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The increasing soil contamination with salinity and heavy metals poses serious threats to
the cultivation of economically and ornamentally important plants such as Helianthus
annuus (Sunûower). Bacillus subtilis IAGS174 and thiamine are well known for their role in
increasing plant stress tolerance levels by multiple mechanisms. The present research
aimed to assess the eûect of B. subtilis IAGS174 and thiamine on H. annuus under salinity
and lead stress by analyzing the growth parameters, physiological markers, and
biochemical assays. In a pot experiment, B. subtilis IAGS174 and thiamine were supplied to
H. annuus plants grown in soil subjected to 500 mg/kg of salt and 150 mg/kg of lead. H.
annuus plants exhibited a signiûcant reduction in growth attributes and photosynthetic
machinery under single and combined stress of Pb and salinity. The combined stress of Pb
and salinity declined the root length, shoot length, root fresh weight, shoot fresh weight,
chlorophyll a, and chlorophyll b of H. annuus by 49%, 61%, 48%, 39%, 53%, and 55%,
respectively, as compared to the control. Moreover, under stress, H. annuus plants
exhibited higher levels of antioxidant enzymes, phenol, ûavonoid and proline content.
Nevertheless, the combined eûect of B. subtilis IAGS174 and thiamine improved the fresh
weight of shoot and roots, chlorophyll a, chlorophyll b and carotenoids by 34%, 38%, 15%,
18% and 16%, respectively, under combined stress of salt and Pb to their respective
controlled conditions. Supplementation of B. subtilis IAGS174 and thiamine signiûcantly
increased the antioxidative enzymes (superoxide dismutase, catalase, and peroxidase)
and non-enzymatic antioxidants (phenol, ûavonoids & proline) in sunûower under
combined and individual stress of Na and Pb. Nevertheless, inoculation of B. subtilis
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IAGS174 accelerated the translocation of Pb and Na, while thiamine application reduced
the uptake of these metals. Conclusively, single and combined application of PGPR (Plant
growth promoting rhizobacteria) and thiamine proved a sustainable and eûective option to
improve plant tolerance against salt and Pb stress and oûer new avenues for suitable
agricultural practices in heavy metal and salt-contaminated soil
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15 ABSTRACT

16 The increasing soil contamination with salinity and heavy metals poses serious threats to the 

17 cultivation of economically and ornamentally important plants such as Helianthus annuus 

18 (Sunflower). Bacillus subtilis IAGS174 and thiamine are well known for their role in increasing 

19 plant stress tolerance levels by multiple mechanisms.  The present research aimed to assess the 

20 effect of B. subtilis IAGS174 and thiamine on H. annuus under salinity and lead stress by analyzing 

21 the growth parameters, physiological markers, and biochemical assays. In a pot experiment,  B. 

22 subtilis IAGS174 and thiamine were supplied to H. annuus plants grown in soil subjected to 500 

23 mg/kg of salt and 150 mg/kg of lead.  H. annuus plants exhibited a significant reduction in growth 

24 attributes and photosynthetic machinery under single and combined stress of Pb and salinity.  The 

25 combined stress of Pb and salinity declined the root length, shoot length, root fresh weight, shoot 

26 fresh weight, chlorophyll a, and chlorophyll b of H. annuus by 49%, 61%, 48%, 39%, 53%, and 

27 55%, respectively, as compared to the control. Moreover, under stress, H. annuus plants exhibited 

28 higher levels of antioxidant enzymes, phenol, flavonoid and proline content. Nevertheless, the 
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29 combined effect of B. subtilis IAGS174 and thiamine improved the fresh weight of shoot and roots, 

30 chlorophyll a, chlorophyll b and carotenoids by 34%,  38%, 15%, 18% and 16%, respectively, 

31 under combined stress of salt and Pb to their respective controlled conditions. Supplementation of 

32 B. subtilis IAGS174 and thiamine significantly increased the antioxidative enzymes (superoxide 

33 dismutase, catalase, and peroxidase) and non-enzymatic antioxidants (phenol, flavonoids & 

34 proline) in sunflower under combined and individual stress of Na and Pb. Nevertheless, inoculation 

35 of B. subtilis IAGS174 accelerated the translocation of Pb and Na, while thiamine application 

36 reduced the uptake of these metals. Conclusively,  single and combined application of PGPR (Plant 

37 growth promoting rhizobacteria) and thiamine  proved a sustainable and effective  option  to 

38 improve plant tolerance  against salt and Pb stress and  offer new avenues for  suitable agricultural 

39 practices in heavy metal and salt-contaminated soil

40 Keywords; Antioxidants; PGPR; Stress tolerance; Salinity; Sunflower; Thiamine 

41 Introduction

42 One of the major problems agricultural land faces is the continuous increase in salinity. Around 

43 the world, salinity affects 20% of irrigated land and  7% of all arable land (Liu et al., 2024). India, 

44 China, the United States, Pakistan, Sudan, and Turkey have major salinized lands, and it is 

45 spreading in other countries (Singh, 2022). About 6.3 million hectares of land have been affected 

46 by salinity in Pakistan and approximately 4000 hectares of fertile soil have been deteriorated with 

47 salinity every year (Alobaid et al. 2025). 

48 The major causes of soil salinization are the weathering of rocks and climate change-induced 

49 evaporation, extensive groundwater extraction, and subsequent flooded irrigation leading to the 

50 accumulation of soluble salts in the land (Maryam et al., 2023). Anthropogenic activities that cause 

51 an increase of lead content in soil and water are industrial processes, transportation, fertilizer, 

52 pesticide use and irrigation of soil with industrial effluent (Ijaz et al., 2020). Nations, including 

53 Pakistan, have stated that lead concentrations in the soil have risen drastically over the last few 

54 decades and are a contributing factor to decreased crop yields (Altaf et al., 2021). This high salinity 

55 and Pb level have an unfavorable influence on germination, plant development, and production of 

56 reactive oxygen species (ROS), which results in plant death by negatively affecting several 

57 metabolic processes like photosynthesis, respiration, transpiration, membrane characteristics, 

58 cellular hemostasis, hormone balance, (Patwa et al., 2024; Naz et al., 2025). High salt 
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59 concentration also has an osmotic and ion-specific effect on plant growth, oxidative stress 

60 tolerance and yield. Since most metals have negative effects at low doses (between 1 and 10 

61 mg/mL), heavy metal and salinity pollution have become a serious concern for plant growth 

62 (Rojas-Solis et al., 2023).

63 For the soil remediation from these pollutants, many physical, chemical, and biological techniques 

64 are being used all across the world. Physicochemical methods are mostly costly, unfriendly, and 

65 impractical when handling larger amounts of soil. On the other hand, bioremediation techniques 

66 such as using growth-promoting rhizobacteria (PGPRs) in combination with plants is considered 

67 a feasible,  economic and eco-friendly approach for the remediation of multi-contaminated soil 

68 (Sarwar et al., 2023).  The  PGPRs are found near plant roots and improve plant growth by 

69 providing nutrients and hormones (Shabaan et al., 2023). Hyper-accumulator plants can uptake 

70 100 times more heavy metals from soil and are deemed a viable option for the decontamination of 

71 salt and Pb-polluted sites (Altaf et al., 2021). Sunflower (H.  annuus) is a hyper-accumulator and 

72 the fourth largest global commercial oil seed crop.  Over the past 20 years, its production has 

73 increased significantly, but since 2010, its production has decreased steadily due to different 

74 causes, including soil degradation with salinity and heavy metals (Aftab et al., 2020). According 

75 to many investigations, most PGPR strains like Agrobacterium, Bacillus, and Rhizobium species 

76 increase the host plants� ability to withstand heavy metal toxicity. Numerous procedures such as 

77 fixation of atmospheric nitrogen, the solubilization of phosphate, and the synthesis of 

78 phytohormones (such as gibberellin, abscisic acid, and indole 3-acetic acid (IAA), 1-

79 aminocyclopropane-1-carboxylate (ACC) deaminase, and exopolysaccharide (EPS), can be used 

80 by these PGPRs to improve plant growth and heavy metal stress tolerance. Furthermore, PGPRs 

81 increase the enzymatic and non-enzymatic antioxidative activity to confer salinity and Pb toxicity 

82 in plants (Hahm et al., 2017).  

83 According to recent research, apart from plant growth regulators (PGRs), vitamins like Thiamine 

84 and ascorbic acid also help the plants to deal with the deadly consequences of both biotic and 

85 abiotic stressors by participating in energy-producing mechanisms like Kreb�s cycle and Calvin 

86 cycle. The foliar application of thiamine was found to dramatically boost growth, photosynthetic 

87 pigments, and antioxidant activities in many plants grown under abiotic stressed regimes (Naheed 

88 et al., 2021). Thiamine contributes to the defensive network by acting as an antioxidant or 
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89 indirectly by supplementing NADH and NADPH in plants. Thiamine supplementation may boost 

90 the performance of an anti-oxidative defense system in plants to cope with salinity and Pb toxicity 

91 (Sanjari et al., 2019).Although different studies have identified the efficacy of these growth 

92 regulators on numerous plant species under stress conditions, there is a lack of comprehensive 

93 research on the co-application of PGPR and thiamine to H. annus (sunflower) subjected to salinity 

94 and Pb stress. The main objectives of this study were: (i) evaluation of the potential of  B. subtilis 

95 IAGS174 and thiamine for improvement of growth, photosynthetic pigments, enzymatic and non-

96 enzymatic antioxidants, and attenuation of lipid peroxidation in sunflower exposed to Pb and 

97 salinity stress and (ii) the assessment of  B. subtilis IAGS174 and thiamine role in the translocation 

98 of sodium and Pb from soil to sunflower tissues. This study has shown insights into how these 

99 growth regulators improve stress tolerance, increase nutrient uptake, and confer oxidative damage 

100 in sunflower exposed to salinity and lead toxicity. 

101 Material and methods

102 The pot experiment was conducted in the wirehouse of the College of Earth and Environmental 

103 Sciences, University of Punjab, Lahore (31.52040 N, 74.35870 E). 

104 Inoculum Preparation and Soil Inoculation 

105 To prepare inoculation, a loopful of rhizobacteria (B. subtilis IAGS174) was inoculated to Luria 

106 Bertani (LB) broth media, which was then inoculated in a mechanical shaker for 2 days at 27 ° C. 

107 The optical densities were then measured to establish a uniform population of 108-109 CFU mL-

108 1. Approximately 8-10 mL of bacterial culture was applied to the soil with the help of a sterile 

109 syringe

110 Pot Experiment

111 A pot experiment was performed to determine the positive effect of rhizobacteria and thiamine on 

112 Pb and salt stress in sunflower plants. The plastic pots were filled with soil (1.5kg) obtained from 

113 the agricultural fields of the University of the Punjab, Pakistan. Salt and heavy metal stress was 

114 applied by amending sodium chloride (NaCl) (500 mg/kg soil) and lead (Pb (NO3)2 150 mg/kg) in 

115 the soil. The pots were moistened up to field capacity and then kept for 14 days to blend up the 

116 pollutants in the soil. The sunflower seeds were procured from Roshan Seed shop in Lahore, 

117 Pakistan. For surface sterilization, seeds were immersed in 70% ethanol for 30 seconds and 1% 
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118 sodium hypochlorite for an additional 60 seconds, following multiple washes with distilled water. 

119 The healthy seeds (8-10) were planted in each pot, and thinning was performed after germination 

120 to keep 5 plants in each pot. After three weeks of planting, growth regulator (PGPR, Thiamine) 

121 treatments were applied. The bacterial inoculum (10 mL) was applied to plants by soil drenching 

122 and thiamine (100 ppm) was supplemented by foliar application to the sunflower plants. The 

123 experiment was done in a wirehouse.  The environmental conditions in wirehouse were a 

124 temperature of 28-35 oC, a night/day period of 11/13 h, and humidity of 75 ± 5%. The plants were 

125 watered at regular intervals to keep optimum moisture in the soil. Each treatment was replicated 

126 thrice by a completely randomized design (CRD). A total of 48 pots for 16 treatments were planted 

127 with sunflower seeds, and these plants were uprooted after 120 days.  Hence, total of 16 treatments 

128 was planned by using either single or combined treatments of both growth promoters (microbe, 

129 thiamine) and single and co-application of pollutants (Na, Pb) such as C; control, B; Bacteria, T; 

130 thiamine, B+T; Bacteria+ thiamine, S; Salinity, S+B; Salinity+ Bacteria, S+T; Salinity and 

131 Thiamine, S+B+T; Salinity and Thiamine+Thiamine, Pb; lead, Pb+B; Lead+ Bacteria, Pb+T; 

132 Lead+ Thiamine, Pb+B+T; Lead+Bacteria+Thiamine, Pb+S; Lead+ Salinity, Pb+S+B; Lead+ 

133 Salinity+Bacteria, Pb+S+T; Lead+ Salinity+ Thiamine, and Pb+S+B+T; Lead+ 

134 Salinity+Bacteria+Thiamine etc.

135 Assessment of photosynthetic pigments 

136 The fully mature and widened leaves from the center of each plant were selected and removed. To 

137 estimate chlorophyll (Chl.) pigments, 0.25 g of fresh leaf tissues were blended with 80% acetone 

138 to make a plant extract. After extraction, the mixtures were centrifuged at 12,000×g for 10 min. 

139 The amount of Chl. a and Chl. b was measured by monitoring the absorbance of the supernatant 

140 at wavelengths of 663 nm and 645 nm, respectively, with the help of a spectrophotometer 

141 (UV/VIS, Cecil Aquarius CE 7200). The relative absorbance of the supernatant was obtained at 

142 480 nm for examining carotenoid content (Liu et al., 2024). The formulas used for calculating the 

143 chlorophyll content are:

144                                 Chl. �a� (mg g-1 FW) = 
(12.7 × A663) 2 (2.69 × A645) × Sample volume

1000 × W

145                                  Chl.�b�(mg g-1  FW) = 
(12.7 × A645) 2 (4.68 × A663) × Sample volume

1000 × W
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146                   Total chlorophyll (mg g-1 FW) = 
20(A645) + 8.02(A663) × Sample volume

1000 × W

147                              Carotenoids (mg g-1 FW) = OD480+0.114 (OD663)-0.638(OD645)

148 Antioxidant enzymes analysis

149 Enzyme extract was obtained by adding 1/g of the plant's fresh leaves in a mortar and crushing by 

150 pestle by pouring liquid N2. Afterward, the plant biomass was homogenized in 2.0/ml of an ice-

151 cold 50/mM sodium phosphate buffer. The homogenous mixture was centrifuged at 10000×g for 

152 20/minutes at 4 °C. The resulting supernatant was employed for the assessment of different 

153 antioxidative enzymes with the help of a spectrophotometer (Rao et al., 2000).

154 Superoxide dismutase (SOD) content was observed by pouring 0.1 mL of enzyme extract into 1.5 

155 mL 50 mM sodium phosphate (pH 7.8), 0.300 mL 750 µM nitro blue tetrazolium (NBT), 0.300 

156 mL 20 µM riboflavin, 0.3 mL 130 µM methionine, 0.3 mL 100 µM EDTA-N Spectrophotometer 

157 (UV/VIS,  Cecil Aquarius CE 7200)  was used to note reading at 560 nm after the reaction mixture 

158 was illuminated under light of 4000 flux for 20 min (Bin at al., 2010). POD activity was analyzed 

159 using 50 µL enzyme extract and 1.0 mL 0.3% H2O2, 1.0 mL 50 mM sodium phosphate (pH 5.5), 

160 and 0.95 mL 0.2% guaiacol. This was recorded at 470 nm using a spectrophotometer (UV/VIS, 

161 Cecil Aquarius CE 7200). A reaction mixture containing 500 µL 0.1 M H2O2, 3.0 mL 50 mM 

162 sodium phosphate (pH 7.8), 1.0 mL deionized water, and 200 µL enzyme extract was prepared for 

163 catalase (CAT) activity. A spectrophotometer (UV/VIS, Cecil Aquarius CE 7200) was used to note 

164 the absorbance at 240 nm (Rhaman et al., 2024).

165 Quantification of Hydrogen Peroxide (H2O2) and Malondialdehyde (MDA)

166 For malondialdehyde (MDA) determination, 0.2 g of plant leaf sample was crushed in 5 ml of 

167 0.1% TCA and centrifuged for 5 minutes at 10,000g. The reaction mixture was made by adding 1 

168 mL of the supernatant aliquot to 4 mL of 20% TCA with 0.5% thiobarbituric acid (TBA). The 

169 absorbance of the reaction mixture was estimated at 532/nm by spectrophotometer (UV/VIS, Cecil 

170 Aquarius CE 7200), and the reading for non-specific absorption at 450/nm and 600/nm was 

171 subtracted (Zhang et al., 2013). The MDA level (mol g-1 FW) was recorded using (= 155 mM-1 

172 cm-1). The H2O2 content was estimated by crushing 0.5 g of fresh plant leaf with 5 mL of 

173 trichloroacetic acid (TCA 0.1%) and then centrifuging at 12,000g at 4°Cfor 20 minutes. Afterward, 
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174 0.5 ml of supernatant liquor was homogenized with 0.5 mL of 10 mM KPO4 buffer. The reading 

175 of absorbance was noted at 390 nm by a spectrophotometer (UV/VIS, Cecil Aquarius CE 7200) 

176 (Velikova et al., 2000).

177 Estimation of Flavonoid and Phenolic Content

178 A volumetric flask was filled with 1 mL of plant extracts and 4 mL of distilled water to determine 

179 the flavonoid concentration. The solution was mixed with 0.3 mL of 5% NaNO2 after 5 minutes. 

180 0.3 mL of 10% AlCl3 was added to it. After 6 minutes, 2 mL of 1M NaOH was added to the 

181 solution. Distilled water was added to make the volume 10 mL. The absorbance of the solution 

182 was measured at 510 by spectrophotometer (UV/VIS, Cecil Aquarius CE 7200) (Zhishen et al., 

183 1999). Phenol contents were determined by immersing 2 g of plant leaf in 10 mL of 80% methanol 

184 for 15 minutes at 65°C. 1 mL of plant extract was mixed with 250 µL of Folin-Ciocalteau reagent 

185 (1N) and 5 mL of distilled water. The reaction mixture was stored at 30 degrees Celsius. To 

186 identify the exact number of phenols, the absorbance at 725 nm was measured by 

187 spectrophotometer (UV/VIS, Cecil Aquarius CE 7200) and compared to the gallic acid curve 

188 (Zieslin and Ben-Zaken, 1993).

189 Proline Estimation

190 A sample of dried and prewashed leaf (100 mg) was placed into a flask containing 10 mL of 

191 sulfosalicylic acid (3%). The mixture was vortexed and then filtered through Whatman's no-filter 

192 paper. Then, 2mL of the filtrate was transferred to a glass tube containing as much glacial acetic 

193 acid as there was acid ninhydrin. It was placed in a water bath at 100°C for 0.5 hours. Then, 4 mL 

194 of toluene was added, and the chromophore was aspirated. This reaction mixture was incubated at 

195 25°C for 0.5 hours, and its colorimetric value was recorded at 520 nm by spectrophotometer 

196 (UV/VIS, Cecil Aquarius CE 7200) and compared to the standard curve (Bates et al., 1973).

197 Plant Growth and Biomass Production Assessment

198 After 120 days, the plants were removed from the pots and properly rinsed with distilled water. 

199 Plant parts, including roots, shoots, and leaves, were separated. The lengths of the roots and shoots 

200 were measured. The values of fresh biomass production from root and shoot were also measured 

201 using an electrical balance. The root and shoot samples were placed in an oven at 700°C for one 

202 day. The root and shoot dry weights were also calculated.
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203 Heavy Metal Analysis

204 The dried plant samples were ground into a fine powder, and 1 g was mixed with 10 mL of HNO3 

205 and 5 ml of HCLO4. The mixture was put in a flask and transferred to the hot plate, which was 

206 then placed in the hot plate at 1500 C until the solution turned transparent and reduced to 5 mL. 

207 After the digestion, 45 mL of distilled water was mixed in this solution, making a solution of 50 

208 mL. The solution was filtered twice by using the Whatman 42 filter paper. The filtrate was shifted 

209 to sample bottles, and distilled water was poured to make the sample up to 100 mL. The Pb quantity 

210 was estimated using an atomic absorption spectrophotometer (AAS; PerkinElmer AAnalyst 800), 

211 while Na was analyzed by a flame photometer (Model PFP7, 90-125V).

212 The metal tolerance index, translocation factor (TF) and bio-concentration factor (BCF) were 

213 calculated by the methodology proposed by Wu et al. (2028). The metal tolerance index was 

214 analyzed for the evaluation of the ability of the plant to grow in the presence of metal concentration 

215 by a formula:

216                                  Metal tolerance index = 
Mass of treated plant

Mass of control plant
× 100

217 The translocation factor was determined as;

218                                                                TF = 
 or Na conc.  in shoot

Pbor Na conc.  in root

219 The bio-concentration factor (BCF) was determined by:

220                                                                BC = 
Pb or Na conc.  in shoot

 or Na conc.  in soil

221 Statistical Analysis

222 The experiment was performed with three replicates of each treatment in a completely randomized 

223 design (CRD). The obtained results were demonstrated as mean + standard deviation. For 

224 statistical analysis, a one-way analysis of variance (ANOVA) was performed with the help of 

225 DSAASTAT software. Significance among multiple treatments was checked by performing 

226 Duncan�s Multiple Range Test (DMRT) at Pf0.05 significance level using DSAASTAT software. 

227 Results
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228 Effect B. Subtilis IAGS174 and thiamine on growth parameters of H. annuus subjected to 

229 salinity and Pb stress

230 The effects of different treatments were significant shoot length (SL), root length (RL), shoot fresh 

231 weight (SFW), shoot dry weight (SDW), root fresh weight (RFW), and root dry weight (RDW) of 

232 sunflower. Both salinity and lead stress and their combination significantly hampered shoot and 

233 root length, dry weight, and fresh weight of the shoot and root of sunflower compared to the control 

234 treatment. The individual application of PGPR and thiamine and their combined treatment 

235 enhanced the growth of sunflower plants under normal and stress conditions. B+ T treatment under 

236 lead and salt stress was found to be most effective  and meaningfully improved shoot length, root 

237 length, shoot fresh weight, shoot dry weight, root fresh weight, and root dry weight by 28.12%, 

238 60%, 6.84%, 9.3%, 16.3% and 32.25% as compared to Pb+ S treatment (Table 1).

239 Influence B. Subtilis IAGS174 and thiamine on Photosynthetic attributes of H. annuus 

240 subjected to salinity and Pb stress

241 The application of PGPR and thiamine increased the Chl. a, Chl. b, total chlorophyll and 

242 carotenoid content in sunflower plants either alone or in combination as compared to the control. 

243 Both lead and salinity stress significantly reduced the Chl. a, Chl. b, total chlorophyll and 

244 carotenoid content in sunflower plants. Combined Pb+ S stress significantly (DMRT at pf0.05) 

245 reduced Chl. a by 44.5%, Chl. b by 54.81%, total Chl. by 47.33%, and carotenoid by 45.21% as 

246 compared to the control. B+ T treatment under lead and salt stress was found to be most effective 

247 in improving the Chl. a, Chl. b, total chlorophyll and carotenoid content by 16.33%, 16.39%, 

248 15.66%, and 14.28%, respectively, as compared to the Pb+ S treatment (Table 2).

249 Impact of B. Subtilis IAGS174 and thiamine on Antioxidant enzymes of H. annuus 

250 subjected to salinity and Pb stress

251 The physiological parameters like SOD, POD, and CAT showed a significant change in all the 

252 treatments. The amount of SOD, POD, and CAT showed a significant (DMRT at pf0.05) increase 

253 in salt (220.5%, 226.58%, and 220%, respectively) and lead stress (412.8%, 358.38%, and 97.14%) 

254 as compared to the control. While combined Pb+ S treatment significantly (DMRT at pf0.05) 

255 increased the antioxidant machinery of the sunflower plant by 6.62-fold in SOD, 5-fold on POD, 

256 and 3.2-fold in CAT as compared to the control. The application of PGPR to lead and salinity 
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257 stress soil further increased the antioxidative enzymes in sunflower, though the application of 

258 thiamine also augmented the antioxidant enzyme levels in sunflower plants compared to the 

259 relevant control but less than the Bacterial and B+T treatment. The B+ T treatment significantly 

260 (DMRT at pf0.05) improved the activity of SOD, POD, and CAT in sunflower plants growing in 

261 lead and salt-stressed soil by 67.74%, 65.08%, and 34.82%, respectively, as compared to Pb+ S 

262 treatment (Figure  1). 

263 Effect of B. Subtilis IAGS174 and thiamine on phenol, flavonoid and proline contents of H. 

264 annuus exposed to salinity and Pb stress

265 A similar trend was observed in the phenol, flavonoid, and proline content of sunflower plants. 

266 The application of PGPR and thiamine alone or in combination enhanced phenol, flavonoid, and 

267 proline content of plants as compared to the control. Phenol, flavonoid, and proline levels were 

268 also improved due to lead and salt stress, alone or in combination. Pb+ S significantly (DMRT at 

269 pf0.05) increased phenol content by 84.13%, flavonoid content by 2.14-fold, and proline content 

270 by 3.31-fold. Combined application of B+ T. under stress conditions also resulted in a substantial 

271 (DMRT at pf0.05) increase in phenol, flavonoid, and proline content as compared to the respective 

272 control (Table 2).

273 Influence of B. Subtilis IAGS174 and thiamine on Malondialdehyde (MDA) and Hydrogen 

274 peroxide (H2O2) levels of H. annuus exposed to salinity and Pb stress

275 Lead and salt stress significantly (DMRT at pf0.05) increased the MDA and H2O2 levels in 

276 sunflower plants by 2.28-fold and 2.08-fold in the Pb+ S treatment compared to the control. The 

277 treatment, including PGPR and thiamine in combination, significantly (DMRT at pf0.05) reduced 

278 the MDA and H2O2 levels in sunflower plants raised under lead and salt stress by 26.57% and 

279 39.70%, respectively, as compared to the Pb+ S treatment (Figure  2).

280 Effect of B. Subtilis IAGS174 and thiamine on lead and sodium uptake in H. annuus

281 Under salt stress conditions, sodium uptake by the sunflower plant significantly increased. 

282 However, the PGPR inoculation enhanced the Na uptake, while thiamine application reduced the 

283 Na uptake. The amount of salt was much more when treated with PGPR than thiamine as PGPR 

284 acts as a phyto-extractant, which tends to absorb salt from the soil. Thiamine does phyto-
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285 stabilization by keeping the metal-stabilized near roots, preventing them from entering the plants 

286 (Table 3).   

287 A similar trend was observed with Lead (Pb) concentration in the root and shoot of the sunflower. 

288 Under thiamine influence, lead uptake was reduced by 28% in the shoot and 18.6% in the root of 

289 the sunflower. After PGPR inoculation, significantly (DMRT at pf0.05) enhanced uptake was 

290 observed in the root and shoot of sunflower by 30.7% and 36.94%, respectively, as compared to 

291 the Pb treatment. The combined treatment (B+ T) showed high translocation values but less than 

292 PGPR-treatment. Similar results were observed in Pb+ S treatment after applying thiamine and 

293 PGPR alone or in combination. Table 3 shows the TF, BCF, and MTI values for thiamine and 

294 bacteria/PGPR strain (Table 3). 

295 Principal component analysis

296 The biplot (loading and score) resulted from the principal component analysis (PCA) to evaluate 

297 the efficacy of PGPR strain and thiamine-induced ameliorative effects on the biochemical and 

298 physiological attributes of sunflower (H. annuus). PCA of plants exposed to lead and salt stress 

299 are given in Figure  3. The first two components of PCA, i.e., PC1 and PC2, showed maximum 

300 contribution and accounted for 86.5% of the total variance in the given database. The PC1 

301 accounted for a 75.8% variance, while PC2 carried a 10.7% variance in the given dataset 

302 correspondingly. All 16 treatments were dispersed successfully by the first two principal 

303 components. The distribution pattern provided a clear indication that bacterial strain and thiamine 

304 supplementation under combined (lead and salt) stress had a prominent beneficial effect on various 

305 growth characteristics of sunflower than the control. The variables aligned with PC1 were 

306 correlated positively with each other, such as Root L, Shoot L, Root FW, Root DW, Shoot FW, 

307 Shoot DW, total carotenoids, total Chl., Chl. a and Chl. b. However, a highly negative relationship 

308 between the variables of PC1 and PC2 was observed: Shoot Pb; Root Pb; POD; SOD; CAT; Total 

309 flavonoid content; Total phenolic content; Proline; MDA; H2O2; Shoot Na and Root Na (figure  

310 3).

311 Treatments under no stress exhibit scores clustered within a relatively small range, having values 

312 such as C (4.03, -0.04), B (6.16, 0.57), T (5.55, 0.41), and B+T (7.19, 0.72). However, treatments 

313 under salinity stress (S) exhibit scores clustered within a small range with positive PC1 scores and 

314 negative PC2 scores such as S (0.04, -2.38), S+B (0.90, -2.40), S+T (0.83, -1.33) and S+B+T (1.34, 
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315 -1.92). Treatment under lead (Pb) stress showed negative PC1 scores and positive PC2 scores such 

316 as Pb (-2.09, 1.23), Pb+B (-1.50, 2.52), Pb+T (-1.33, 1.36) and Pb+B+T (-1.15, 2.50). Meanwhile, 

317 treatment with combined lead and salinity stress (Pb+S) showed negative scores for PC1 and PC2. 

318 Pb+S (-4.93, -1.01), Pb+S+B (-5.33, -0.29), Pb+S+T (-4.72, -0.08) and Pb+S+B+T (-5.004, 0.14). 

319 All the treatments showed great variability in the PCA biplot Correlation Analysis:

320 A Pearson correlation matrix was performed among the studied parameters of sunflower (Figure  

321 4) indicated by the color scale. Blue, showing a highly positive correlation, light yellow indicating 

322 no correlation between the parameters, and dark red showing a highly negative correlation between 

323 the parameters. Shoot length (shoot L) was negatively correlated with total phenolics content; total 

324 flavonoid content; proline content; SOD; CAT; POD; MDA; H2O2; Root Pb; Shoot Pb; Shoot Na, 

325 and Root Na. There was a slightly negative correlation between Root Na, Shoot Na, and Root Pb, 

326 Shoot Pb. On the other hand, Shoot Length (Shoot L) was positively correlated with root L, Shoot 

327 FW, Shoot DW; Root FW; Root DW; Chl. a; Chl. b; total Chl. and total carotenoids. All of these 

328 were significantly and positively correlated with each other as well. The treatments demonstrate 

329 (*) within rows that depict significance (p f 0.05) level.

330 Discussion 

331 The increasing menace of salinity and heavy metal pollution in soil by natural and anthropogenic 

332 sources leads to the disturbance in the crop production system by disrupting soil quality. Many 

333 physical, chemical and biological remediation techniques are used to eliminate salt and Pb 

334 contamination from soil. One of the leading soil remediation techniques is Phyto-remediation. B. 

335 subtilis IAGS174 was checked for its potential to tolerate Pb and salt stress in this experiment. In 

336 our study, B. subtilis IAGS174 survived under different levels of NaCl. In addition, the isolated 

337 bacteria showed significant tolerance to Pb stress. In agreement with our results, (Daraz et al., 

338 2023) isolated salt and Cd tolerant and observed that different bacteria might tolerate salt stress to 

339 varying levels like H. bacillus can tolerate up to 29% of NaCl.

340 Salinity and heavy metal contamination are the two most important threats to our environment, 

341 which are caused by natural and anthropogenic factors and pollute soil, water, and air. These 

342 pollutants affect soil fertility and can enter the food chain through crops. For the sustainable 

343 production of crops, there is a need to adopt more environmentally friendly remediation techniques 
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344 that can eliminate these pollutants or at least reduce their uptake in edible parts. During the current 

345 study, Pb/salt tolerant B. subtilis IAGS174 and thiamine were selected to reduce salinity and Pb 

346 toxicity in sunflower. The environmental variability and confounding factors may interfere with 

347 the study findings; hence, these were controlled by adapting a completely randomized research 

348 design, replication and precision during experimental setup such as treatment application as well 

349 as analysis to get valid and reliable results. Moreover, quality control was also exercised during 

350 chemical acquisition, sample preparation, plant analysis and data handling.

351 During the present study, the negative effects of Pb and salt on growth attributes and 

352 photosynthetic pigments of sunflowers relate to Pb and salt phototoxicity, ROS production, and 

353 disturbance in the metabolic functions of concerned plants. Disturbance in chlorophyll production 

354 and the electron transport chain with stomal closure also reduces plant growth and yield under 

355 stressed conditions. The deceleration of the Calvin cycle, impeding disorder in mitochondrial 

356 activity and plastoquinone production, and disruption in CO2 assimilation as well as stomatal 

357 conductance during toxic regimes could all be contributing factors to the decrease in plant growth 

358 and biomass (Altaf et al., 2021) as B. subtilis IAGS174 secrete a variety of growth-promoting 

359 biochemicals that increase assisted plant growth and abiotic stress resistance in plants growing 

360 under stressed conditions. Previous studies proved that B. subtilis helps in the phytoextraction of 

361 heavy metals as it increases the stress tolerance of plants, which induces metal translocations in 

362 plant roots and shoots (Ayub et al., 2024). The bacteria perhaps improved the growth of the plant 

363 exposed to abiotic stress by producing 1-carboxylate (ACC) deaminase, auxin, siderophores, and 

364 Fe-proteins. The results of this experiment are in agreement with Ayub et al. (2024), who stated a 

365 similar increasing trend for growth increment in brassica by using a combined treatment of two 

366 Pseudomonas species (Pseudomonas fluorescens and Pseudomonas gessardi) with compost under 

367 Cd and salt. Moreover, salt-tolerant Bacillus strains NMCN1 and LLCG23 promoted the growth 

368 and photosynthetic activity of wheat plants subjected to salinity stress (Ayaz et al., 2022). 

369 Additionally, Pb-tolerant Bacillus strains (Bacillus megaterium N29 & Bacillus safensis N11) 

370 improved the growth, photosynthetic, and antioxidant capability of spinach plants grown in sewage 

371 water (Ahmad et al., 2021). Thiamine acts as a secondary metabolite and phytostabilizer because 

372 it regulates heavy metal translocation in plant roots and shoots. Ahmed & Sattar (2024) reported 

373 that thiamine dose enhanced the growth, photosynthetic pigments, and antioxidants in Vicia faba 

374 plants under saline conditions. Thiamine may have improved salinity and Pb toxicity resilience in 
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375 sunflower plants by promoting enzymatic and non-enzymatic activities, expressing stress-

376 alleviating genes and accelerating photosynthetic machinery.

377 The results of our study depicted a noticeable decline in Chl. a, Chl. b, total chlorophyll and 

378 carotenoid contents in sunflowers under Pb and salinity stress. Heavy metals impede chlorophyll 

379 production by deactivating the enzymes involved and impairing their activities. Changes in 

380 pigment content under stressful conditions have a direct impact on plant disease and photosynthate 

381 production. Secondly, Pb stress inhibits the inclusion of iron (Fe) in the Phyto-porphyrin ring of 

382 chlorophyll, which reduces chlorophyll synthesis and ultimately causes damage to chlorophyll 

383 molecules  (Bender et al., 2025).  Under salt stress, plants show a similar trend of decreasing 

384 pigment as the photosynthetic rate and stomatal conductance decrease continuously. So, under the 

385 combined stress of Pb and salt conditions, our experiment showed the lowest contents of 

386 chlorophyll pigments in H. annuus. A similar depression for chlorophyll pigments in Spinacia 

387 oleracea grown under Cd toxicity was observed by Tanveer et al. (2022). Siddika et al. (2024) 

388 described that B. subtilis augmented the growth and photosynthetic pigments in rice plants grown 

389 in saline circumstances. During the present research, plants treated with thiamine and B. subtilis 

390 showed an increase in the biosynthesis of photosynthetic pigments because PGPR and thiamine 

391 can trigger plant defense systems against salt and Pb stress. Thiamine priming can activate the 

392 plant defense mechanism under abiotic stress. Thiamine is also known to scavenge or fight against 

393 ROS species and thus helps to sustain chlorophyll pigment levels in sunflower plants. Increased 

394 plant growth may have resulted from improved photosynthetic pigment production following 

395 rhizobacterial inoculation, which restored the plant's photosynthetic potential under Pb and salt 

396 stress. Jabeen et al. (2022) observed that thiamine application improved the growth, 

397 photosynthetic, and antioxidant parameters of Brassica oleracea exposed to arid conditions. The 

398 rhizobacteria improved the iron (Fe) uptake, which helped in the chlorophyll synthesis by 

399 increasing the leaf area and ultimately enhanced the photosynthetic activity of plants under a 

400 stressed environment (Khan et al., 2018).  

401 A higher amount of ROS generated under toxic regimes induces oxidative stress, damaging 

402 cellular membranes and DNA in plants (Verma and Dubey, 2003). The results of our study 

403 depicted a substantial rise in ROS-initiated oxidative stress in H. annuus under Pb and salinity 

404 toxicity. The content of anti-oxidant enzymes, i.e., POD, SOD, and CAT, was found to be higher 
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405 in Pb and salt-stressed sunflower as compared to controlled conditions. Ahluwalia et al. (2021) 

406 observed that heavy metal stress increases the activity of different anti-oxidant enzymes in plants 

407 for capturing ROS. Moreover, the presence of B. Subtilis and thiamine also showed higher anti-

408 oxidant enzyme production in stressed sunflowers. High amounts of antioxidants are produced to 

409 counter the increased content of ROS (reactive oxidative species) in stressed plants. Our results 

410 are in agreement with Ullah et al. (2024), who found that PGPRs and biochar boosted anti-

411 oxidative enzymes in stressed plants. The increased activity of anti-oxidant enzymes by bacteria 

412 and thiamine decreased the negative effects of salt and lead on sunflower by scavenging ROS. 

413 Augmented rate of SOD in plants induced tolerance against pb and salt stress. It converts toxic O2
- 

414 radicals to oxygen molecules. SOD also regulated the intercellular ROS and other physiological 

415 conditions in plants exposed to abiotic stress (Faize et al., 2011). Mohamed �Hussein & Orabi  

416 (2025) exhibited that thiamine supply diluted the salinity-induced oxidative impairments in  

417 sorghum plants by increasing the antioxidant enzymes such as SOD, CAT, APX, GR, and POD.  

418 Moreover, thiamine dose improved the enzymatic (SOD, CAT, POD) and non-enzymatic 

419 antioxidants (phenol, flavonoid, proline) in maize plants grown in As stress (Atif et al., 2022). 

420 Analogous to our investigations, Jamil et al. (2024) observed that inoculation of B. cereus and B. 

421 aerius augmented the antioxidant enzymes such as SOD, POD, and CAT in spinach plants grown 

422 under heavy metal stress. 

423 During our study, phenol, flavonoid, and proline showed an increasing trend in H. annuus under 

424 lead and salt stress. Osmoprotectants including soluble sugars, proteins, phenol, flavonoids, 

425 proline, and amino acids, accumulate in plants exposed to abiotic stress (Awasthi et al., 2019). The 

426 increased rate of flavonoids, phenols, and proline demonstrates the ability of H. annuus to 

427 withstand Pb and salt stresses (El-Tayeh et al., 2023).  Due to this, proline is considered an 

428 important osmoregulator for many plants to eliminate salt and Pb stress. Proline serves as the 

429 primary source of energy and nitrogen and stabilizes the macromolecular structure. In a similar 

430 study, an increased amount of proline was depicted in the canola plant under salt stress compared 

431 to non-stressed conditions (Vazayefi et al., 2024). 

432 Using PGPRs and thiamine, sunflower plants may enhance stress tolerance due to up-regulation 

433 in soluble protein, proline, phenol, flavonoids, and antioxidant enzyme activity. Proline, phenol, 

434 flavonoids, and soluble carbohydrates contribute to membrane integrity and endow stress 
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435 resistance in plants. By preventing tissue damage, these systems enable the plant to grow and 

436 develop in saltwater and heavy-metal polluted environments. Our results are in agreement with 

437 Atif et al. (2024), who depicted that the combined effect of IAA and thiamine increased the amount 

438 of proline in stressed plants. Similarly, our study showed higher proline contents in plants under 

439 the combined effect of B. subtilis and thiamine. An exogenous supply of thiamine augmented stress 

440 tolerance in Pisum stadium by increasing growth, photosynthesis, antioxidant enzymes, phenolics, 

441 and proline (Kausar et al., 2023). By our findings, Khan et al. (2023) revealed that supplementation 

442 of Pseudomonas fluorescens (NAIMCC-B-00340) and Azotobacter chroococcum Beijerinck 1901 

443 (MCC 2351) palliated salinity stress in Pusa Jagannath plants by increasing antioxidant enzymes, 

444 phenol, flavonoid, and proline contents. 

445 In our study, sunflower plants exhibited higher contents of both H2O2 and MDA when exposed to 

446 Pb and salinity toxicity. The overabundance of these two biomolecules interfered with the 

447 functioning of the cell membrane (Bhat et al., 2022). In contrast, MDA and H2O2 levels 

448 significantly declined in B. subtilis and thiamine-supplied sunflowers under Pb and salt stress. Our 

449 results are in agreement with Ayub et al. (2024), who observed the reduced production of MDA, 

450 electrolyte leakage, and H2O2 in PGPR and compost-supplied plants under stress. The limited 

451 production of MDA and H2O2 is also associated with the reduced uptake of Pb and Na in thiamine-

452 applied H. annuus. Plants treated with thiamine activated their defense mechanisms and restricted 

453 the amounts of both MDA and H2O2, thereby reducing the harmful stress effects. Analogous to 

454 our findings, Kaya et al. (2020) found that thiamine application significantly ameliorated boron-

455 induced oxidative stress by decreasing H2O2, electrolyte leakage and MDA levels in pepper plants. 

456 Moreover, in line with our results, Sehrish et al. (2024) found that PGPR-assisted Triticum 

457 aestivum L. plants exhibited lower levels of MDA, electrolyte leakage, and H2O2 when raised 

458 under Cd stress. 

459 During our study, it was noted that the amount of lead and Na concentration was increased in roots 

460 and shoots in H. annuus when treated with B. subtilis IAGS174. Our results are in agreement with 

461 those of  Bender et al. (2025), who noticed the augmented accretion of the metal in microbe-

462 assisted sunflowers under lead stress. Lead-tolerant rhizobacteria might decrease soil pH, which is 

463 important for the solubilization and bioavailability of metal. Through alterations in lead and Na 

464 availability and solubility as well as redox fluctuations in rhizosphere, B. subtilis IAGS174 assisted 

465 sunflower to exhibit higher  Na and  Pb uptake in its root and shoot tissues. In addition to acidifying 
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466 the soil, plant roots release protons and organic acids that reduce heavy metal adsorption and 

467 promote metal mobility in the rhizosphere. On the other hand, thiamine supply reduced the uptake 

468 of Na and Pb in the roots and shoots of sunflower plants. It may be assumed that thiamine adsorbed 

469 and immobilized the Na and Pb in roots and restricted the translocation to other plant parts.

470 In our study, the rate of translocation and bioconcentration factor varied by B. subtilis IAGS174 

471 and thiamine application to H. annuus under lead and salt stress. Na and Pb-translocation increased 

472 in plants from roots to shoots when supplemented with B. subtilis IAGS174. The translocation of 

473 heavy metals in plants depends upon soil chemistry. So, the application of B. subtilis IAGS174 

474 accelerated the extractable amount of Pb and salt in the soil, which led to augmented uptake in 

475 roots and shoot tissues of sunflower plants. A higher amount of Pb and salinity was found in the 

476 shoots than in the roots. Nevertheless, B. subtilis IAGS174-assisted plants exhibited an increased 

477 rate of bioconcentration and translocation of Na and Pb. The metal accumulation was more in 

478 shoots than roots, corroborating with the study of Atif et al. (2022), which showed more 

479 translocation of Arsenic in shoots. Conversely, a decrease in bioconcentration and translocation 

480 rate was observed in sunflower plants treated with thiamine. Thiamine as a phytoregulator 

481 improved the tolerance capacities of plant roots and immobilized Na and Pb in roots, making it 

482 impossible to translocate to other parts of the plant. Similarly, thiamine application declined the 

483 Pb and Na accumulation in roots and shoots of Lens culinaris exposed to lead stress (Bouhadi et 

484 al., 2024). Moreover, Ahmed et al. (2024) reported that thiamine supply lowered the Na uptake in 

485 Vicia faba plants treated with salinity toxicity. Furthermore, thiamine supplementation reduced the 

486 uptake and translocation of Cd in the root and shoot of canola plants under Cd stress (Sanjari et 

487 al., 2019). The combined treatment of thiamine and bacteria showed an improved rate of 

488 translocation and bioconcentration in H. annuus, as the plant is also a hyper-accumulator and has 

489 a higher capability for metal uptake (Naheed et al., 2022).

490 Conclusion

491  Results of the current study revealed that the salt and Pb stress significantly decreased plant 

492 growth, biomass production and photosynthetic pigments. Moreover,  salt and Pb stress 

493 significantly accelerated the levels of antioxidant enzymes, proline, flavonoids, phenolic contents,  

494 MDA and H2O2. On the other hand, supplementation of B. subtilis and thiamine significantly 

495 enhanced the growth, biomass and photosynthetic activity of H. annuus under salt and Pb stress 
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496 and endowed stress resilience in sunflower. Anti-oxidant enzymes, proline, flavonoid, and 

497 phenolic content also increased in bacteria and thiamine applied H. annuus exposed to Pb and salt 

498 stress. The application of B. subtilis IAGS174 and thiamine successfully reduced MDA and H2O2 

499 contents in H. annuus plants under Pb and salinity stress, which might have palliated oxidative 

500 stress in plants. While bioconcentration and translocation of Na and Pb individually were highest 

501 in B. subtilis IAGS174 assisted H. annuus under salt and Pb stress while lower in thiamine-

502 supplemented plants. The results advocated that single or co-application of B. subtilis IAGS174 

503 and thiamine conferred Pb and salinity resilience in hyper-accumulator H. annuus. The synergistic 

504 supply of B. subtilis IAGS174 and thiamine may be a suitable, cheap and eco-friendly alternative 

505 for the cultivation of ornamental crops in multi-polluted soil. In the future, proteomics, genomics 

506 and metabolomics studies for understanding plant stress response and field trials may be exercised 

507 to explore more insights into sustainable and eco-green agriculture production under contaminated 

508 environments.
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Figure 1
Eûect of Bacillus Subtilis IAGS174 and Thiamine on antioxidant enzymes of H. annuus
subjected to Pb and Salinity stress.

Values presented are means+SD (n= 3). The diûerent letters in a column show signiûcant
diûerence among the treatments at p>0.05 (DMRT). C ; control, B; bacteria, T; thiamine.
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Figure 2
Eûect of Bacillus Subtilis IAGS174 and Thiamine on Malondialdehyde (MDA) and
Hydrogen peroxide (H2O2) level of H. annuus subjected to Pb and Salinity stress.

Values presented are means+SD (n= 3). The diûerent letters in a column show signiûcant
diûerence among the treatments at p>0.05 (DMRT). C ; control, B; bacteria, T; thiamine.
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Figure 3
Principal Component Analysis of diûerent attributes of H. annuus plant.

The abbreviations are as followed: Shoot length: Shoot L, Root length: Root L, Shoot fresh
weight: Shoot FW, Root fresh weight: Root FW, Shoot dry weight: Shoot DW, Root dry weight:
Root DW, Concentration of Lead in shoot: Shoot.Pb, Concentration of Lead in root: Root.Pb,
Malondialdehyde: MDA, Hydrogen peroxide: H2O2, Peroxidase: POD, Superoxide dismutase:

SOD, Catalase: CAT, Concentration of Sodium in shoot: Shoot. Na, Concentration of Sodium in
root : Root. Na, Chlorophyll a: Chl. a, Chlorophyll b: Chl. b, and Total Chlorophyll: Total Chl., C
; control, B; bacteria, T; thiamine.
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Figure 4
Correlation matrix representing correlation among diûerent attributes of H. annuus
plant.

The abbreviations are as followed: Shoot length: Shoot L, Root length: Root L, Shoot fresh
weight: Shoot FW, Root fresh weight: Root FW, Shoot dry weight: Shoot DW, Root dry weight:
Root DW, Concentration of Lead in shoot: Shoot.Pb, Concentration of Lead in root: Root.Pb,
Malondialdehyde: MDA, Hydrogen peroxide: H2O2, Peroxidase: POD, Superoxide dismutase:

SOD, Catalase: CAT, Concentration of Sodium in shoot: Shoot. Na, Concentration of Sodium in
root : Root. Na, Chlorophyll a: Chl. a, Chlorophyll b: Chl. b, and Total Chlorophyll: Total Chl., C
; control, B; bacteria, T; thiamine.
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Table 1(on next page)

Impact of Bacillus subtilis IAGS174 and thiamine on growth attributes of H. annuus
subjected to Pb and salinity stress.

Values are means ±SD of 3 replicates. Diûerent letters in a column depict signiûcant
diûerences among treatments according to DMRT at pf0.05. C ; control, B; bacteria, T;
thiamine, Pb; Lead stress and S: Salt stress.
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1

2 Table 1: Impact of Bacillus subtilis IAGS174 and thiamine on growth attributes of H. annuus subjected to Pb and salinity 

3 stress.

Growth Attributes    

Treatments Shoot L (cm) Root L (cm) SFW (g/plant) SDW g/plant) RFW (g/plant) RDW (g/plant)

C 62+1.63bcde 9.1+1.63c 10.2+1.39cd 3.15+0.03d 1.78+0.06b 0.61+0.02d

B 68+0.85ab 12.2+1.59ab 14.5+1.23a 3.53+0.02b 1.92+0.06a 0.71+0.02b

T 65+1.63bc 11.5+0.66b 13.1+1.15b 3.43+0.02c 1.86+0.03ab 0.65+0.05c

B+T 72+2.45a 13.4+0.54a 15.3+1.01a 4.36+0.03a 1.97+0.02a 0.78+0.05a

S 47+1.63h 5.4+0.24fg 8.5+0.86efj 2.75+0.02f 1.34+0.04c 0.51+0.10h

S+B 60+2.45cdef 8.6+0.16cd 9.1+0.24cdef 2.88+0.02e 1.47+0.03c 0.57+0.04f

S+T 56+2.16ef 7.2+0.29de 8.9+0.08defg 2.85+0.06e 1.41+0.04c 0.54+0.02g

S+B+T 63+2.45bcd 9.4+0.29c 10.5+0.16c 2.9+0.05e 1.51+0.03c 0.59+0.07e

Pb 39+2.45ig 4.1+0.37gh 8.1+0.22efg 2.31+0.01g 1.13+0.02c 0.43+0.02k

Pb+B 54+2.16fg 8.3+0.43cd 9.2+0.17fcde 2.45+0.02g 1.25+0.02c 0.46+0.01j

Pb+T 49+2.94gh 6.8+0.37ef 8.7+0.16defg 2.39+0.02g 1.21+0.05c 0.45+0.02j

Pb+B+T 58+2.44def 8.9+0.67c 9.3+0.16fcde 2.53+0.01g 1.38+0.02c 0.49+0.02i

Pb+S 32+5.10j 3.5+0.33h 7.3+0.08g 2.15+0.02g 0.92+0.02c 0.31+0.02k

Pb+S+B 39+3.74ig 5.3+0.33fg 7.6+0.35fg 2.28+0.09g 0.98+0.08c 0.38+0.05k

Pb+S+T 37+5.09ig 4.7+0.24gh 7.3+0.16g 2.32+0.02g 0.96+0.04c 0.36+0.03k

Pb+S+B+T 41+3.74i 5.6+0.24fg 7.8+0.08efg 2.35+0.01g 1.07+0.18c 0.41+0.02k

4 Values are means ±SD of 3 replicates. Different letters in a column depict significant differences among treatments according to DMRT 

5 at pf0.05. C; control, B; bacteria, T; thiamine, Pb; Lead stress and S: Salt stress.
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Table 2(on next page)

Impact of Bacillus subtilis IAGS174 and thiamine on photosynthetic attributes
(Chlorophyll a, b , total chlorophyll, and Carotenoids) and biochemical parameter
(Phenol, Flavonoid, and Proline) of H. annuus subjected to Pb and salinity str

Values are means ±SD of 3 replicates. Diûerent letters in a column depict signiûcant
diûerences among treatments according to DMRT at pf0.05. C ; control, B; bacteria, T;
thiamine, Pb; Lead stress and S: Salt stress.
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1 Table 1: Impact of Bacillus subtilis IAGS174 and thiamine on photosynthetic attributes (Chlorophyll aa b, total chlorophyll, 

2 and Carotenoids) and biochemical parameter (Phenol, Flavonoid, and Proline) of H. annuus subjected to Pb and salinity stress

Chl. a Chl. b Total Chl. Carotenoids Phenol Flavonoids ProlineTreatments

mg g-� FW mg g-� FW mg g-� FW mg g-� FW mg(GAm��� 

FW 

mg(GAm��� FW mmol k��� DW

C 2.76±0.10abcd 1.35±0.45abcd 4.12±1.68bc 1.15±0.47ab 37.2±1.7j 12.3±1.81j 12.65±0.51i

B 3.48±0.16ab 1.82±0.25ab 5.3±2.16a 1.64±0.67ab 44.5±2.3ij 14.1±0.68j 12.92±0.64i

T 3.29±0.17abc 1.73±0.71abc 5.05±2.06ab 1.53±0.62ab 42.7±2.1ij 13.4±0.71j 12.71±0.63i

B+T 3.75±0.16a 1.92±0.62a 5.69±2.31a 1.79±0.57a 46.1±2.2i 15.2±0.61j 13.54±0.65i

S 2.14±0.82abcd 0.92±0.36abcd 3.09±1.33d 0.91±0.29ab 54.8±2.4h 17.9±0.87i 27.25±1.31h

S+B 2.62±1.07abcd 0.98±0.75abcd 3.8±1.9bc 1.12±0.44ab 67.6±3.1ef 23.4±1.2fg 29.62±1.45gh

S+T 2.56±1.15abcd 0.93±0.37abcd 3.49±1.13cd 1.05±0.44ab 63.2±2.9fg 21.5±1.1gh 28.93±1.44gh

S+B+T 2.71±1.10abcd 1.06±0.03abcd 3.79±1.26c 1.18±0.59ab 71.5±3.5de 25.2±1.3ef 31.43±1.57fg

Pb 1.92±0.10bcd 0.75±0.31cd 2.68±1.10de 0.83±0.41ab 59.8±2.29gh 20.3±0.75hi 32.36±1.37fg

Pb+B 2.28±0.09abcd 0.84±0.36bcd 3.15±1.28cd 0.95±0.38ab 74.9±3.1cd 27.2±1.72de 36.82±1.50de

Pb+T 2.23±0.74abcd 0.81±0.40bcd 3.07±1.27cde 0.87±0.38ab 69.6±2.7def 23.4±1.1fg 34.97±1.75ef

Pb+B+T 2.36±0.76abcd 0.89±0.35abcd 3.31±1.36cde 0.98±0.49ab 78.3±3.4c 29.6±1.3d 39.81±1.79cd

Pb+S 1.56±0.61d 0.62±0.24d 2.17±0.76e 0.63±0.31b 68.5±3.2def 26.4±1.4e 41.95±2.01c

Pb+S+B 1.69±0.84cd 0.67±0.26d 2.39±0.83e 0.68±0.34b 85.2±4.1b 35.7±1.9b 63.74±3.187a

Pb+S+T 1.64±0.75cd 0.65±0.26fd 2.31±0.98e 0.65±0.32b 79.1±3.9c 32.6±1.7c 57.92±2.84b

Pb+S+B+T 1.79±0.73cd 0.73±0.28cd 2.51±1.02de 0.75±0.29ab 94.7±4.57a 38.3±1.8a 61.93±2.85a

3 Values are means ±SD of 3 replicates. Different letters in a column depict significant difference among treatments according to DMRT 

4 at pf0.05. C: control, B: bacteria, T: thiamine, Pb: Lead stress and S: Salt stress.
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Table 3(on next page)

Values are means ±SD of 3 replicates. Diûerent letters in a column depict signiûcant
diûerence among treatments according to DMRT at pf0.05. C : control, B: bacteria, T:
thiamine, Pb: Lead stress and S: Salt stress. TF: Translocation factor; B

Inûuence of Bacillus subtilis IAGS174 and thiamine on Na and Pb uptake, Translocation
factor, Bioconcentration factor and Metal Tolerance index of H. annuus plants subjected to Pb
and salinity stress
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1 Table 1: Influence of  Bacillus subtilis IAGS174 and thiamine on Na and Pb uptake, Translocation factor, Bioconcentration 

2 factor and Metal Tolerance index of H. annuus plants subjected to Pb and salinity stress 

Sodium (Na) Uptake Lead (Pb) Uptake

Treatments Root (Na) Shoot 

(Na)

TF BCF MTI Root (Pb) Shoot 

(Pb)

TF BCF MTI

     mg kg-1 mg kg-1    mg kg-1 mg kg-1    

C 1.51+0.16e 1.72+0.11g 1.13cd 0.003de 100cd ND ND - - -

B 1.69+0.22e 1.89+0.17g 1.12d 0.004d 110bc ND ND - - -

T 1.48+0.22e 1.53+0.25g 1.03f 0.003de 89e ND ND - - -

B+T 1.62+0.24e 1.71+0.23g 1.06ef 0.003de 99d ND ND - - -

S 41+10.23bc 57+9.90cd 1.40ab 0.114ab 100cd ND ND - - -

S+B 51+3.27a 73+3.74a 1.43a 0.146a 128a ND ND - - -

S+T 29+4.55d 38+5.35f 1.31bc 0.076bc 67ef ND ND - - -

S+B+T 48+3.74ab 65+5.1b 1.35b 0.13ab 114b ND ND - - -

Pb 0.85+0.22e 0.93+0.22g 1.09e 0.002e 100cd 91+3.74c 157+2.94d 1.73b 1.05bc 100bc

Pb+B 1.02+0.25e 1.14+0.07g 1.12d 0.002e 122ab 119+4.55a 215+3.27a 1.81a 1.43a 137a

Pb+T 0.79+0.25e 0.82+0.08g 1.04f 0.002e 88e 74+2.94e 113+5.10f 1.53c 0.75d 72d

Pb+B+T 0.91+0.10e 0.98+0.36g 1.08ef 0.002e 105c 108+5.10b 191+4.55b 1.77ab 1.27ab 122ab

Pb+S 37+4.9c 51+4.55de 1.38ab 0.102b 100cd 83+4.55d 139+6.68e 1.68bc 0.93c 100bc

Pb+S+B 41+4.32bc 59+4.55bc 1.44a 0.118ab 116b 96+5.89c 168+5.89c 1.75ab 1.12b 121ab

Pb+S+T 27+5.1d 32+2.94f 1.19cd 0.064c 63f 71+3.74e 109+4.32f 1.54c 0.73d 78c

Pb+S+B+T 39+4.55c 48+4.55e 1.23c 0.096bc 94de 92+9.63c 158+4.24d 1.71bc 1.05bc 114b

3 Values are means ±SD of 3 replicates. Different letters in a column depict significant difference among treatments according to DMRT 

4 at pf0.05. C: control, B: bacteria, T: thiamine, Pb: Lead stress and S: Salt stress. TF: Translocation factor; BCF: Bio-concentration 

5 factor; MTI: Metal tolerance index
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