymes resulting in obtaining many
metabolites in FUBRS (Sangkaew et al., 2020; Sangkaew et al., 2023).

The extensive enzymatic activity of microorganisms producing FUBRS, as demonstrated
in earlier studies, underscores their potential to generate a diverse array of metabolites.
However, the specific metabolites responsible for FUBRS’s biological activity remain largely
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uncharacterized, a knowledge gap this study sought to fill through detailed metabolomic
analysis.

Metabolomics analysis has emerged as a powerful and increasingly indispensable tool
for the comprehensive qualitative and quantitative profiling of metabolite concentrations,
encompassing such diverse biochemical classes as amino acids, lipids, and phytochemicals.
Leveraging advanced analytical platforms, including 'H-NMR, GC-MS, and LC-MS,
metabolomics enables the systematic investigation of the dynamic metabolite landscape
within biological systems (Fiehn, 2001). Especially in the case of fermentation processes,
metabolites may also act as nutrients that directly affect the growth of microorganisms and
may be related to various health benefits arising from the fermented products (Tripathi
& Giri, 2014). This study, therefore utilized metabolomics analysis to investigate the
characteristic metabolite profile of FUBRS and pinpoint specific compounds correlating
with its melanogenesis and/or tyrosinase inhibitory effects. The identified metabolites can
serve as critical biomarkers for monitoring and controlling the rice fermentation process,
facilitating the efficient and reproducible production of ingredients with high efficacy for
applications in the cosmetic, nutraceutical, or potentially pharmaceutical industries.

MATERIALS AND METHODS

Materials & chemicals

The microorganisms in the defined De-E11 microbial starter were obtained from the
Department of Microbiology, Faculty of Science, Chulalongkorn University. All media
for cell growth, such as Dulbecco’s modified Eagle’s medium (DMEM) high glucose,
fetal bovine serum (FBS), and trypsin-EDTA (0.25%) were purchased from Gibco-BRL
Inc., USA. The high-performance liquid chromatography (HPLC)-grade chemicals were
purchased from Merck, Germany. Folin-Ciocalteu reagent, 2,2-diphenyl-1-picrylhydrazyl
(DPPH), 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt
(ABTS), and mushroom tyrosinase enzyme were purchased from Sigma-Aldrich, USA.
Kojic acid and 1-3,4-dihydroxyphenylalanine (L-DOPA) were purchased from Tokyo
Chemical Industry Co., Ltd., Japan. The UBR was purchased from L.H. Rice International
Co., Ltd. (Nakhon Pathom, Thailand).

Sample preparations

The sample preparation was performed as previously described (Sangkaew ¢ Yompakdee,
2020). Briefly, 20 g of UBR was added to 40 mL of distilled water and autoclaved at
121 °C for 15 min. After being cooled, the defined De-E11 microbial starter, comprised
of R. oryzae E1101, S. cerevisiae E1103, S. fibuligera E1102, and P. pentosaceus E1104 at

1 x 1042 x 104 1 x 10, and 3 x 10® colony forming units (CFU)/g, respectively, was
mixed with cooked UBR and incubated at 30 °C for 12 days in a closed sterilized bottle.
The fermented liquid was then collected (called FUBRS). For the Un-FR, 20 g of UBR was
mixed with 40 mL of distilled water and boiled at 80 °C for 15 min, then centrifuged as
above and the supernatant (Un-FR) was harvested. Both the Un-FR and FUBRS samples
were then evaporated, resuspended in 20 mL of distilled water, and kept at —20 °C for
further study.
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Physicochemical analysis

The pH of the samples was measured using a pH meter (S-20K; Mettler-Toledo, Greifensee,
Switzerland). The titratable acidity was measured by titrating the samples with 0.1 N NaOH
using phenolphthalein as the color indicator (Woldemariam et al., 2014). The total reducing
sugars was measured using the 3,5-dinitro salicylic acid (DNS) method and expressed as
mg glucose equivalents per mL sample (mg GE/mL of sample) (Zeng et al., 2017).

Determination of total phytochemical contents
Total phenolic content

The total phenolic content (TPC) was measured by the Folin—Ciocalteu method as adapted
from Tawaha et al. (2007). Briefly, 18 wL of sample and 36 nL of 10% (v/v) Folin-Ciocaltue
reagent were mixed and incubated at room temperature for 5 min. Next, 146 wL of 350
mM Na,CO;5 was added, incubated for 30 min, and then the absorbance was measured
at 765 nm (Ayes). The results are expressed as mg of gallic acid per mL (mg GAE/mL) of
sample.

Total flavonoid content

The total flavonoid content (TFC) was measured by the aluminium chloride (AICl3)
colorimetric method, as adapted from Tian et al. (2011). Briefly, 12.5 wL of sample and
7.5 uL of 5% (w/v) NaNO3 were mixed and incubated at room temperature for 5 min.
Next, 15 wL of 10% (w/v) AlICl3 was added and incubated for 6 min. Then, 75 pL of 1 M
NaOH was added and the mixture was adjusted with distilled water to 200 wL before the
absorbance was measured at 510 nm (Asjg). The results are expressed as mg of quercetin
per mL (mg QuE/mL) of sample.

Total anthocyanins content

The total anthocyanins content (TAC) was determined using the pH differential method
described by Zheng et al. (2022). The sample was separately diluted with 0.025 M KCI-HCl
buffer (pH 1.0) and 0.4 M sodium acetate buffer (pH 4.5), incubated for 30 min at
room temperature, and then the absorbance values at 512 nm (As;;) and 700 nm (A7q)
of the two different pH dilutions were measured. The results are expressed as mg of
cyanidin-3-glucoside equivalents per mL (mg CGE/mL) of sample, following the method
of Zheng et al. (2022).

Biological activity analysis

The DPPH radical scavenging activity

The DPPH scavenging ability assay was used to evaluate the antioxidant activity of Un-FR
and FUBRS using the method of Tachibana et al. (2001) with some modifications. The
samples were incubated in 25 mg/L DPPH solution for 30 min and then the DPPH radical
scavenging activity was measured by spectrophotometry at 515 nm (ODs;5). Ascorbic acid
(10 ng/mL) was used as the positive control. The antioxidant activity was calculated from

Eq. (1):
DPPH scavenging activity (%) = [(A—B)/A] x 100, (1)

where A and B are the ODs;5 values of the without and with test sample, respectively.
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ABTS radical scavenging assay

The antioxidant activity was determined as the ABTS radical scavenging activity. For the
assay, ABTS™ radicals were prepared by mixing an ABTS stock solution (seven mM in
water) with 2.45 mM potassium persulfate. This mixture was allowed to stand for 12-16 h
at room temperature in the dark until reaching a stable oxidative state. The ABTS™ solution
was diluted with 20 mM sodium acetate buffer (pH 4.5) to an absorbance of 0.70 4 0.01
at 734 nm (A734). The reaction was started by the addition of 40 ul of sample to 160 1 of
the diluted ABTS™ solution, incubated for 10 min at room temperature to allow ABTS™
bleaching, and then the Ay34 was measured by spectrophotometry. The antioxidant activity
was then calculated from Eq. (2):

ABTS scavenging activity (%) =[(A—B)/A] x 100, (2)
where A and B are the Ay34 values of the without and with test sample, respectively.

Anti-mushroom tyrosinase activity (in vitro)

The samples of Un-FR and FUBRS were examined for tyrosinase inhibiting activity by
evaluating the mushroom tyrosinase activity via the reported dopachrome method (Zengin
et al., 2015) except with slight modification. The reaction mixture, which consisted of 80
pnL of 50 mM potassium phosphate buffer (pH 6.8), 40 L of the sample, and 40 pL of
mushroom tyrosinase (50 U/mL), was mixed and then incubated at room temperature for
10 min. Next, 40 pL of 1.5 mM L-DOPA was added and incubated at room temperature
for 10 min. The amount of dopachrome in the reaction mixture was then measured by
spectrophotometer at 492 nm (A49,). Kojic acid (0.03 mg/mL) was used as the positive
control. The percent inhibition of tyrosinase activity was calculated from Eq. (3):

Mushroom tyrosinase inhibition (%) = [(A—B)/A] x 100 (3)
where A and B are the A49, values of the without and with test sample, respectively.

Melanogenesis inhibition activity

Melanogenesis inhibition activity was determined by measurement of the melanin content
in the BI6F10 melanoma cell line as previously described (Sangkaew & Yompakdee, 2020).
The B16F10 cell line (ATCCCCL-6475™) was cultured in DMEM supplemented with
10% (v/v) FBS, penicillin (100 U/mL), and streptomycin (100 mg/mL) in six-well plates
(5 x 10* cells/well) for 24 h at 37 °C under a humidified 95:5 (v/v) air: CO, atmosphere.
The cells were then treated with Un-FR or FUBRS at the indicated final concentration
and incubated for 72 h. After incubation, the cells were harvested and solubilized in 1 N
NaOH at 60 °C for 60 min, and then the absorbance of the cell suspension was measured
by spectrophotometer at 405 nm (A495). The relative melanogenesis inhibition (%) was
calculated from Eq. (4):

Relative melanogenesis inhibition (%) =[1—(A+B)/(C+D)] x 100 (4)

where A and C are the Ayg5 values of the treated cells and untreated cells, respectively, and
B and D are the protein concentrations (mg/mL) of the treated cells and untreated cells,
respectively.
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Untargeted metabolites profiling by gas chromatography-mass
spectrometry (GC-MS)
Extraction and derivatization of metabolites

Non-targeted analysis was adopted from Lee et al. (2012). Either one mL of Un-FR and/or
one mL of FUBRS were shaken in 10 mL of a 2.5:1:1 (v/v/v) mixture of methanol: water:
chloroform at room temperature for 24 h and then centrifuged at 5,000xg for 8 min
at 20 °C. The supernatant was collected, evaporated to dryness, and reconstituted in
one mL of pyridine. Next, 50 pL of this extract was derivatized with 100 wL of N, O-
bis(trimethylsilyl)trifluoroacetamide (BSTFA) containing 1% (v/v) trimethylchlorosilane
(TMCS) and heated at 60 °C for 1 h prior to GC-MS injection.

For fatty acid analysis, each UBR or FUBRS sample (one mL) was shaken in 25 mL of
a 2:1 (v/v) dichloromethane: methanol mixture and then boiled at 100 °C for 5 min. The
sample was filtered and evaporated to dryness before derivatization of its fatty acids. After
extraction of the fatty acids, the lipid extracts were methylated and converted into fatty
acid methyl esters (FAMEs) using a method adopted from Li-Beisson et al. (2013). Briefly,
one mL of NaOH (0.5 M in methanol) was added and heated at 100 °C for 15 min. After
being cooled, 20% (v/v) boron trifluoride (BF3) solution in methanol was added to the
sample and heated at 100 °C for 1 min. Then, 500 uL of hexane and five mL of saturated
NaCl solution was added, mixed, and the sample was centrifuged at 1,000x g for 10 min.
The organic layer was harvested and kept in a vial for subsequent GC-MS analysis.

GC-MS analysis

Chromatographic separation was performed on a GC-MS system (Agilent Technologies)
using a HP-5 ms (30 m x 250 pm X 0.25 pm; Agilent Technologies) capillary column.
The oven and injector temperatures were set at 80 °C. Helium was used as the column
carrier gas at a constant flow rate of 0.8 mL/min. For fatty acid analysis, the temperature
and constant flow rate were set at 240 °C and 2.25 mL/min, respectively. Identification of
the untargeted compounds was performed by comparing the MS fragmentation patterns
with those of reference compounds, including the mass spectra in the NIST database.

Quantitative determination of metabolites in the FUBRS sample

The FUBRS sample were extracted by solid-phase extraction using Sep-Pak C18 column
cartridges (Sep-Pak Waters, Milford, MA, USA) according to Flores et al. (2012) with some
modifications. Briefly, the cartridge was first conditioned with one mL of methanol and
then with 1.0 mL of milliQ water. Next, the sample was loaded and washed with 50 mL
of milliQ water. The analyte was eluted with five mL of 0.1% (w/v) HCI in methanol,
evaporated to dryness in a rotary evaporator at 40 °C, re-dissolved in 50% (v/v) methanol,
and then kept at —20 °C for further analysis.

The metabolites in the sample extract were determined by high-performance liquid
chromatography (HPLC). Initially, 1.0 mL of flow through from FUBRS was performed
using an Agilent HPLC 1260 Infinity Il HPLC system (Agilent Technologies) with a UV/Vis
detector (SPD-20A) monitoring at a wavelength of 210 nm, and a 5 pm, 4.6 x 150 mm
Mightisil RP18 column (Waters). The sample injection volume was five pL and elution was
performed in an isocratic mode with 0.02 M Na,HPOy, pH 2 at a flow rate of 0.1 mL/min.
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Table 1 Physicochemical properties of the Un-FR and FUBRS.

Chemical properties Un-FR FUBRS

pH 5.98 +0.09 3.38+ 0.01
% Titratable acidity 0.12 £ 0.02 11.18 £ 0.03
Reducing sugar (mg/mL) 2.00 +0.14 1599+ 0.21

Notes.
Values are presented as mean = standard error (n=3).
" Statistically significant (p < 0.001) differences between FUBRS and Un-FR.

Statistical analysis

All experiments were performed in triplicate, and the data in the tables are presented as the
respective mean =+ one standard error. The statistical analysis of data was performed
using GraphPad Prism 9.0.2 (San Diego, CA, USA), and differences among groups
were determined by one-way analysis of variance (ANOVA) with Dunnett’s Multiple
Comparisons test. To elucidate the differential metabolites, the metabolites were imported
into the MetaboAnalyst 6.0 (https:/www.metaboanalyst.ca/) online software.

RESULTS AND DISCUSSIONS

Physical characteristics and phytochemical content of FUBRS
Fermentation of UBR by the microorganisms in the De-E11 is known to effect the final
product (Sangkaew et al., 2020; Sangkaew et al., 2023). The physicochemical properties
and phytochemicals are important indicators that can be used to evaluate the degree
of fermentation. Their characterization in the FUBRS and Un-FR samples revealed
that the total acid contents increased markedly (93-fold) while the pH decreased in
FURBS compared to in the Un-FR (Table 1). Moreover, the level of reducing-sugars was
also markedly increased (8-fold) in the FUBRS compared to that in the Un-FR. In the
fermentation process, starch is digested into the reducing sugar glucose, an important
substrate for alcohol fermentation that greatly impacts the acidity, taste, and alcohol
content (Kim et al., 2007).

The total phytochemical contents, as the TPC, TFC, and TAC, of the Un-FR and
FUBRS are presented in Table 2. The results revealed that the Un-FR had a significantly
higher phytochemical content than FUBRS. A similar result was reported in rice wine
fermentation, and was suggested that the reduction in the TPC upon fermentation might
be related to the utilization of phenolic compounds by microorganisms (Mu et al., 2019).
Interestingly, the color of the FUBRS sample was lighter than that of the Un-FR sample
(Fig. S1), which is consistent with the higher (over 3.5-fold) TAC in the Un-FR than in the
FUBRS. Transformation of anthocyanins is mediated by its reaction with yeast metabolites,
such as pyruvic acid and acetaldehyde (De Freitas ¢~ Mateus, 2011). Moreover, anthocyanins
are also degraded into their aglycone forms by lactic acid bacteria during the fermentation
process (Braga et al., 2018). Hence, these results suggested that the fermentation of UBR
with the defined De-E11 microbial starter may convert the compounds in UBR into other
compounds, which leads to the reduced phytochemical content in FUBRS.
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Table 2 Phytochemical contents of Un-FR and FUBRS.

Phytochemical contents Un-FR FUBRS

Total phenolic content (TPC) (jug GAE/mL of sample) 1,335.0 + 2.0 459.04+ 1.0

Total flavonoid content (TFC) (g QuE/mL of sample) 40.5+ 0.8 203+ 1.4

Total anthocyanins content (TAC) (jvg CGE/mL of sample) 14,612.0 = 460.0 4,063.0 4+ 790.0
Notes.

Values are presented as mean = standard error (n=3).
" Statistically significant (p < 0.001) differences between FUBRS and Un-FR.

Biological activity of FUBRS

Fermented rice, especially colored rice, is rich in various bioactive components and has
many health benefits (Ruksiriwanich et al., 2011). Hence, we investigated the biological
activities, in terms of the antioxidant activity, mushroom tyrosinase activity, and
melanogenesis inhibition activity, of the FUBRS and Un-FR samples.

Antioxidant characteristics of the FUBRS and Un-FR samples

The DPPH and ABTS assays are the most popular and convenient methods to determine the
antioxidant activity. Specifically, the ABTS assay is based on the generation of blue/green
ABTS™ ions that can be reduced by antioxidants, whereas the DPPH assay is based on
the reduction of the purple DPPH to 1,1-diphenyl-2-picryl hydrazine (Floegel et al., 2011;
Sdnchez et al., 2007). Hence, the antioxidant capacity of the FUBRS and Un-FR samples
was determined by both methods using ascorbic acid as the positive control. As depicted
in Fig. 1, both the FUBRS and Un-FR samples possessed antioxidant activities with a
clear concentration-dependent radical scavenging activity in both the DPPH and ABTS
assays. However, Un-FR had a higher antioxidant activity than FUBRS in both assays.
These results are in accord with a previous report that fermentation of black rice bran
decreased the antioxidant activity, TPC, and TAC (Yoon et al., 2015). Moreover, our results
revealed that the antioxidant activity of FUBRS and Un-FR (Fig. 1) was consistent with
the TPC (Table 2). Thus, the reduction in the antioxidant activity after fermentation may
be associated with the degradation of high antioxidant activity phenolic compounds into
phenolic or other compounds of a lower or no antioxidant activity (Gan et al., 2017; Melini
& Melini, 2021).

Mushroom tyrosinase inhibition activity

When skin is exposed to UV rays it causes an increase in tyrosinase expression, a key enzyme
in melanin biosynthesis (Chan et al., 2014). Mushroom tyrosinase has been extensively
utilized as a model system for the screening of tyrosinase inhibitors and in melanogenic
studies (Zolghadri et al., 2019). Hence, the potential inhibitory effect of FUBRS and Un-FR
on mushroom tyrosinase activity was evaluated using Kojic acid as the positive standard.
The results (Fig. 2) clearly revealed that the tyrosinase inhibition activity was significantly
increased following fermentation (FUBRS vs. Un-FR). In accord, several researchers have
reported that fermentation could enhance the tyrosinase inhibition activity of raw materials
(Abd Razak et al., 2017; Chan et al., 2014; Chen et al., 2013; Sangkaew ¢ Yompakdee, 2023).
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Figure 1 Antioxidant characteristics of the FUBRS and Un-FR samples. Both samples were determined
using the (A) DPPH scavenging capacity and (B) ABTS + radical scavenging capacity assays. Results are
presented as percentages of the control (without samples), and the data are presented as the respective

mean =+ SD from three independent experiments. ***Significant (p < 0.001).
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Melanogenesis inhibition activity

To determine the melanogenesis inhibition activity, 5% (v/v) Un-FR and FUBRS at
three different concentrations (1%, 2.5% and 5% (v/v)) were evaluated with the BI6F10
melanoma cell line. The results showed that FUBRS significantly inhibited melanin
production in B16F10 melanoma cells in a dose-dependent manner, whereas Un-FR
showed no such activity (Fig. 3). Interestingly, Un-FR and FUBRS both exhibited anti-
mushroom tyrosinase activity (Fig. 2), but Un-FR showed no significant effect on the
reduction of melanin content in BI16F10 cells even though it was at a higher dose of 5%
(v/v) than the FUBRS (1% (v/v)) (Fig. 3). Although mushroom tyrosinase is used for
anti-tyrosinase activity screening, it does not appear to be sufficiently sensitive to measure
the potential of the active substances, such as FUBRS, as a whitening agent. There are
significant differences between mushroom tyrosinase and mammalian tyrosinase in terms
of their structural, molecular, and kinetic properties, as well as their localization. Therefore,
a more appropriate method might be to use the melanogenesis inhibition results from the
cell-based assay (Promden et al., 2018; Song et al., 2009).
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Untargeted metabolic analysis of Un-FR and FUBRS
Multivariate analysis of Un-FR and FUBRS

Metabolomics based on GC-MS has been successfully applied in the study of dynamic
changes in the metabolite profiles in rice koji and rice wine (Lee da ef al., 2016; Mu et al.,
2019). Therefore, the metabolites in Un-FR and FUBRS were investigated using GC-MS.
To initialize the systemic alteration of metabolites, multivariate analysis by orthogonal
projections to latent structures discriminant analysis (OPLS-DA), a common classification
method, was performed using the online MetaboAnalyst 6.0 software to identify the
difference between the two groups.

The OPLS-DA score plot of the GC-MS data from the Un-FR and FUBRS samples
showed a clear separation (Fig. 4), implying that the metabolic profile was significantly
altered after fermentation. Moreover, the R2X, R2Y, and Q2 values, which are the critical
parameters used to evaluate the OPLS-DA model, were 0.772, 0.935 and 0.886, respectively,
in the metabolites group (Fig. S2A) and 0.556, 0.868 and 0.794, respectively, in the fatty acid
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group (Fig. S2B). Note that R2 and Q2 represent the explanatory ratio and predictability,
respectively, where the closer the value is to 1, the higher the model accuracy. Generally,
when R2 and Q2 > 0.5, the model fits well.

Identification of significantly different metabolites in Un-FR and FUBRS
To investigate the changes in metabolite abundance between Un-FR and FUBRS, a
heatmap was constructed using the MetaboAnalyst 6.0 software. In total, 42 metabolites
were identified, comprised of 17 sugars and sugar alcohols, nine amino acids, 13 organic
acids, and three phenolic acids (Fig. 5). The result indicated that most of these metabolites
were increased after fermentation. In the fatty acids group, five fatty acids (stearic, oleic,
linoleic, palmitic, and myristic acids) were detected (Fig. 6), of which oleic and myristic
acids were increased while linoleic acid was decreased in FUBRS compared to Un-FR.

Furthermore, change in the abundance by more than a two-fold change of 47 metabolite
(17 sugars and sugar alcohols, nine amino acids, 13 organic acids, three phenolic acids and
five fatty acids) between both samples was analyzed, with the results shown in the volcano
plot. The volcano plot illustrated that among all these metabolites, 25 were significantly
increased and nine were decreased in FUBRS compared to Un-FR, whereas 13 metabolites
were not significantly different (Fig. 7 and Table S1).

During the fermentation process, rice starch is hydrolyzed and then saccharified
to sugars and then sugar alcohols by enzymes from the microorganisms. Sugars are
generally consumed as carbon sources, providing energy for proliferation and growth of
the microorganisms via carbohydrate metabolic pathways that led to the production of
other metabolites, such as amino acids, organic acids, and fatty acids (Zhu et al., 2004).

Sangkaew et al. (2025), PeerJ, DOI 10.7717/peerj.19533 12/22


https://peerj.com
https://doi.org/10.7717/peerj.19533/fig-4
http://dx.doi.org/10.7717/peerj.19533#supp-2
http://dx.doi.org/10.7717/peerj.19533#supp-3
http://dx.doi.org/10.7717/peerj.19533

Peer

Class

Ribopyranose

Xylitol

Arabinose

Psicofuranose

Fructose

Galactopyranose

Glucose Value
Glucopyranose Sugar and 1.8
Galactose oxime i
Myo-Inositol Sugar alcohol

Cellobiose

Trehalose

Lactose

Mannobiose

Gentiobiose 0
Palatinose

Melibiose

Alanine

Valine

Leucine

Proline

Serine Amino acid

Aspartic acid

y-aminobutyric acid

Threonine Class

|
I
Phenylalanine

Lactic Acid

Acetic acid

Succinic acid Un-FR
Fumaric acid

Salicylic acid

Citric acid
o-Hydroxyglutaric acid . .
Glyceric acid Orgamc acid

Phosphoric acid FUBRS
3-Phenyllactic acid

Tartronic acid

Levoglucosan

Pyruvic acid

Vanillic acid

Protocatechoic acid Phenolic acid
3-Hydroxybenzoic acid

ﬁ .Ill IIIIII

-

Un-FR1 Un-FR2 Un-FR3 FUBRS1 FUBRS2 FUBRS3

Figure 5 Heatmap of the hierarchical clustering of metabolites in Un-FR and FUBRS. The metabolites
in Un-FR and FUBRS were analyzed using the MetaboAnalyst 6.0 software analysis of the GC/MS data.
The horizontal and vertical coordinates represent the sample name and the different metabolites, respec-
tively. From blue to red indicates metabolite expression abundance from low to high.

Full-size & DOI: 10.7717/peerj.19533/fig-5

The level of detected sugars and sugar alcohols, namely: ribopyranose, arabinose, glucose,
myo-inositol, trehalose, lactose, mannobiose, and melibiose in FUBRS was higher than
those in Un-FR. Five amino acids (alanine, leucine, proline, serine, and phenylalanine)
were significantly increased after the fermentation process.

Generally, the acidity of a sample results from organic acids, which can dramatically affect
the organoleptic quality of the fermented product and can inhibit the growth of microbes.
They mainly come from microbial metabolism (Mato, Sudrez-Luque ¢» Huidobro, 2005).
Among the detected 13 organic acids, 10 (lactic, acetic, succinic, a-hydroxy glutaric,
glyceric, phosphoric, 3-phenyllactic, tartronic and pyruvic acids as well as levoglucosan)
were increased in the fermentation process (FURBS vs. Un-FR).

Phenolic compounds in the fermented product are mainly derived from plant
materials that are associated with the quality of product (Martins et al., 2011). The level of
3-hydroxybenzoic acid was higher in the FUBRS than in the Un-FR samples. Moreover,
the fatty acid (oleic acid) content was also increased after fermentation (Fig. 7). Table S2
illustrates the metabolites found in FUBRS which have previously been reported to have
an inhibitory activity of melanogenesis or tyrosinase, where the most active metabolites
were increased after fermentation.
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Table 3 The contents of some metabolites in the FUBRS.

Compounds Amount (ng/mL)

p-Hydroxybenzoic acid 193.0+ 1.0

Lactic acid 947.0 £ 10.0

Acetic acid 420.0 £ 13.0

Succinic acid 41.7 + 7.60
Notes.

Data are shown as the respective mean =+ SD from three independent experiments, each performed in triplicate.

Our results are consistent with previous studies, which reported that the microorganisms
in De-E11 starter expressed the genes or proteins involved in the synthesis of many
melanogenesis inhibitors, such as amino acids, organic acids, sugars, phenolic acids, and
fatty acids (Sangkaew et al., 2020; Sangkaew et al., 2023).

Quantitative determination of some selected metabolites in the FUBRS
sample

To determine the quantitative level of metabolites in the FUBRS sample, 1-phenolic
acid (p-hydroxybenzoic acid) and three organic acids (lactic, acetic, and succinic acids),
from the untargeted metabolite results (Figs. 5 and 7) that were significantly increased
after fermentation (Fig. 8) were used as representative compounds for quantitative
determination in the FUBRS sample (Table 3). These metabolites were selected because
they have been reported to have a tyrosinase or melanogenesis inhibition activity (Chan et
al., 20145 Yamamoto et al., 2006). Among the identified organic acids, lactic acid showed
the highest level at 947 & 10 ng/mL, followed by acetic acid (420 £ 13 ng/mL) and succinic
acid (41.7 £ 7.6 ng/mL), respectively, while p-hydroxybenzoic acid was at 193 & 1 ng/mL.

CONCLUSIONS

The characteristics and metabolites associated with tyrosinase or melanogenesis inhibition
activities in FUBRS that were produced from fermenting UBR with the De-E11 microbial
starter were investigated in this study. Regarding the physicochemical property, the
biological activity, and the metabolite profile, the FUBRS and Un-FR were significantly
different. Compared with Un-FR, the FUBRS showed an improved mushroom tyrosinase
and melanogenesis inhibitory activity; however, it had slightly decreased antioxidant
properties. In addition, the metabolite profiling, including amino acids, organic acids,
sugars, phenolic acids, and fatty acids detected by GC-MS analysis, indicated that most
of the compounds were significantly increased after fermentation. Hence, these results
suggested that the De-E11 starter may increase or convert the compounds in UBR into
the other compounds. Additionally, quantitative analysis of some metabolites known to
have tyrosinase or melanogenesis inhibitory activity (p-hydroxybenzoic, lactic, acetic, and
succinic acids) revealed that they were significantly increased after fermentation (FUBRS
vs. Un-FR).

The metabolic events during rice fermentation are summarized schematically in Fig. 9,
beginning with the degradation of rice grain components into sugars and the release of
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phenolic acids. The subsequent metabolic activity of the De-E11 starter culture yields

a range of compounds, including sugar alcohols, organic acids, amino acids, and fatty
acids, with specific metabolites in FUBRS exhibiting inhibitory effects on melanogenesis
and/or tyrosinase. Importantly, the valuable insights into the characteristics and metabolite
profile of FUBRS derived from this study provide a rational basis for optimizing and
controlling fermentation processes. The identified key metabolites can serve as critical
biomarkers, enabling the efficient and reproducible production of high-efficacy ingredients
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with significant potential in the cosmetic, nutraceutical, and potentially pharmaceutical
sectors.
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