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ABSTRACT

The hypothalamus, a crucial neuroendocrine regulatory center, plays a significant
role in the occurrence and development of metabolic diseases. Recent advances in
molecular biology and imaging technology have facilitated a better understanding of
the central role of the hypothalamus in the dysregulation of regulatory mechanisms.
This review examines the involvement of hypothalamic nuclei in metabolic diseases,
the direct effects of glucose and fat on the hypothalamus, and the influence of the
hypothalamus on metabolic diseases. Furthermore, it investigates the role of the
hypothalamus in the emergence and progression of metabolic disorders, including
obesity and diabetes. Finally, it outlines the current research progress in treating
metabolic diseases through hypothalamus regulation. This study could provide a
theoretical basis for understanding the pathophysiological mechanisms of metabolic
diseases and development of new treatment strategies.

Subjects Diabetes and Endocrinology, Internal Medicine, Neurology, Nutrition, Obesity
Keywords Hypothalamus, Obesity, Diabetes, Metabolic diseases, Hypothalamic nuclei

INTRODUCTION

The global prevalence of metabolic diseases, including obesity, diabetes, and metabolic
syndrome, has reached alarming levels, posing significant challenges to public health.
Metabolic syndrome encompasses a cluster of pathophysiological abnormalities—such as
insulin resistance, hyperglycemia, hyperlipidemia, and hypertension—that collectively
elevate the risk of type 2 diabetes and cardiovascular complications (Tang, Purkayastha ¢
Cai, 2015). Central to the regulation of energy balance and systemic metabolism is the
hypothalamus, a neuroendocrine hub that integrates peripheral signals (e.g., leptin,
insulin) and coordinates neural circuits to modulate appetite, energy expenditure, and
glucose homeostasis (Belgardt ¢» Briining, 2010; Jais et al., 2020). Dysregulation of
hypothalamic nuclei, such as the arcuate nucleus (ARC) and paraventricular nucleus
(PVN), disrupts these processes, contributing to the pathogenesis of metabolic disorders
(Adlanmerini et al., 2021; Han et al., 2021).

Recent advances in molecular biology and neuroimaging have deepened our
understanding of hypothalamic mechanisms, revealing its dual role as both a sensor of
metabolic states and a regulator of peripheral organs. For instance, hypothalamic
glucose-sensing neurons and neuropeptidergic pathways (e.g., agouti-related protein
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(AgRP)/pro-opiomelanocortin (POMC) circuits) are now recognized as critical mediators
of systemic insulin sensitivity and lipid metabolism. Despite this progress, the interplay

among hypothalamic dysfunction, genetic predispositions, and environmental factors in
metabolic diseases remains incompletely understood.

Scope of the review
This review synthesizes current research on the hypothalamus’s role in metabolic diseases,
with a focus on:

(1) Hypothalamic nuclei dynamics: Functional roles of ARC, PVN, ventromedial nucleus
(VMH), and dorsomedial nucleus (DMH), in energy balance and their dysregulation in
obesity and diabetes.

(2) Peripheral-hypothalamic crosstalk: Mechanisms by which adipose-derived signals
(e.g., leptin, adipokines) and gut hormones (e.g., Glucagon-like peptide-1 (GLP-1))
modulate hypothalamic activity.

(3) Therapeutic innovations: Emerging strategies targeting hypothalamic pathways,
including GLP-1 receptor agonists, melanocortin 4 receptor (MC4R) modulators, and
neuroimaging-guided interventions.

(4) Translational relevance: Insights from genetic obesity syndromes (e.g., Prader-Willi)
and clinical trials of hypothalamic-targeted therapies.

This article is intended for researchers and clinicians across disciplines—neuroscience,
endocrinology, pharmacology, and genetics—who seek to bridge foundational insights
into hypothalamic function with translational applications. By integrating molecular,
physiological, and clinical perspectives, this review aims to catalyze interdisciplinary
collaboration and inform novel therapeutic approaches for metabolic diseases.

SURVEY/SEARCH METHODOLOGY

To ensure comprehensive and unbiased coverage of the literature, a systematic approach
was employed to identify relevant studies and articles (Fig. 1). The following steps were
taken to achieve this:

Literature search strategy
Databases and search engines
The following databases were queried (date range: January 2010-April 2024):
PubMed, Google Scholar, Web of Science, Scopus, PubMed Central, and the Cochrane
Library.

Search terms and boolean logic
A combination of controlled vocabulary (MeSH terms, Emtree) and free-text keywords
was used, tailored to each database. Examples include:

Hypothalamus-related terms: “hypothalamic nuclei,” “arcuate nucleus,”
“neuroendocrine regulation,” “leptin-melanocortin pathway.”

Zhang et al. (2025), Peerd, DOI 10.7717/peerj.19532 2/31


http://dx.doi.org/10.7717/peerj.19532
https://peerj.com/

Peer/

[ Identification of studies via databases and registers ]
M)
& Records identified from”: Records removed before screening:
.‘:;5 PfugMed : Q()Sogle Sc.hglat:'\;AV\éeb Duplicate records removed (n'= 600)
2 or Science ; >copus ; Fublvie e Records marked as ineligible by automation
= Central ; Cochrane Library tools (n = 1200)
3 Datapases (n=3150) Records removed for other reasons (n =150)
= Registers (n =6)
—
\ 4
)
Records screened Records excluded**
——>
(n=1206) (n=10)
v
Reports sought for retrieval »| Reports not retrieved
2 (n=1196) (n=10)
s
Q
o
2 \4
Reports assessed for eligibility Reports excluded:
(n=1186) — > Research design discrepancies (e.g. non-
original research) (n =500 )
Year of publication does not match (earlier
than 2010) (n =300)
Population/model mismatch (n = 190)
Low data quality (n=104)
—
A4
2 Studies included in review
B (n=92)
° Reports of included studies
£ (n=92)
Figure 1 PRISMA. Full-size K&l DOT: 10.7717/peerj.19532/fig-1

Metabolic diseases: “obesity,” “diabetes mellitus,” “monogenic obesity,” “Prader-Willi
syndrome.”
Interventions: “GLP-1 agonists,” “setmelanotide,” “bariatric surgery (VSG/RYGB).”

» «

Imaging/assays: “PET imaging,” “fMRI,” “neural circuitry.”

Full search syntax for PubMed is provided in Supplemental File S1.

Inclusion/Exclusion criteria
Inclusion criteria
Study types: Peer-reviewed original research (human/animal), RCTs, systematic reviews,
and meta-analyses.
Population: Human studies on hypothalamic-linked metabolic disorders (e.g.,
monogenic obesity, hypothalamic injury) or animal models with translational relevance.
Interventions: Pharmacological (e.g., MC4R agonists), surgical (e.g., bariatric surgery),
or dietary interventions targeting hypothalamic pathways.
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Outcomes: Mechanistic data on hypothalamic regulation (e.g., neuroimaging,
hormonal assays) or clinically significant metabolic outcomes (e.g., BMI, HbAlc).
Timeframe: 2010-2024, to prioritize recent advancements.

Exclusion criteria
Study design: Non-original research (e.g., editorials, opinion pieces), conference abstracts,
preprints, studies with <10 participants (human) or inadequate controls (animal).
Scope: Articles focused solely on non-hypothalamic pathways (e.g., peripheral insulin
signaling without CNS involvement).
Data quality: Studies with incomplete methodology, unclear statistical reporting, or
high risk of bias (per ROBINS-I/ARRIVE guidelines).

Screening process and automation tools
Automation tools
De-duplication: EndNote (v20) and Rayyan AI removed 1,248 duplicate records.
Initial screening: Rayyan’s NLP algorithm prioritized 2,500 records for title/abstract
screening based on keyword relevance.
Exclusions by automation:
Pre-screening: 412 records excluded (reasons: non-English, non-peer-reviewed, or
published before 2010).
Title/abstract filtering: 1,022 records flagged as low relevance (e.g., non-metabolic
hypothalamic topics).

Manual screening

Phase 1 Two independent reviewers screened titles/abstracts (k = 0.86). Discrepancies

(n = 124) were resolved by a third reviewer.
Phase 2: Full-text review of 1,186 articles, with exclusions documented (Fig. 1):
Research design discrepancies: 500 excluded (e.g., non-original research).
Population/model mismatch: 190 excluded (e.g., non-hypothalamic obesity models).
Low data quality: 104 excluded (per predefined quality thresholds).

Bias mitigation and quality assessment
Risk of bias: Assessed using ROBINS-I for human studies and SYRCLE's tool for animal
studies.

Data extraction: Standardized templates ensured consistency; two reviewers
cross-validated data (95% agreement).

Prioritization: High-quality RCTs and mechanistic studies with validated endpoints
(e.g., IMRI-confirmed hypothalamic activity) were weighted more heavily.

Transparency enhancements
PRISMA flowchart: Expanded to detail automation exclusions, manual screening phases,
and reconciliation steps (Fig. 1).

Exclusion rationale: Each exclusion category (e.g., “population mismatch”) is explicitly
showed in Fig. 1.
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Tool validation: Rayyan’s algorithm accuracy was tested against a manually screened
subset (n = 500); sensitivity = 92%, specificity = 88%.

Limitations
Language bias: Non-English articles (n = 34) were excluded but represented <2% of initial
results.

Automation constraints: NLP tools may overlook nuanced mechanistic data; this was
mitigated by manual full-text review.

PHYSIOLOGICAL FUNCTIONS OF HYPOTHALAMIC NUCLEI

The hypothalamic nuclei play a pivotal role in regulating feeding behavior, energy balance,
and metabolism, encompassing structures such as the arcuate, paraventricular,
ventromedial, and dorsomedial nuclei. These nuclei contain neurons that modulate crucial
physiological processes, including appetite, energy metabolism, and glucose homeostasis,
through interactions and connections with other brain regions (Fig. 2).

Arcuate nucleus

The AgRP and POMC neurons in the ARC are crucial for feeding behavior and weight
control. They are regulated by various external signals, including insulin,
neurotransmitters, and hormones, which in turn influence feeding behavior, energy
expenditure, and glucose metabolism (Adlanmerini et al., 2021).

AgRP neurons, located within the ARC region of the hypothalamus, play a crucial role
in modulating feeding behavior, weight management, and energy metabolism. When the
body requires additional energy, such as during hunger, AgRP neurons are activated,
leading to increased appetite and reduced energy expenditure, helping the body acquire
necessary energy sources. Conversely, when the body stores excess energy, other neurons
are activated to inhibit AgRP neuron activity, resulting in decreased appetite and increased
energy expenditure. The AgRP neural circuit regulates body weight by influencing the
signaling of neurons expressing melanocortin 4 receptor (MC4R) in the dorsal lateral
hypothalamic nucleus (Han et al., 2021). The activity of AgRP neurons is influenced by
various regulatory factors, including neuropeptide Y (NPY). Studies have shown that NPY
plays an essential role in the short-term acute effects of AgRP neuron activation. Mice
lacking NPY fail to rapidly increase food intake when AgRP neurons are chemically or
optogenetically activated (Engstrom Ruud et al., 2020; Chen et al., 2019). Additionally,
AgRP neuron activation leads to rapid switching of substrate utilization, reducing fat
consumption and increasing overall glucose utilization, independent of food intake
(Cavalcanti-de-Albuquerque et al., 2019). Beyond food intake regulation, AgRP neuron
activity plays a critical role in regulating systemic insulin sensitivity and glucose
metabolism through distinct neural and endocrine pathways. 1. Acute glucose
mobilization: Optogenetic activation of AgRP neurons rapidly increases hepatic glucose
production via NPY-dependent sympathetic stimulation of hepatic innervation. This
process occurs within minutes, independent of feeding behavior, and requires Y1 receptor
(Y1R) signaling in the paraventricular thalamus (PVT) to suppress hepatic insulin receptor

Zhang et al. (2025), Peerd, DOI 10.7717/peerj.19532 5/31


http://dx.doi.org/10.7717/peerj.19532
https://peerj.com/

Peer/

//// \( SN DMH
/ 6\ "\ Ppp1r17 Neurons
/ f N N \  Sympathetic nervous system t
4 f \f \ \ e Lipolysis 1
—_— { (»\ Z' GAosﬁging t\elmd Life spant
. \ | ergic Neurons
Gl:naFr::ésisr:gli: Neurons\\ /"« WAT browning?
ol \ / GLP-1R Neurons
* Glycaemi \ | . Glycaemia +
e Lipolysis \ N &R /T /
\ = & /s(, '// \ /
\ / N v /

Arc el ~—— PVN

AgRP Neurons POMC Neurons i
e Feeding t e Feeding | Oiﬁggyezlii;fons
o Energy expenditure | e Energy expendituref e Autonomic nervous s stemT
e Fat consumption ¢ e Fat consumptionf MC4R Neurons .
e Glycaemia * Glycaemia e Feeding ¢

Figure 2 Roles of hypothalamic nuclei in metabolic diseases. VMH, ventromedial nucleus; PVN,
paraventricular nucleus; Arc, arcuate nucleus; DMH, dorsomedial nucleus; POMC, pro-opiomelano-
cortin; GLP-1R, Glucagon-like peptide-1 receptor; Ppplrl7, protein phosphatase 1 regulatory subunit 17.
MCH4R, Melanocortin-4 Receptor Red arrows depict increase and blue arrows depict decrease.

Full-size K&] DOT: 10.7717/peerj.19532/fig-2

substrate 2 (IRS2) phosphorylation (Engstrém Ruud et al., 2020). 2. Chronic insulin
resistance: Sustained AgRP hyperactivity induces brown adipose tissue (BAT)-derived
myostatin expression, which systemically inhibits insulin signaling in skeletal muscle and
white adipose tissue. Genetic ablation of myostatin, specifically in BAT, restores
insulin-stimulated glucose uptake, demonstrating a causal role for the AgRP-myostatin
axis in metabolic dysregulation (Steculorum et al., 2016). 3. Molecular crosstalk: NPY
released from AgRP neurons directly antagonizes leptin signaling in POMC neurons, while
myostatin inhibits adiponectin’s metabolic effects in peripheral tissues. This dual blockade
creates a feedforward loop that exacerbates insulin resistance during prolonged energy
surplus (Engstrom Ruud et al., 2020; Steculorum et al., 2016). Recent research using
CRISPR/Cas9 technology to inactivate the LEPR gene in AgRP neurons of adult mice led
to severe obesity and glucose metabolism disorders (Xu et al., 2018). The function and
activity of AgRP neurons are further modulated by specific vagal afferent types, which
transmit signals through the brainstem, exerting moderate temporal effects on AgRP
neuron activity related to intestinal chemoreception and mechanoreception (Bai ef al.,
2019). These findings expand our understanding of AgRP neuron regulation, highlighting
its dynamic modulation across different time scales. Notably, studies demonstrate that
disrupting TET3, a key epigenetic regulator involved in DNA demethylation, activates
AgRP neurons and triggers adverse metabolic effects such as binge eating, obesity, and
diabetes (Xie et al., 2022). In AgRP neurons, loss of TET3 disrupts the epigenetic balance of
DNA methylation, leading to persistent overactivation of hunger-promoting signaling
pathways. In summary, AgRP neurons play a crucial role in regulating feeding, weight, and
energy metabolism and are significant for understanding metabolic diseases such as
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obesity and diabetes. Therefore, AgRP neurons have become potential therapeutic targets,
and related drug development is actively ongoing. These research findings provide
important scientific evidence for future treatments of metabolic diseases.

POMC neurons, located in the ARC of the hypothalamus, play a crucial role in
transmitting signals related to body weight and obesity. These neurons are highly sensitive
to external signals, including neurotransmitter changes under hunger conditions, and
maintain weight balance by influencing feeding behavior and energy metabolism. The
regulatory role of POMC neurons in glucose homeostasis involves intricate
neuroanatomical and molecular mechanisms that produce paradoxical effects depending
on three key variables: 1. Projection-specific functions: While global inhibition of POMC
neurons reduces blood glucose via enhanced hypothalamic insulin signaling (Uner ef al.,
2019), selective activation of their descending projections to the liver paradoxically
increases hepatic glucose production through al-adrenergic receptor-mediated
sympathetic stimulation. This suggests that POMC neurons contain functionally
antagonistic subpopulations along the neuroaxis (Uner et al., 2019; Kwon et al., 2020).
2. Receptor subtype dynamics: The glucoregulatory dichotomy may stem from the
differential engagement of melanocortin receptors (MCRs). Hepatic-projecting POMC
neurons predominantly signal through the MC4R-aMSH axis to activate cAMP/PKA in
liver stellate cells, whereas glucose-lowering effects involve MC3R-dependent potentiation
of pancreatic B-cell insulin secretion via vagal efferents (Qi et al., 2023). 3. Metabolic state
dependency: In obese mice, POMC activation fails to suppress glucose due to leptin
resistance-induced downregulation of MC4R in the nucleus tractus solitarius (NTS). This
state-specific impairment is rescued by concurrent GLP-1 receptor agonism, revealing a
compensatory interaction between melanocortin and incretin systems (Chen et al., 2022).
In addition to glucose homeostasis control, POMC neurons interact with other types of
neurons, such as prepronociceptin and NPY neurons. These neurons jointly regulate
feeding behavior and energy metabolism, thereby affecting weight balance (Chen et al,
2022). Some studies also suggest an interaction between POMC neurons and astrocytes,
which affects energy metabolism and adipocyte function (Chen et al., 2022; Yi et al., 2011).
Furthermore, the important role of steroid receptor coactivator-1 in hypothalamic POMC
neurons has been revealed, affecting leptin-regulated feeding and body weight (Yang et al,
2019). The communication network within the ARC of the hypothalamus regulates energy
expenditure and food intake through lactate signaling. This process involves the
conversion of glucose to lactate by elongated cells and its transmission to POMC neurons
through monocarboxylic acid transporters (Lhomme et al., 2021). Primary cilia are crucial
for obesity regulation during the development of hypothalamic neurons. Knockout of the
cilia-forming genes IFT88 and KIF3A has been shown to inhibit ciliogenesis in POMC
neurons, ultimately affecting obesity status in adult mice (Lee et al., 2020). Overall,
research on POMC neurons and their related signaling pathways provides new insights
into the mechanisms of obesity regulation. These findings help reveal the mechanisms
underlying obesity development and provide guidance for developing more effective
interventions to manage and prevent obesity-related diseases.
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Glucose-sensing cells, particularly specialized neurons in the hypothalamus, play a
pivotal role in detecting blood glucose fluctuations and maintaining systemic glucose
homeostasis. These neurons are classified into two subtypes: glucose-excited (GE) neurons
and glucose-inhibited (GI) neurons. GE neurons are activated by elevated glucose levels
through ATP-sensitive potassium (KATP) channels, whereas GI neurons are inhibited by
high glucose and rely on chloride channels such as Anoctamin 4 (Ano4) for activation
under hypoglycemic conditions (Tu et al., 2023; He et al., 2020). Notably, in the
ventrolateral ventromedial hypothalamus (vVIVMH), a subset of GI neurons co-expressing
estrogen receptor-a (ERa) and Ano4 has been identified as critical sensors for
hypoglycemia, triggering counterregulatory responses (e.g., glucagon release) via
projections to the arcuate nucleus (ARC) and dorsal raphe nuclei (DRN) (He et al., 2020).

Dysfunction in glucose-sensing neurons is a hallmark of metabolic diseases. In obesity
and type 2 diabetes, chronic hyperglycemia disrupts GI neuron activity by suppressing
AMP-activated protein kinase (AMPK) and enhancing mammalian target of rapamycin
(mTOR) signaling, leading to impaired nitric oxide (NO)-mediated insulin sensitivity.
Additionally, hypothalamic inflammation and extracellular matrix (ECM) remodeling in
obesity induce fibrosis around AgRP neurons, further blunting insulin signaling and
promoting hyperphagia. Intriguingly, in type 1 diabetic models, genetic ablation of Ano4
in VMH GI neurons normalizes blood glucose levels, suggesting that targeting Ano4 may
offer therapeutic potential (Tu et al., 2023; He et al., 2020). Simultaneously, SHLP2 (a
mitochondrial-derived peptide) participates in appetite and energy metabolism regulation.
It modulates neuronal activity in appetite-control circuits (e.g., POMC/NPY neurons),
thereby influencing weight homeostasis. The interplay between glucose-sensing neurons
and SHLP2 highlights a dual regulatory mechanism linking glucose sensing to energy
balance (Li et al., 2019).

A recent spatial transcriptomic study in crab-eating macaques revealed distinct
hypothalamic responses to obesity and diabetes. The ARC exhibited heightened
inflammatory immune activity, while the PVN showed suppressed metabolic activity (Lei
et al., 2024). This contrast highlights functional interplay between the ARC and PVN in
energy homeostasis, suggesting that ARC-driven inflammation may exacerbate PVN
dysfunction in metabolic diseases.

Opverall, the ARC of the hypothalamus, as a complex regulatory center, plays a pivotal
role in energy metabolism and feeding behavior. Further research into the functions and
interaction mechanisms of neurons within the ARC of the hypothalamus can help reveal
the pathogenesis of obesity and metabolic diseases, providing theoretical support and
clinical guidance for future treatment strategies.

Paraventricular nucleus

The PVN of the hypothalamus serves as a central hub for integrating energy balance
signals through anatomically defined connections with specific brain regions and
peripheral tissues, and its neuropeptidergic neuronal populations orchestrate both
autonomic and behavioral responses to metabolic demands.
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Circuit-specific connectivity of PVN neurons

The PVN establishes bidirectional connections with: 1. Brainstem nuclei: The nucleus of
the solitary tract (NTS) provides catecholaminergic input (e.g., norepinephrine) via
NTSTH neurons, which relay visceral hunger signals (e.g., hypoglycemia) to PVNMC4R
neurons. Optogenetic activation of NTSTH->PVN projections mimics fasting-induced
hyperphagia (Zhang et al., 2020). The parabrachial complex (PBN) receives glutamatergic
projections from PVNMC4R neurons, modulating satiety and aversion responses. These
connections are critical for MC4R-dependent suppression of feeding (Wang et al., 2021).
2. Hypothalamic regions: ARC: PVN integrates orexigenic (AgRP) and anorexigenic
(POMC) signals through direct synaptic inputs. Notably, 63% of Kisslr-expressing
neurons in the ARC are POMC neurons, suggesting crosstalk between reproductive and
metabolic circuits. VMH: Adrenergic PVN neurons modulate VMH-driven sympathetic
outflow to white adipose tissue (WAT), linking central MC4R signaling to peripheral
lipolysis. 3. Peripheral tissues: PVNMC4R neurons regulate hepatic glucose production
via sympathetic innervation of the liver and influence adipokine secretion (e.g., leptin
resistance) through projections to WAT (Sayar-Atasoy et al., 2023).

Neuropeptidergic identity of PVN neurons

The PVN contains distinct peptidergic populations with specialized roles: 1. Oxytocin
(Oxt) neurons: Oxt neurons suppress appetite by enhancing ARC POMC neuron activity
and inhibiting AGRP/NPY neurons. They also project to the NTS to potentiate vagal satiety
signals (Wang et al., 2023). Genetic ablation of Oxt receptors in the PVN exacerbates
diet-induced obesity, highlighting their role in energy homeostasis (Xiao et al., 2021).

2. Corticotropin-releasing hormone (CRH) neurons: CRH neurons activate the HPA
axis under energy deficit, increasing gluconeogenesis and mobilizing lipid reserves.
Chronic HFD disrupts CRH-mediated feedback, contributing to metabolic syndrome
(Douglass et al., 2023). 3. Thyrotropin-releasing hormone (TRH) neurons: TRH neurons
regulate thermogenesis via sympathetic activation of brown adipose tissue (BAT). MC4R
agonists potentiate TRH release, linking melanocortin signaling to adaptive thermogenesis
(Sayar-Atasoy et al., 2023).

MC4R signaling mechanisms in PVN

1. Ciliary dependency: MC4R requires primary cilia for proper signaling. Cilia defects
impair cAMP/PKA activation in PVN neurons, leading to hyperphagia and reduced
energy expenditure (Sayar-Atasoy et al., 2023). 2. Adrenergic crosstalk: Norepinephrine
dynamically modulates PVNMCA4R activity through o1-ARs, which enhance GABAergic
inhibition from ARC AgRP terminals. This mechanism is essential for fasting-induced
feeding (Yang et al., 2022).

The PVN’s role in energy balance hinges on its anatomically discrete connections (NTS,
PBN, ARG, liver, WAT) and neuropeptide-specific populations (Oxt, CRH, TRH). These
findings refine the mechanistic understanding of PVN circuitry and highlight potential
targets for obesity therapies, such as tissue-specific MC4R modulators or Oxt receptor
agonists.
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Ventromedial nucleus

The VMH assumes a pivotal position in modulating feeding behaviors and energy
metabolism, crucial for elucidating and managing metabolic disorders. The O-linked N-
aclcNAc transferase (OGT) within VMH neurons plays a central role in regulating body
mass and lipid homeostasis by modulating white adipose tissue (WAT) lipolysis and
energy expenditure. Genetic ablation of OGT in mice induces obesity, weight gain, and
metabolic dysfunction through disrupted fat mobilization (Wang et al., 2022). However,
OGT’s systemic functions extend far beyond energy balance, necessitating cautious
therapeutic targeting to avoid unintended consequences. Key underemphasized roles
include: 1. Genomic stability maintenance: OGT stabilizes translesion DNA polymerase
n (Pol 1) via O-GlcNAcylation at Thr457, ensuring efficient DNA damage repair and
preventing replication fork collapse under genotoxic stress (Sayar-Atasoy et al., 2023).

2. Transcriptional fidelity control: By dynamically assembling RNA polymerase II
clusters, OGT regulates transcriptional elongation and mRNA splicing, as exemplified by
its role in SRPK2-mediated lipid synthesis gene expression in tumors (Chatham, Zhang ¢
Wende, 2021; Nie et al., 2020). 3. Tumor metabolic reprogramming: OGT redirects
glucose flux into the pentose phosphate pathway (PPP) via PFK1 Ser529
O-GlcNAcylation, enhancing NADPH production to support cancer cell survival under
oxidative stress (Nie et al., 2020). Furthermore, insights into the mechanisms of VMH
neurons in regulating food consumption have been unveiled. Specifically, targeted
activation of VMH neurons that express steroidogenic factor 1 leads to a swift suppression
of food intake, underscoring their pivotal role in appetite control (Yang et al., 2022). The
cilia of neurons in VMH play an important role in weight regulation. Studies have found
that the enrichment of AC3 (type III adenylate cyclase) in cilia is crucial for resisting
obesity and affects body weight by regulating autophagy, providing a new perspective on
understanding weight regulation mechanisms (7w et al., 2023). Furthermore, the Ano4
channel holds a pivotal position in glucose-sensitive neurons residing within the VMH.
Genetic ablation of the Ano4 gene in mice results in lowered blood glucose levels and
compromises the counterregulatory mechanisms triggered during hypoglycemic events.
Conversely, activation of Ano4-expressing neurons in the VMH of diabetic mice elevates
food consumption and blood glucose concentrations, while their sustained inhibition
ameliorates hyperglycemia, suggesting that the Ano4 channel could represent a promising
therapeutic avenue for addressing aberrant feeding patterns and glucose
dysregulation-associated disorders (He ef al., 2020). Neurons within the ventrolateral
VMH, expressing estrogen receptor alpha (ERa), demonstrate sensitivity to glucose
fluctuations. Activation of the ERa-mediated pathway projecting to the medioposterior
ARC of the hypothalamus, and concurrent inhibition of the ERa signaling loop targeting
the dorsal Raphe nuclei, both elevate blood glucose levels, thereby safeguarding against
severe hypoglycemia in mice (Zhang et al., 2024). Recent investigations have highlighted
the abundant expression of hypothalamic ventromedial secretin in the CNS, underscoring
its pivotal role in modulating satiety sensations, energy metabolism, and bone homeostasis.
Secretin deficiency in mice is associated with decreased bone mineral density, hyperphagia,
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disrupted adipogenesis, and obesity, whereas its overproduction promotes bone accrual
(Tokizane, Brace & Imai, 2024).

These discoveries not only deepen our understanding of the role of VMH in energy
metabolism but also provide potential targets for developing new treatment strategies for
obesity and other metabolic diseases.

Dorsomedial nucleus

The DMH is an important region of the brain located in the dorsomedial part of the
hypothalamus. It participates in regulating the body’s homeostasis through interactions
with other brain regions, such as other hypothalamic nuclei, the brainstem, and the
autonomic nervous system. Recent studies have revealed the significant role of this brain
region in regulating energy balance, aging rate, and lifespan. The DMH"PP'""7 neurons in
the DMH are particularly noteworthy. Activation of these neurons can stimulate the
sympathetic nervous system, promoting the release of lipids and eNAMPT from white
adipose tissue. This not only provides energy for physical activity but has also been found
to delay aging and increase the lifespan of mice (Papazoglou et al., 2022).

This provides strong scientific support for the future development of new therapies to
treat obesity and metabolic syndrome, delay aging, and increase lifespan.

In summary, in-depth research on the role of hypothalamic nuclei in metabolic diseases
and their underlying mechanisms is crucial for understanding the pathogenesis of these
diseases, discovering novel therapeutic targets and devising more efficacious treatment
strategies.

THE CENTRAL ROLE OF THE HYPOTHALAMUS IN
METABOLIC DISEASES

The hypothalamus, as a key region of the brain, plays a pivotal role in regulating the body’s
metabolic balance. It influences energy metabolism, appetite regulation, and glucose
homeostasis (Fig. 3) and maintains metabolic health through complex neural circuits
closely connected with peripheral metabolic organs (Fig. 4).

Interaction between the hypothalamus and peripheral metabolic
organs

The hypothalamus precisely regulates insulin secretion in the pancreas through diverse
neuronal subpopulations, such as oxytocin neurons originating from the PVN. This neural
circuit reaches pancreatic -cells via the sympathetic autonomic branch, and activating or
silencing of these neurons can lead to hyperglycemia or hypoglycemia, respectively,
ensuring stable blood glucose levels (Wang et al., 2023). Moreover, the hypothalamus
influences body weight and fat metabolism by regulating fat tissue lipolysis and browning
processes. For instance, the RIIp subunit of cAMP-dependent protein kinase A (PKA) in
GABAergic neurons within the DMH region modulates the browning of white adipose
tissue (WAT). In wild-type DMH GABAergic neurons, the RIIp subunit combines with the
C subunit to form type II PKA, maintaining normal PKA activity and phosphorylation
levels of gamma-aminobutyric acid (GABA) receptors, thereby sustaining appropriate
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neuronal excitability. However, in neurons with RIIp mutations, the absence of RIIp leads
to compensatory increases in the Rla subunit and reduced PKA activity. Concurrently,
subcellular relocalization of PKA results in inadequate phosphorylation and
desensitization of GABA receptors, including GABA type A receptors and GABA type B
receptors, on dendrites, thereby increasing neuronal excitability. This heightened
excitability, via enhanced sympathetic signals, promotes WAT browning, ultimately
resulting in a lean phenotype in RIIB-KO mice. This provides new insights into clinically
promoting WAT browning and treating obesity and other metabolic disorders (Douglass
et al., 2023).

Non-neuronal cells, such as microglia and astrocytes, also play crucial roles in metabolic
regulation in the hypothalamus. Microglia, an essential type of glial cell in the nervous
system, holds a pivotal position in metabolic regulation. They are important for glucose
homeostasis regulation, and recent studies suggest a tumor necrosis factor o (TNF-
a)-dependent mechanism. This mechanism can increase the secretion of POMC-derived
a-melanocyte-stimulating hormone (a-MSH) and activate other glucose-sensing neurons
in the hypothalamus, ultimately leading to a significant increase in insulin secretion
through the parasympathetic nerve pathway (Kim et al., 2019). A high-fat diet (HFD)
activates hypothalamic microglia, triggering inflammatory responses that damage neurons
and disrupt glucose and lipid metabolism, ultimately promoting obesity. Uncoupling
protein 2 (UCP2) is a critical regulator in this process. HFD upregulates UCP2 expression
in microglia, which enhances NLRP3 inflammasome activation and induces the release of
key pro-inflammatory cytokines, including TNF-a, IL-1f, IL-6, and the chemokine
MCP-1. These cytokines impair the activity of POMC neurons in the arcuate nucleus,
leading to hyperphagia and weight gain. Notably, microglia-specific UCP2 knockout
mitigates HFD-induced neuroinflammation by suppressing these cytokine cascades,
thereby restoring POMC neuron function and reducing obesity (Rahman et al., 2020).
These findings highlight the importance of microglia in metabolic regulation and disease
treatment, providing a new perspective for understanding the role of glial cells in the
nervous system.

Astrocytes are involved in the diabetic phenotype and influence the AMPK signaling
pathway and neuropeptide circuits that regulate feeding behavior through the modulation
of the pyruvate dehydrogenase kinase (PDK2)-lactate axis, leading to metabolic imbalance
and hypothalamic inflammation. Inhibiting PDK2 in astrocytes can alleviate
diabetes-induced hypothalamic inflammation and alterations in feeding patterns (Bentsen
et al., 2020). Furthermore, astrocytes are involved in the treatment process of type 2
diabetes. Injection of fibroblast growth factor 1 (FGF1) can improve hyperglycemia, with
the main target being glial cells in the mediobasal hypothalamus. Further research has
shown that Agrp neuron transmission is necessary for the sustained anti-diabetic effect of
FGF1. This discovery reveals the potential mechanism of microglia in diabetes treatment
(Herrera Moro Chao et al., 2022). In the PVN, chemogenetic manipulation of astrocytes
bidirectionally controls the activity of neighboring neurons, autonomic outflow, glucose
metabolism, and energy balance by regulating ambient glutamate levels (Zhang et al.,
2024). Some studies also indicate that astrocytes play a crucial role in regulating the
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sympathetic activity and function of adipose tissue (Chen et al., 2022; Yi et al., 2011). The
research results indicate that astrocytes activate POMC neurons located in the ARC
through the adenosine A1 receptor signaling pathway. Upon activation, POMC neurons
synthesize and release neuropeptides such as a-MSH. Subsequently, a-MSH acts on the
sympathetic preganglionic neurons in the intermediolateral nucleus of the spinal cord,
which serve as crucial nodes in regulating adipose tissue metabolism. By activating these
sympathetic preganglionic neurons, a-MSH promotes the release of neurotransmitters
such as NE, which then bind to f-adrenergic receptors on adipocytes, triggering lipolysis in
these cells (Chen et al., 2022).

The hypothalamus secretes various neurotransmitters, such as oxytocin and orexin,
forming a complex network that regulates fat metabolism and whole-body glucose
homeostasis. Oxytocin accelerates fat consumption by promoting the breakdown of fat
cells (Li et al., 2024; Xiao et al., 2021). Notably, the hypothalamus plays a crucial role in
regulating whole-body glucose homeostasis through its secretion of orexin. Orexin
receptors type 1 and 2 are expressed in the DMH and dorsolateral nucleus, respectively,
and act together on peripheral metabolic organs such as brown adipose tissue, skeletal
muscle, and the liver. Orexin receptor type 1 promotes glucose utilization in peripheral
tissues, while receptor type 2 inhibits hepatic gluconeogenesis. These two receptors work
synergistically to maintain glucose homeostasis. This complex regulatory network
highlights the key role of the hypothalamus in energy balance and metabolic regulation
(Schwartz & Porte, 2005).

In summary, the complex interactions of the hypothalamus and its internal cell types
constitute the core hub of metabolic disease regulation. An in-depth understanding of
these regulatory mechanisms not only enhances comprehension of the maintenance and
imbalance of metabolic balance but also provides new avenues for treating and preventing
related diseases.

Peripheral organs’ influence on the hypothalamus

Peripheral metabolic organs exert an impact on the hypothalamus, particularly those
involved in glucose and fat metabolism. These effects manifest not only in the regulation of
energy metabolism but also in food intake, weight control, neuronal activity, and metabolic
processes.

First, in glucose metabolism, fluctuations in blood glucose levels directly trigger the
hypothalamic response mechanism (Huang et al., 2022). Glucagon-like peptide-1 (GLP-1)
from the intestine precisely activates target neurons in the DMH through its specific
receptors, utilizing a mechanism of cAMP-PKA-dependent potassium current inhibition.
These activated neurons subsequently regulate the dorsal motor nucleus of the vagus
nerve, directly influencing the pancreas through the parasympathetic pathway to finely
modulate insulin secretion (Zhang et al., 2021). Additionally, the exploration of the
glucose-dependent insulinotropic polypeptide receptor signaling pathway has revealed its
central role in energy metabolism regulation and provided a theoretical basis for
developing innovative drugs for metabolic diseases, such as GLP-1 and glucose-dependent
insulinotropic polypeptide dual agonists (Rupp et al., 2023). Notably, the newly discovered
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GABAergic LepRb“""'* neuronal population, under the synergistic action of leptin and
GLP-1R agonists, exhibits potent feeding suppression and weight management efficacy,
further unveiling the exquisite regulatory network of the central nervous system in energy
balance (Zhang et al., 2023).

Adipokines and hypothalamic metabolic regulation
Fat metabolism is closely linked to the hypothalamus. Molecular signals derived from fats
are transmitted to the hypothalamus through the blood circulation system, affecting
neuronal activity and metabolic processes. For instance, the role of acyl-CoA binding
protein in astrocytes reveals the importance of fats in energy balance control (Vi ef al.,
2011). Additionally, fat-derived neuregulin 4 acts on the ErbB4 receptor in the
hypothalamus, further regulating feeding behavior and weight gain (Li et al., 2019).
Lipin and leptin are two important lipid factors that play crucial roles in regulating
hypothalamic nuclear function and metabolic activity. Lipin promotes glucose production
in the liver and activates the cAMP signaling pathway by binding to the olfactory receptor
OLFR734, thereby stimulating hypothalamic appetite (Feng et al., 2023). Lipin stimulates
feeding by activating AgRP neurons in the arcuate nucleus, a process dependent on specific
potassium channels. Pharmacological blockade of this pathway reduces hyperphagia,
highlighting its therapeutic potential for obesity (Butiaeva et al., 2021). In summary, lipin
plays a vital role in regulating metabolism and appetite, and a deeper understanding of its
mechanism may provide new directions and strategies for treating metabolic diseases.
Leptin plays a pivotal function in regulating hunger sensations and maintaining energy
equilibrium, facilitated by its receptor. Pericytes, a fundamental constituent of the
blood-brain barrier, facilitate the passage of circulating leptin into the hypothalamus by
virtue of their leptin receptor expression. Upon entry into the hypothalamus, leptin exerts
its influence by inhibiting the activity of neurons that stimulate appetite, while potentially
enhancing the functionality of other interconnected neurons through the activation of
diverse signaling cascades. This orchestrated regulation subsequently modulates energy
intake and expenditure processes (Torres ¢ Pitts, 20215 Jiang et al., 2020). Studies have
revealed that Sh2bl in leptin receptor neurons plays a crucial role in regulating the
sympathetic nervous system and brown adipose tissue function and is an important
component for maintaining the normal operation of the SNS/BAT/thermogenesis axis. By
affecting this axis, Sh2b1 plays a significant role in body temperature regulation and energy
metabolism, as well as obesity and metabolic diseases. Research results indicate that the
deletion or dysfunction of Sh2bl leads to cold intolerance, obesity, insulin resistance, and
hepatic steatosis, whereas overexpressing Sh2b1 has a protective effect. This discovery
provides a new potential target for the treatment of obesity and its complications (Wang
et al., 2020). Moreover, research has revealed metabolic disorders caused by mutations in
the leptin gene (ob), particularly obesity, thermogenesis, and lipolysis defects, which are
closely related to the reduced sympathetic innervation of adipose tissue. Chronic leptin
treatment can restore sympathetic innervation in adipose tissue of ob/ob mice, thereby
correcting functional defects. This restoration process is orchestrated by AgRP and POMC
neurons within the ARC region of the hypothalamus, which express leptin receptors, and
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the signaling cascade is propagated via brain-derived neurotrophic factor-expressing
neurons located in the PVN. This underscores the significance of leptin signaling in
modulating the plasticity of sympathetic innervation in adipose tissue through intricate
neural pathways, a vital mechanism for preserving energy balance (Elmaleh-Sachs et al,
2023). These findings provide important insights into understanding the pathogenesis of
obesity and related metabolic diseases and offer guidance and inspiration for the
development of drugs and therapies for obesity treatment in the future.

In summary, the influence of peripheral organs on the hypothalamus is multifaceted,
involving not only the regulation of glucose and fat metabolism but also neuronal activity
and metabolic processes. Together, these influences form a complex network that ensures
the balance and stability of energy metabolism in the body. Delving deeper into these
mechanisms can enhance understanding of the pathogenesis of obesity and related
metabolic diseases and provide important guidance for developing new therapeutic drugs
and treatments.

HYPOTHALAMIC DYSFUNCTION AND GENETIC OBESITY

Monogenic obesity: clinical relevance of MC4R and melanocortin
pathways

Loss-of-function mutations in the MC4R gene (e.g., frameshift variant ¢.732_735del CAGT)
disrupt hypothalamic melanocortin-4 receptor signaling, leading to dominantly inherited
early-onset obesity (Correa-da-Silva et al., 2024). Clinical studies reveal that carriers of
pathogenic MC4R mutations exhibit leptin resistance, elevated insulin levels, and skeletal
muscle metabolic abnormalities (Bochukova et al., 2018). Notably, the obesity phenotype in
these individuals is modulated by polygenic risk scores (PRS), with high-PRS carriers
showing an additional BMI increase of 2.1 kg/m® (Chami et al., 2020). Common variants
near MC4R (e.g., rs17782313) are also linked to abdominal obesity and insulin resistance,
reinforcing the pathway’s role in polygenic obesity (Yeo et al., 1998).

Syndromic obesity: hypothalamic pathophysiology in Prader-Willi
syndrome

Prader-Willi syndrome (PWS), caused by paternal deletions or imprinting defects in the
15q11.2-q13 region, involves hypothalamic neuron-glia network dysfunction (Vaisse et al.,
1998). Patients with larger deletions (T1 subtype) exhibit microglial phagolysosomal
defects in the hypothalamus, impairing neuronal debris clearance and disrupting AQP4-
mediated glymphatic drainage, which exacerbates neuroinflammation and hyperphagia
(Krude et al., 1998). Transcriptomic analyses of PWS hypothalamic tissue show aberrant
activation of AgGRP/NPY pathways during fasting, alongside reduced BDNF expression,
disrupting energy balance (Marenne et al., 2020). Additionally, PHIP mutations repress
POMC transcription, linking genetic defects to leptin signaling impairment (Asai et al,
2013). These studies underscore the pivotal role of hypothalamic neuron-glia crosstalk in
genetic obesity and unravel the complex interplay between monogenic and polygenic
mechanisms. Future research must prioritize integrating human multi-omics data (e.g.,
single-cell transcriptomics and epigenetics) with functional validation in organoid models
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to accelerate therapeutic discovery. By incorporating translational evidence—such as
DCCR trial outcomes and MC4R-PRS interaction models—this review bridges
foundational insights to clinical practice, aligning with the medical community’s demand
for actionable knowledge.

NEUROIMAGING AND INTERVENTIONS FOR
HYPOTHALAMIC METABOLISM

Application of neuroimaging techniques in hypothalamic metabolic
disorders

As core functional neuroimaging technologies, positron emission tomography (PET) and
single-photon emission computed tomography (SPECT) provide essential tools for
investigating the pathological mechanisms underlying hypothalamic metabolic
dysregulation (Chung et al., 2025). Clinical studies have revealed that obese patients exhibit
significantly reduced glucose metabolic rates in the hypothalamus and associated brain
regions (e.g., striatum, prefrontal cortex), a phenomenon strongly correlated with
enhanced insulin resistance and impaired leptin signal transduction (Al-Alsheikh et al,
2023).

Recent studies utilizing the radiolabeled glucose tracer (18F-FDG) in combination with
high-resolution PET imaging have uncovered dynamic changes in glucose metabolism
patterns during brain maturation in adolescent rats. Experimental results demonstrate that
glucose metabolism becomes markedly enhanced in specific brain regions (e.g.,
hippocampus, thalamocortical circuits) as the nervous system matures, with metabolic
hotspots exhibiting precise spatiotemporal synchronization with the activation of
long-range neural connections (e.g., cortico-limbic pathways). Further analyses indicate
that the dynamic reorganization of metabolic networks optimizes energy allocation
efficiency for synaptic transmission, thereby promoting the formation of functional neural
circuits (Choi et al., 2015). These findings provide critical theoretical insights into the
potential impact of metabolic disorders (e.g., obesity, diabetes) on adolescent brain
development: aberrant metabolic signaling may disrupt the energy supply to neural
networks, thereby impairing the development of synaptic plasticity and cognitive
functions.

INTERVENTION STRATEGIES FOR HYPOTHALAMIC
METABOLIC DISORDERS

Drugs targeting the hypothalamus for metabolic diseases treatment
Metabolic disorders like obesity and T2D are closely linked to the hypothalamus, a vital
regulator of hunger sensations, energy usage, and glucose balance within the body. In
recent years, researchers have developed drugs targeting the hypothalamus to treat these
metabolic diseases (Table 1).

GLP-1 receptor agonists mimic the physiological actions of GLP-1. After eating, GLP-1
acts on the hypothalamus, suppressing appetite, delaying gastric emptying, increasing
glucose-dependent insulin release, reducing glucagon secretion, and promoting the growth
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Table 1 Drug categories and representative drugs with their mechanisms of action.

Drug name  Target Clinical trial Trial design Number of Primary outcome
participants
Semaglutide =~ GLP-1R  STEP Trial Randomized, double-blind, parallel trial for weekly =~ STEP 1: 1,961  Avg. weight loss at 68 weeks:
subcutaneous injections in obese adults (BMI > 30 STEP 3: 611 STEP 1-14.9%, STEP 3-16.0%,
or 227 with comorbidity), excluding diabetics. STEP 4: 902 STEP 4-~6.9% rebound.
Liraglutide RCT Randomized, controlled, double-blind trial of obese 130 1-year sustained weight loss &
adults stratified by gender & age, evaluating 1-year maintained postprandial
weight loss maintenance post-diet with exercise, satiety scores post-weight loss.
liraglutide, combo therapy, or placebo.
Setmelanotide MC4R Phase 3 Multicenter, randomized, double-blind, 38 32.3% of BBS patients achieved
Clinical placebo-controlled trial in BBS/Alstrom syndrome 210% weight loss at 52 weeks.
Trial patients aged >6 with obesity, undergoing 16-week
daily subcutaneous injection, followed by 52 weeks
of open-label setmelanotide.
Phase 2 Open-label, multicenter trial for 6-40-years-old obese 18 89% patients had 25% BMI
Clinical patients with hypothalamic injury/disease post- reduction at 16 weeks,
Trial surgery, chemo, or radiation, undergoing 16-week averaging 15% decrease from
daily subcutaneous injection. baseline.

of pancreatic B-cells (Grunvald et al., 2022). Representative drugs include liraglutide and
semaglutide. In 2021, semaglutide garnered FDA approval in the United States for the
management of obesity, administered via subcutaneous injection on a weekly basis
(Wilding et al., 2021). The STEP trial evaluated its efficacy and showed that in obese
individuals without diabetes, Specifically, after 68 weeks of treatment, the STEP 1 and
STEP 3 trials documented mean weight losses of 14.9% and 16.0%, respectively, far
surpassing those observed in the placebo-treated cohorts (Wadden et al., 2021; Rubino
et al., 2021). However, weight significantly rebounds after discontinuation, indicating the
importance of long-term use. The STEP 4 trial further confirmed weight rebound after
discontinuation, with an average rebound of about 6.9% of weight loss (Wilding et al.,
2022; Grunvald et al., 2022).

In 2014, the Food and Drug Administration (FDA) granted authorization for
liraglutide’s utilization in managing obesity (Rubino et al., 2021). A randomized,
controlled, double-blind trial further confirmed the superiority of liraglutide. The study
showed that compared with the placebo group, the liraglutide group continued to lose
weight 1 year after weight reduction and effectively maintained postprandial appetite
suppression and reduced sedentary time, thereby preventing significant weight rebound.
Furthermore, when liraglutide was combined with lifestyle interventions such as exercise,
the effect was even more significant, further demonstrating the great potential of
comprehensive treatment in the management of metabolic diseases (Jensen et al., 2022). A
meta-analysis indicated that both GLP-1 receptor agonists could reduce the risk of
cardiovascular disease events in overweight or obese adults who did not have diabetes
(Leite et al., 2022). In the SELECT study, semaglutide significantly reduced the risk of
cardiovascular events in overweight or obese adults without diabetes (Lincoff et al., 2023).
Further, when applied to a cohort comprising 529 patients with heart failure and preserved
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ejection fraction,semaglutide reduced symptoms related to heart failure and improved
physical activity limitations compared with placebo (Kosiborod et al., 2023).

These drugs provide new options for the treatment of metabolic diseases by targeting
specific mechanisms in the hypothalamus and have shown good efficacy and some
cardiovascular protective effects. However, long-term use and weight management after
discontinuation still require further research and attention.

MCA4R, as mentioned earlier, plays a key role in regulating energy metabolism and
appetite in the hypothalamus. Its mechanisms of action include regulating appetite and
increasing energy expenditure, receiving metabolic signals to regulate hunger and satiety,
enhancing basal metabolic rate, and promoting fat oxidation (Wang et al., 2021; Sayar-
Atasoy et al., 2023). Setmelanotide, as a selective agonist of MC4R, provides a new
treatment option for metabolic diseases such as Bardet-Biedl syndrome, Alstrom
syndrome, and hypothalamic obesity.

The clinical research on setmelanotide is extensive and thorough, as exemplified by a
Phase 3 clinical trial targeting patients with Bardet-Biedl Syndrome (BBS) and Alstrom
Syndrome. This Phase 3 clinical trial, featuring a multicenter, randomized, double-blinded,
and placebo-guided design, encompassed 12 prestigious research institutions situated
across the United States, Canada, the United Kingdom, France, and Spain, involving a total
of 38 eligible patients with obesity. The trial results showed that after 52 weeks of
setmelanotide treatment, 32.3% of patients with BBS aged >12 years achieved at least 10%
reduction in body weight, a statistically significant result (p = 0.0006). Although the effect
in patients with Alstrom syndrome remains uncertain, this finding provides a new
therapeutic option for obesity in patients with BBS (Hagq et al., 2022). Setmelanotide has
exhibited promising therapeutic potential in managing hypothalamic obesity, a condition
marked by rapid and excessive weight accrual subsequent to hypothalamic insult. A pivotal
Phase 2, open-access, multicenter clinical study involving subjects with hypothalamic
obesity observed the administration of setmelanotide to 18 participants, spanning an age
range from 6 to 40 years. These individuals had either a documented history of
hypothalamic impairment or were diagnosed with benign tumors impacting the
hypothalamus, necessitating surgical intervention, chemotherapy, or radiation therapy.
Notably, the study outcomes revealed that a remarkable 89% of the cohort achieved the
primary end-point metric at week 16, signifying a minimum 5% reduction in their baseline
Body Mass Index (BMI). The average BMI reduction for all patients was 15%, indicating
that setmelanotide has significant efficacy in treating hypothalamic obesity (Roth et al,
2024). The clinical research achievements of setmelanotide have introduced new prospects
in the field of metabolic disease treatment, and its precision treatment strategy based on
the MC4R mechanism paves the way for future drug development.

Collectively, these medications exert their therapeutic effects by modulating diverse
signaling cascades within the hypothalamus, thereby orchestrating appetite regulation,
energy expenditure modulation, and glucose homeostasis in the body. This complex
interplay ultimately contributes to the effective management of metabolic disorders,
including obesity and type 2 diabetes mellitus. With a more in-depth understanding of
hypothalamic function and metabolic regulation mechanisms, more effective treatment
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methods are expected to be developed in the future, providing patients with greater
prospects and additional options.

Bariatric surgery
Vertical sleeve gastrectomy (VSG) and Roux-en-Y gastric bypass (RYGB) are currently the
most commonly performed bariatric surgeries worldwide (doval & Patti, 2023).

Bariatric surgery remodels the hypothalamic metabolic regulation network through
multidimensional mechanisms, ameliorating obesity-related hormonal imbalances and
energy-sensing dysfunction. Studies have demonstrated that procedures such as sleeve
gastrectomy (SG) and RYGB significantly reduce the secretion of the orexigenic hormone
ghrelin while increasing levels of gut-derived hormones glucagon-like peptide-1 (GLP-1)
and peptide YY (PYY) (Sumithran et al., 2011; Suzuki, Jayasena ¢ Bloom, 2012). This
hormonal reprogramming directly targets the ARC of the hypothalamus: GLP-1 enhances
satiety signals by activating POMC neurons, while reduced ghrelin suppresses the activity
of AgRP neurons, synergistically dampening appetite drive. Additionally, postoperative
weight loss restores hypothalamic leptin sensitivity, augmenting energy expenditure and
suppressing feeding behavior via the JAK-STAT pathway. Enhanced vagal afferent
signaling is a critical mediator of surgery-induced hypothalamic modulation.
Postoperative alterations in gastrointestinal anatomy (e.g., reduced gastric capacity or
rapid nutrient delivery to the distal small intestine) activate vagal signaling through
mechanical and chemical stimuli, further inhibiting appetite-associated neuronal activity
in the lateral hypothalamic area (LHA) (Miras ¢ le Roux, 2013).

Post-bariatric surgery, the patient’s habenula volume and functional connectivity with
the hypothalamus are enhanced, inhibiting negative emotion-driven feeding behavior.
Combined fMRI and PET analyses suggest that dopamine signal remodeling in the
hypothalamus-striatum pathway is crucial for long-term weight loss. This remodeling of
dopamine signaling, by regulating the reward system and satiety, further consolidates
post-surgical appetite suppression and improvements in energy metabolism. Through
these multi-level mechanisms, bariatric surgery not only facilitates rapid weight reduction
in the short term but also maintains long-term metabolic health and reduces the incidence
of obesity-related complications (Wang et al., 2024).

Extreme dietary restrictions (Table 2)

Ketogenic diet: The ketogenic diet, characterized by extremely low carbohydrate intake
(5-10%) and high fat consumption (70-80%), induces a state of ketosis in which ketone
bodies (e.g., B-hydroxybutyrate (BHB)) replace glucose as the primary energy source.
Recent studies reveal that the ketogenic diet not only directly suppresses appetite through
ketones but also activates synergistic interactions between the gut microbiota and bile acid
metabolism. For instance, BHB can bind to amino acids via the enzyme CNDP2, forming
BHB-amino acid conjugates (e.g., BHB-Phe), which independently inhibit appetite and
reduce weight gain in high-fat diet-fed mice, bypassing traditional feeding regulation
pathways (e.g., hypothalamic corticotropin or GLP-1 receptor signaling) (Moya-Garzon
et al., 2025). Additionally, the ketogenic diet upregulates bile acids such as TUDCA and
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Table 2 Extreme dietary patterns: ketogenic diet, very low-carb diet, high-protein diet, and
intermittent fasting.

Dietary pattern Key mechanisms

Ketogenic diet Induces ketosis (BHB as primary energy)
Upregulates bile acids (TUDCA/TDCA)
Gut microbiota-BHB conjugates suppress appetite
Very low-carb diet Mimics fasting state
Depletes glycogen stores—Reduces insulin secretion
Setmelanotide Enhances satiety via mTORC1
Increases diet-induced thermogenesis
Downregulates SNAT?2 transporters
Intermittent fasting Activates hepatic GCN2
Repairs leptin signaling

Induces “metabolic memory” via epigenetic modifications

Note:
BHB, Beta-hydroxybutyrate; TUDCA, Tauro-ursodeoxycholic acid; SNAT2, Sodium-coupled neutral amino acid
transporter 2; GCN2, General Control Nonderepressible 2 (a stress-sensing kinase).

TDCA, reducing intestinal lipid absorption and improving obesity and insulin resistance.
This mechanism correlates inversely with BMI and fasting glucose levels in human plasma
(Li et al., 2024). However, long-term adherence to the ketogenic diet may accelerate
cellular senescence in organs, increase cardiovascular risks, and lead to nutrient
deficiencies (Acuria-Cataldn et al., 2024), necessitating professional guidance for safe
implementation.

Very low-carb diet: Very low-carb diets (daily carbohydrate intake <50 g) mimic a
fasting state by reducing insulin secretion and promoting lipolysis. While effective for
rapid weight loss and short-term improvement in insulin sensitivity, the adaptation phase
often triggers adverse effects such as hypoglycemia, constipation, and dehydration.
Research indicates that early-stage carbohydrate restriction depletes glycogen stores,
leading to water loss, while insufficient dietary fiber intake disrupts gut function.
Long-term application may result in nutrient imbalances (e.g., deficiencies in B vitamins
and minerals like potassium and magnesium) and menstrual irregularities in females.
Furthermore, prolonged very low-carb diets may dysregulate circadian rhythms, causing
nocturnal ghrelin surges and exacerbating metabolic compensatory adaptations (Acuiia-
Cataldn et al., 2024). Gradual carbohydrate reduction, prioritizing low-glycemic-index
(GI) whole grains and vegetables, alongside electrolyte supplementation, is recommended
to mitigate side effects.

High-protein diet: High-protein diets (protein >30% of total intake) promote weight
loss by enhancing satiety and increasing diet-induced thermogenesis (approximately 20%
of caloric expenditure for protein metabolism). However, studies from the University of
Washington demonstrate that excessive protein intake (particularly animal protein) may
counteract a key metabolic benefit of weight loss—improved insulin sensitivity. In obese
females, high-protein diets failed to enhance insulin sensitivity despite weight reduction,
whereas moderate-protein diets showed significant improvements. Mechanistically,
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high-protein diets may suppress appetite via hypothalamic mTORCI1 signaling; however,
excessive branched-chain amino acids (BCAAs) can disrupt amino acid sensing, triggering
compensatory hyperphagia (Acuia-Cataldn et al., 2024). Long-term high-protein diets
may also strain renal function and downregulate intestinal amino acid transporters (e.g.,
SNAT2), worsening leptin resistance. Protein intake should thus be limited to <1.5 g/kg
body weight daily, with plant-based proteins prioritized to balance metabolic risks.

Intermittent fasting: Intermittent fasting (e.g., 16:8 or 5:2 regimens) activates metabolic
repair mechanisms by extending fasting windows, thereby improving insulin sensitivity
and energy metabolism. Studies report that alternate-day fasting (ADF) reduces the
HOMA-IR index by 53% in insulin-resistant patients, outperforming traditional calorie
restriction (Yin et al., 2022). Mechanistically, fasting reduces the frequency of insulin
secretion, repairs hypothalamic leptin signaling, and enhances hepatic GCN2 expression.
This induces epigenetic modifications that establish a “metabolic memory,” sustaining
insulin sensitivity improvements for months post-intervention (Yang et al., 2024). Overall,
intermittent fasting represents a sustainable metabolic strategy but requires integration
with balanced nutrition and regular exercise to maximize health benefits.

FUTURE RESEARCH DIRECTIONS

In-depth study of neuroendocrine signaling pathways: Future research needs to further
explore the mechanisms of neuroendocrine signaling pathways in the hypothalamus, such
as the roles of insulin, leptin, and others in the hypothalamus, as well as how they affect
physiological processes such as feeding, energy expenditure, and glucose metabolism. This
will aid in the comprehension of the pathogenesis of metabolic diseases.

Elucidation of interactions between hypothalamic nuclei: The hypothalamus comprises
multiple nuclei that interact through intricate neural circuits to regulate metabolic
homeostasis. Future research should focus on the mechanisms of interaction between these
nuclei and their specific roles in metabolic diseases.

Precision-based treatment strategies targeting the hypothalamus: With a deeper
understanding of hypothalamic function, precision-based treatment strategies targeting
specific neurons or signaling pathways in the hypothalamus can be developed for
metabolic diseases such as obesity and diabetes. This will provide new avenues and
methods for the treatment of metabolic diseases.

Integration of interdisciplinary research: The study of hypothalamic function involves
multiple disciplines, such as neuroscience, endocrinology, and genetics. Future research
should enhance the integration of and collaboration between these disciplines to jointly
promote the in-depth development of hypothalamic function research.

CONCLUSION

As a neuroendocrine regulatory center, the hypothalamus plays a crucial role in the
occurrence and progression of metabolic diseases. Through in-depth research on
hypothalamic function, the pathogenesis of metabolic diseases can be better understood,
providing new ideas and methods for their treatment. With continuous advancements in
molecular biology and imaging technology, future research is expected to achieve more
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breakthroughs in hypothalamic function research, contributing significantly to the
prevention and treatment of metabolic diseases. Additionally, enhancing the integration
and collaboration of interdisciplinary research will provide more possibilities for the
in-depth development of hypothalamic function research.
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