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ABSTRACT

Background. Dysregulated cellular metabolism is one of the major causes of colorectal
cancer (CRC), including mitochondrial fission. Therefore, this study focuses on the
specific regulatory mechanisms of mitochondrial dysfunction on CRC, which will
provide theoretical guidance for CRC in the future.

Methods. The Cancer Genome Atlas (TCGA)-CRC dataset, GSE103479 dataset and
40 mitochondrial fission-related genes (MFRGs) were downloaded in this study. The
differentially expressed genes (DEGs) were analyzed in TCGA-CRC samples. Using
MFRGs scores as traits, key module genes associated with its scores were screened
by weighted gene co-expression network analysis (WGCNA). Then, differentially
expressed MFRGs (DE-MFRGs) were obtained by intersecting DEGs and key module
genes. Next, DE-MFRGs were subjected to univariate Cox, least absolute shrinkage and
selection operator (LASSO), multivariate Cox and stepwise regression analysis to scree
hub genes and to construct the risk model. The risk model was validated in GSE103479.
Finally, the hub genes were comprehensively investigated through a multi-faceted
approach encompassing clinical characteristic analysis, Gene Set Enrichment Analysis
(GSEA), immune infiltration analysis, and drug sensitivity prediction. Subsequently,
the expression levels of the identified key genes were validated utilizing quantitative
real-time fluorescence PCR (qRT-PCR), reinforcing the findings and ensuring their
accuracy.

Results. The 49 DE-MFRGs were gained by intersecting 3,310 DEGs and 1,952 key
module genes. Then, CCDC68, FAM151A and MCIR were screened as hub genes. Also,
the risk model validated in GSE103479 showed that the higher the risk score, the worse
the survival of CRC patients. Furthermore, T/N/M stages were differences in risk scores
between subgroups of clinical characteristics. The memory CD4+ T cell and plasma
cell were more significant differences in the low-risk group samples. The 51 drugs were
showed a better response in the high-risk group patients. RT-qPCR validation results
showed that CCDC68 and FAM151A were down-regulated in CRC, while MCIR was
up-regulated, consistent with the validation set results. And FAMI5IA and MCIR
showed highly significant difference between CRC and normal samples (P < 0.0001).
Conclusion. In this study, we found CCDC68, FAM151A and MCIR as potential hub
genes in CRC, and analyzed the molecular mechanism of mitochondrial affecting CRC,
which would provide theoretical reference value for CRC.
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INTRODUCTION

Colorectal cancer (CRC) is one of the most prevalent malignancies of the digestive
system and ranks as the second deadliest cancer globally. It is classified into Colon
adenocarcinoma (COAD) and rectum adenocarcinoma (READ) based on the tumor’s site
of origin. Due to their shared etiology, pathogenesis, and histological features, COAD and
READ are frequently grouped together under the umbrella term CRC (Islam et al., 2022;
Sedlak, Yilmaz & Roper, 2023). The treatment strategy for CRC primarily relies on surgery,
supplemented by chemotherapy, radiotherapy, immunotherapy, and targeted therapies
(Ghazi et al., 2022). While advances in colectomy, chemotherapy, and immunotherapy
have significantly improved the 5-year survival rate for patients with CRC, outcomes for
those with advanced CRC remain poor (Yoshino et al., 2022). Consequently, there is an
urgent need to unravel the molecular mechanisms underlying CRC and identify novel
therapeutic targets to improve patient prognosis.

Mitochondria, integral to multicellular life, generate adenosine triphosphate (ATP)
through oxidative phosphorylation, providing the energy required for cellular metabolism.
Due to this role, they are often referred to as the “energy factories” of the cell (Harrington
et al., 2023). Mitochondria exhibit dynamic structural changes, adjusting their fusion
and fission in response to cellular metabolic demands. They also regulate their form,
size, quantity, distribution, quality control, and transport within the cell to maintain
energy balance (Quiles ¢ Gustafsson, 2022). Disruption of mitochondrial fission leads to
alterations in cellular metabolism, proliferation, and apoptosis (Kleele et al., 2021). Recent
studies have highlighted that increased mitochondrial fission (MF) can promote tumor
growth and metastasis (Colpman, Dasgupta & Archer, 2023). It has been demonstrated that
enhanced MF facilitates the metabolic shift from glycolysis to oxidative phosphorylation,
thereby supporting tumor cell survival under energy stress, indicating MF’s pivotal role
in regulating tumor cell metabolism (Plecitd-Hlavatd et al., 2008; Westermann, 2012).
Additionally, mitochondrial fission influences the onset and progression of pancreatic
ductal adenocarcinoma, Lung adenocarcinoma, and Hepatocellular carcinoma (Rehman
et al., 2012; Kashatus et al., 2015; Zhang et al., 2020). In CRC, mitochondria regulate
tumorigenesis through mechanisms such as histone acetylation (Ohshima et al., 2022),
and carposide II has been shown to inhibit CRC development by modulating MF and
NF-xB pathways (Chen et al., 2019). Despite these findings, the precise mechanism by
which mitochondrial fission influences CRC remains unclear. Therefore, this study aims
to further explore the underlying mechanisms of mitochondrial fission in CRC.

Utilizing public databases, this study systematically establishes the relationship between
mitochondrial fission and CRC by constructing a risk model, investigates its biological
functions, and evaluates the prognostic significance of key genes, providing a theoretical
foundation for CRC treatment.
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MATERIALS & METHODS

Data extraction

RNA-seq, clinical, and survival data were retrieved from The Cancer Genome Atlas
(TCGA) database, encompassing 606 CRC tissue samples (including survival data)

and 51 normal tissue samples, hereafter referred to as TCGA-CRC. Additionally, the
GSE103479 dataset was extracted from the Gene Expression Omnibus (GEO) database,
which included 155 CRC tissue samples with associated survival data. Two gene

sets, GOBP MITOCHONDRIAL FISSION and GOBP POSITIVE REGULATION OF
MITOCHONDRIAL FISSION, were selected from MSigDB using “mitochondrial fission”
as the keyword, resulting in the identification of 40 mitochondrial fission-related genes
(MFRGs) for subsequent analysis (Table 1).

Identification of DEGs

In TCGA-CRC samples, differentially expressed genes (DEGs) were identified using the
DESeq2 package (version 1.34.0) (Love, Huber & Anders, 2014), with thresholds set at P.adj
< 0.05 and log, FC > 1.5. The top 20 DEGs, sorted by log, FC, were visualized via volcano
and heat maps.

Analysis of MFRGs scores

MFRG scores for each sample were calculated using the GSVA package (version 1.42.0)
(Hdnzelmann, Castelo & Guinney, 2013) to assess differences between sample groups. A
rank-sum test was employed to evaluate differences in MFRG scores between the two
sample groups. The impact of MFRGs on the survival of patients with CRC was evaluated
by stratifying samples based on the optimal cut-off values of MFRG scores. Kaplan—Meier
(KM) curves were plotted for high- and low-MFRG score groups using the survminer
package (version 0.4.9) (Li et al., 2020). in order to understand the relationship between
MFRGs scores and clinical characteristics (age (50-year cut-off), gender, ethnicity and
T/N/M stage), CRC patients were divided into different clinical subgroups, and the
differences in MFRGs scores between different subgroups were compared using the

Wilcoxon test.

Weighted gene co-expression network analysis

The expression matrix of all CRC samples from TCGA-CRC was analyzed using weighted
gene co-expression network analysis (WGCNA) (version 1.70.3) (Langfelder ¢» Horvath,
2008). Initially, outlier samples were excluded by clustering. The optimal soft threshold
(R?> =0.85) was determined by evaluating the relationship between the soft threshold
and the scale-free network evaluation coefficient. A phylogenetic tree of genes was then
constructed based on gene similarity. Using MFRG scores as the phenotype, the correlation
between the phenotype and gene modules was computed. Correlation coefficients and
P-values were calculated, and a correlation heat map was generated. The module with
the strongest correlation to the MFRG score (R > 0.5 and P < 0.05) was selected as the
key module. Further gene filtering within the module was performed by setting the gene
significance (GS) to 0.4 and module membership (MM) to 0.4, thereby identifying key
module genes associated with the MFRG score.
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Table 1 List of 40 MFRGs.

Number Symbol

1 DNMIL
2 RALBP1
3 MTEFR2
4 LRRK2

5 MIEF2

6 COX10

7 Cllorf65
8 DCN

9 PGAMS5
10 DDHD2
11 KDR

12 MAPT
13 OPAl

14 PRKN

15 FIS1

16 MTEP1
17 CYRIB
18 GDAP1
19 MIEF1
20 PPARG
21 MARCHF5
22 VPS35
23 MTEFRIL
24 SPIRE1
25 MFF

26 RALA

27 INF2

28 PINK1
29 TMEM135
30 BNIP3
31 STAT2
32 AURKA
33 UCP2

34 MUL1
35 MYO19
36 DDHD1
37 AP3Bl1
38 MCU

39 SLC25A46
40 MTEFR1
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Acquisition and enrichment analysis of DE-MFRGs

DE-MFRGs were identified by intersecting DEGs and the key module genes associated with
MFRGs using the VennDiagram package (version 1.7.1) (Ito & Murphy, 2013). To explore
the biological functions of the DE-MFRGs, Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analyses were performed using the clusterProfiler package
(version 4.2.2) (Wu et al., 2021), with a significance threshold set at P < 0.05.

Risk model construction

To assess the prognostic impact of DE-MFRGs on patients with CRC in TCGA-CRC, a
risk model was constructed. First, univariate Cox regression analysis was performed using
the survival package (version 3.5-3) (Deng & Thompson, 2023) to calculate risk scores and
identify significant genes (P-value < 0.05). In the second step, Least Absolute Shrinkage
and Selection Operator (LASSO) analysis was conducted using the glmnet package (version
4.1-4) (Friedman, Hastie ¢ Tibshirani, 2010) to select genes with strong correlations for
constructing the optimal risk model. In the third step, the proportional hazards (PH)
assumption was tested for the genes selected from the LASSO analysisd, and those with
P > 0.05 were included in further analysis, followed by multivariate Cox regression
analysis. Finally, a stepwise regression method was applied to optimize the multivariate
Cox regression results by entering variables one by one and checking their significance,
removing non-significant variables, thereby constructing the optimal regression equation
and identifying the hub genes associated with prognosis.

Validation of risk model

Using the expression levels of hub genes and the risk coefficients obtained from stepwise
regression analysis, the risk score formula (Riskscore = Zin:lcoef(genei) x expr(gene;))
was used to calculate the risk score for each patient, with patients with CRC categorized
into high- and low-risk groups based on the median risk score. The prognostic value of
the risk model was assessed by comparing survival statuses between the two risk groups,
and KM survival curves were plotted using the survminer package (version 0.4.9) (Li et al.,
2020). The model’s validity was further assessed by plotting receiver operating characteristic
(ROC) curves. The risk model was then validated in the GSE103479 dataset using the same
methodology.

Independent prognostic analysis and clinical characteristic
correlation analysis

For univariate Cox analysis, six clinical characteristics (age, gender, race, T/N/M stages,
and risk score) were included in the model. The results underwent PH assumption testing
and multivariate Cox analysis to identify independent prognostic factors associated with
CRC. Additionally, to evaluate the risk model’s applicability for patients with CRC, a
nomogram predicting 1-, 2-, and 3-year survival was constructed using the rms package
(version 6.5-1) (Sachs, 2017). The nomogram’s validity was verified by calibration curves
and ROC analysis. Finally, in TCGA-CRC, differences in risk scores across the six clinical
characteristics were analyzed using the rank-sum test (P < 0.05).
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GSEA analysis

Differential analysis between the two risk groups in TCGA-CRC was performed
using DESeq2 (version 1.34.0) (Love, Huber ¢ Anders, 2014), with |log,FC| cal-
culated and ranked. GSEA was conducted using the KEGG background dataset
(c2.cp.kegg.v2023.1.Hs.symbols.gmt), with a threshold set at FDR < 0.05. The top six
enriched signaling pathways were visualized using the enrichplot package (version 1.18.3)
(Zhang et al., 2019).

Immune related analysis

To further investigate the differences in the immune microenvironment between the high-
and low-risk groups in CRC samples, the relative abundance of 22 immune cell types across
all TCGA-CRC samples was evaluated using the “CIBERSORT” algorithm, and immune
cell proportions were compared between high- and low-risk group samples. Differences in
immune cell composition between the risk groups were assessed with the “Wilcoxon” test
(P < 0.05). The expression levels of 48 immune checkpoints were also compared between
these groups, and the TIDE score, immune exclusion score, and immune dysfunction score
were calculated using the TIDE database (http:/tide.dfci.harvard.edu/) to evaluate immune
therapy efficacy.

Drug sensitivity analysis

The half maximal inhibitory concentration (IC50) for 138 common chemotherapeutic
agents was calculated for all TCGA-CRC individuals using the “pRRophetic” algorithm
(version 0.5) (Geeleher, Cox ¢ Huang, 2014). Differences in IC50 values between the two
risk groups were compared using the Wilcoxon test. A Spearman correlation analysis was
performed to assess the relationship between the sensitivity to chemotherapeutic agents
and hub gene expression (|r| > 0.4).

Pan-cancer analysis

To examine the expression of hub genes across different cancer types, the Wilcoxon test
was conducted using the rstatix package (version 0.7.2) with a significance threshold
of P < 0.05. Results were visualized with the ggplot2 package (version 3.5.1). Box plots
displayed differential expression of hub genes in pan-cancer samples, while violin plots
illustrated the differences in hub gene expression between tumor and normal samples in
TCGA-CRC.

RNA isolation and quantitative real-time polymerase chain reaction
(qRT-PCR)

Twenty tissue samples, including 10 CRC tumor and 10 normal samples, were collected,
frozen, and stored at —80 °C. Each 50 mg sample was lysed with TRIzol reagent for
total RNA isolation, following the manufacturer’s instructions. RNA concentration was
measured by NanoPhotometer N50, and its quality was assessed based on concentration,
purity (A260/A280 ratio), and the amplification curve. RNA was reverse transcribed into
cDNA using the SureScript First Strand cDNA Synthesis Kit (Servicebio, Wuhan, China).
The qRT-PCR reactions consisted of three wL of reverse transcription product, five uL
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Table 2 Primer sequence information for RT-qPCR.

Primer Sequence

CCDC68 F TGCCTTGTATGAGTCTACGTCC
CCDC68 R AGCCCTGTTGAAGGTTTCCAC
FAMI51AF CTGAATGTGGAGTGGCTGGT
FAM151A R TTCTGTGTCTGGGAGGGTCA
MCIRF GTGTCGAAATGTCCTGGGGA
MCIRR GACACCTCCTGGCATCTACC
Internal reference-GAPDH F CGAAGGTGGAGTCAACGGATTT
Internal reference-GAPDH R ATGGGTGGAATCATATTGGAAC

of 2xUniversal Blue SYBR Green qPCR Master Mix, and one pnL each of forward and
reverse primers. The amplification protocol included an initial denaturation step at 95 °C
for 1 min, followed by 40 cycles of denaturation at 95 °C for 20 s, annealing at 55 °C
for 20 s, and extension at 72 °C for 30 s. Three technical replicates were performed for
each sample. Primer sequences are provided in Table 2. GAPDH served as the internal
control, and relative gene expression was quantified using the 27221 method. GraphPad
Prism 5 was used for graph creation and statistical analysis, with p-values calculated for

each comparison.

Ethics approval and consent to participate

This study was conducted in accordance with the Declaration of Helsinki and approved by
the Ethics Committee of The People’s Hospital of Guangxi Zhuang Autonomous Region
(2024.03.01, KY-ZC-2024-030).

Consent to participate
Written informed consent was obtained from all participants.

Statistical analysis

All statistical analyses were performed using R software. Differential expression analysis
was conducted using the DESeq2 package, and survival analysis was carried out using the
survminer package to plot KM survival curves. WGCNA was performed using the WGCNA
package, and functional enrichment analysis was conducted with the clusterProfiler
package. Cox regression analysis was performed using the R survival package, while LASSO
regression analysis was carried out with the glmnet package. Additionally, ROC curves
were plotted using the survivalROC package, and nomograms were constructed using
the rms package. Immune infiltration cell analysis was conducted using the CIBERSORT
algorithm, and the IC50 values for common chemotherapy and molecular targeted drugs
were calculated using the pRRophetic package. Correlation analysis was performed using
Spearman’s correlation. For pairwise comparisons, the Wilcoxon test was applied, and
P < 0.05 was considered statistically significant.
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RESULTS

Identification of DEGs and characterization of the correlation between
MFRGs and CRC

In TCGA-CRC samples, a total of 3,310 DEGs were identified, comprising 1,669 upregulated
and 1,641 downregulated genes (Figs. 1A—1B). To investigate the relationship between
MFRGs and CRC, differential analysis revealed that the MFRG score was significantly
lower in CRC samples compared to normal samples (Fig. 1C). KM survival analysis
showed that groups with high MFRG scores exhibited improved survival probabilities,
suggesting that MFRGs may influence the survival of patients with CRC (Fig. 1D). Further
analysis of clinical characteristics demonstrated significant differences in MFRG scores
across various factors, including race, M stage (MO0 vs M1), and N stage (NO vs N1, NO vs
N2) (Fig. 1E).

Acquisition of 49 DE-MFRGs

Sample clustering and phenotypic trait heatmaps showed no outlier samples (Fig. 2A). A
soft-threshold of 7, with an R? value of 0.85, was selected to construct a scale-free network
(Fig. 2B). Following average hierarchical clustering and dynamic tree clipping, 16 modules
were identified (Fig. 2C). The correlation heatmap revealed that the MEgreen (Cor =
0.67), MEturquoise (Cor = 0.54), MEred (Cor = —0.52), and MEsalmon (Cor = —0.52)
modules were significantly associated with CRC (P < 0.05) (Fig. 2D). A total of 917 genes,
3,143 genes, 907 genes, and 302 genes were derived from these modules, resulting in 1,952
hub module genes (GS = 0.4, MM = 0.4) (Figs. 2E-2H). By intersecting the 3,310 DEGs
with the 1,952 hub genes, 49 DE-MFRGs were identified (Fig. 21).

Biological functions and signaling pathways involved in 49 DE-MFRGs
Functional enrichment analysis of the 49 DE-MFRGs revealed 15 significant terms in
GO analysis, including caspase binding, helicase activity, kinetochore formation, and

cell division site organization (Figs. 3A-3C). KEGG pathway analysis identified three

key pathways, such as pentose and glucuronate interconversion and nucleotide sugar
biosynthesis (P < 0.05) (Fig. 3D).

Identification of hub gene and risk model construction

The prognostic value of the 49 DE-MFRGs was assessed by constructing a risk model.
Initially, univariate Cox analysis was performed on the 49 DE-MFRGs in 606 CRC samples,
yielding 10 genes associated with survival (P < 0.05). Of these, HIG1 hypoxia inducible
domain family member 1A (HIGDI1A), diaphanous related formin 3 (DIAPH3), coiled-coil
domain containing 68 (CCDC68) and family with sequence similarity 151 member A
(FAM151A) were identified as protective factors, while keratin associated protein 5-1
(KRTAP5.1), heat shock transcription factor 4 (HSF4), melanocortin 1 receptor (MCIR),
Zinc finger protein 692 (ZNF692), Lck interacting transmembrane adaptor 1 (LIMEI) and
tweety family member 3 (TTYH3) were risk factors (Table 3 and Fig. 4A). LASSO analysis,
using the minimum lambda value, selected seven genes (HIGDI1A, DIAPH3, CCDC68,
FAM151A, HSF4, MCIR and TTYH3) to construct the optimal risk model (Figs. 4B—4C).
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Figure 1 The expression of DEGs between colorectal cancer group and normal group in TCGACRC

samples. (A) Volcanic map of differentially expressed genes distribution between CRC and Normal

groups: red dots are up-regulated genes, green dots are down-regulated genes, and gray dots are

undifferentiated genes. (B) Heat map of differentially expressed genes between the CRC group and

Normal group: the upper part is the heat map of expression quantity density of the Top20 differentially
expressed genes in the sample, showing the lines of five quantiles and average values; the next part is the
expression heat map of the top 20 differential genes in the sample. (C) MFRGs score difference among

different samples in training set. (D) KM survival curve of high and low MFRGs rating groups. (E)
Differences in MFRGs scores among different clinical subgroups.
Full-size G DOI: 10.7717/peer;j.19522/fig-1

Risk model had good predictability for CRC patients
In TCGA-CRC, the high- and low-risk groups divided based on the median of the risk score
were calculated, with results showing a significant increase in the number of deaths as the

The PH assumption test for these seven genes showed P-values greater than 0.05, and
a forest plot from multivariate Cox analysis was generated (Fig. 4D). Finally, stepwise
regression analysis identified three hub genes for the construction of a prognostic risk
model: CCDC68 (HR = 0.74, 95% CI [0.56-097], P =0.03) and FAM151A (HR = 0.38
95% CI [0.20-0.71], P = 0.002) were protective factors, and MCIR (HR = 2.22, 95% CI
[1.56-3.17], P < 0.001) was a risk factor (Table 4 and Fig. 4E).
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Figure 2 Acquisition of 49 DE-MFRGs. (A) Sample level clustering after the introduction of sample
traits. (B) Soft threshold selection: the determination of the optimal soft threshold mainly refers to the fig-
ure on the left, that is, the scale-free fit index (Y -axis) under different soft thresholds (X -axis), where the
red line represents the value of the selected scale-free fit index. From the figure on the left, the value when

the scale-free fit index is 0.85 is the minimum soft threshold. (continued on next page...)

Full-size Gl DOI: 10.7717/peer;j.19522/fig-2
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Figure 2 (...continued)

The figure on the right shows the network connectivity under different soft thresholds. (C) Identifica-
tion of co-expression modules: the top half is the hierarchical clustering tree of genes, and the bottom
half is the gene module, that is, the network module. Corresponding to the top and bottom, it can be seen
that the genes that are close to each other (clustering to the same branch) are divided into the same mod-
ule. (D) Correlation heat map of modules and phenotypes: the leftmost color block represents the mod-
ule, and the rightmost color bar represents the correlation range. In the middle part of the heat map, the
darker the color, the higher the correlation, red indicates positive correlation, blue indicates negative cor-
relation; The numbers in each cell represent relevance and significance. (E-H) Scatterplot of GS and MM
in key modules: GS (Gene Significance) represents the correlation between gene expression and pheno-
typic data. MM (Module membership) refers to the correlation between gene expression and module. (I)
Identification of differential MFRGs related genes.

risk scores rose (Figs. 5A—5B). KM analysis revealed that patients in the high-risk group had
a lower survival rate (Fig. 5C). ROC analysis showed area under the curve (AUC) values
of 0.631, 0.626, and 0.663 at 1-, 2-, and 3-year intervals, respectively (Fig. 5D), indicating
that the risk model demonstrated reasonable predictive accuracy. The risk model was then
validated in the GSE103479 dataset, with results consistent with TCGA-CRC, confirming
that high-risk patients with CRC had worse survival and prognosis (Figs. 5E-5H).

RiskScore, age, and N/M stages were independent prognostic factors
for CRC

Further investigation of the correlation between clinicopathologic characteristics and the
risk model in TCGA-CRC samples revealed that the risk score, along with age and T/N/M
stages, showed significant association with the risk model in univariate Cox analysis

(P < 0.05) (Fig. 6A), all of which satisfied the PH assumption (P > 0.05). Multivariate
Cox analysis demonstrated that, except for T stage, the remaining clinicopathologic
characteristics were significantly correlated with the risk model (P < 0.05) (Fig. 6B). A
nomogram was developed to visualize the clinical characteristics, showing that higher
scores correlated with increased mortality. The validity of the nomogram was confirmed
by calibration curves, with an AUC exceeding 0.6, affirming its strong predictive ability
for the survival of patients with CRC (Figs. 6C—6E). Further analysis of the risk scores
and clinicopathologic features revealed significant differences in risk scores across T/N/M
stages (Fig. 6F).

Enrichment pathways of high- and low-risk groups and their effects
in the immune micro environment

GSEA identified the top six signaling pathways significantly associated with the risk model,
including cardiac muscle contraction, ascorbate and aldarate metabolism, pentose and
glucuronate interconversion, retinol metabolism, extracellular matrix (ECM)-receptor
interaction, and dilated cardiomyopathy (Fig. 7A).

Differences in the immune microenvironment between the high- and low-risk groups in
CRC were also explored. The proportional distribution of 22 immune cell types is shown
in Fig. 7B. Notably, except for MO macrophages, resting dendritic cells, memory CD4+ T
cells, activated memory CD4+ T cells, and plasma cells, the low-risk group exhibited more
significant differences in immune cell proportions (Fig. 7C), indicating that the immune
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Figure 3 Biological functions and signaling pathways involved in 49 DE-MFRGs. (A-D) GO and
KEGG enrichment results of differential MFRGS-related genes: color bands on the left represent logFC of
genes, and different bands on the right represent different pathways.

Full-size & DOI: 10.7717/peerj.19522/fig-3
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Table 3 List of functional information for ten genes from univariate Cox analysis.

Full name

Function

Correlation
with cancer

Correlation with mitochondrial
dysregulation

HIGDI1A

DIAPH3

CCDCe68

FAMI51A

KRTAPS.1

HSF4

MCIR

ZNF692

LIME1

TTYH3

HIG1 Hypoxia
Inducible Domain
Family Member 1A
Diaphanous Related
Formin 3

Coiled-Coil Domain
Containing 68

Family With
Sequence Similarity
151 Member A

Keratin Associated
Protein 5-1

Heat Shock
Transcription
Factor 4

Melanocortin
1 Receptor

Zinc Finger
Protein 692

Lck Interacting
Transmembrane
Adaptor 1

Tweety Family
Member 3

Regulating polyamine metabolism,
inhibited tumor growth and
metastasis

Involved in actin remodeling and
regulate cell movement and
adhesion, promote migration and
invasion of CRC cells

Involved in microtubule
anchoring at centrosome and
protein localization

Highly expressed in the intestine,
kidney and spleen
(PMID: 31949211)

Essential for the formation of
arigid and resistant hair shaft
through their extensive disulfide
bond cross-linking with abundant
cysteine residues of hair keratins
(PMID: 37014946)

Promotes the proliferation
and metastasis of CRC by regulating
EMT-related signalling pathways

Regulates T regulatory cell
differentiation through metabolic
reprogramming to promote
colon cancer

Promotes the progression
of colorectal cancer by regulating
HSF4 expression

Docking protein to recruit
signaling molecules, and involved
in inflammatory pathways

Plays a role in tissue formation,
embryonic development, and
immune response to pathogen
related molecules

colon cancer
(PMID: 37479180)

colorectal cancer
(PMID: 39843730)

colorectal cancer
(PMID: 35557589)

NA

colorectal cancer
(PMID: 39881364)

colorectal cancer
(PMID: 38917522)

colorectal cancer
(PMID: 38435777)

bladder cancer
(PMID: 39429662)

colorectal cancer
(PMID: 38827027)

Mitochondrial inner membrane
protein, regulating metabolic
homeostasis (PMID: 37492734)

NA

NA

NA

NA

NA

Suppressing the oxidative stress,
apoptosis, and mitochondrial fission
through the AMPK/SIRT1/PGC-1a
signaling pathway (PMID: 33391490)

NA

NA

NA

system of low-risk group patients was more active and more favorable for controlling
tumor progression. Furthermore, 16 immune checkpoints showed significant differences
between the high- and low-risk groups, including HHLA2, TNFRSF4, CD160, TNFSF4,
and TIMP3 (Fig. 7D). These immune checkpoints may be involved in the activation or
inhibition of immune cells, suggesting differences in immune treatment responses between
the risk groups. In addition, the TIDE score and immune exclusion score of the high-risk
group were significantly higher than those of the low-risk group (Fig. 7E). These two scores
are more meaningful in evaluating the effectiveness of immunotherapy. The high-risk
group patients, due to their higher scores, were associated with poorer prognosis, including
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Gene Symbol HR 95%CI P Value
HIGDIA —e— 0.763 0.61-0.955 0.0181
KRTAPS.1 ————— 1.34 1.023-1.756 0.0336
DIAPH3 —_—— 0.664 0.473-0.932 0.018
HSF4 — 1.456 1.163-1.822 0.00104
CCDC68 —— 0.719 0.545-0.948 0.0193
MCIR 2.01 1.432-2.82 5.45¢-05
ZNF692 — 143 1.07-1.913 0.0158
LIME1 ——— 1.329 1.019-1.735 0.0361
FAMISIA —_— 0.519 0.281-0.956 0.0354
TTYH3 —_—— 1.328 1.015-1.736 0.0383

T T 1
0 1 2 3
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Figure 4 Identification of CCDC68, FAM151A and MCIR and risk model construction. (A) Unifactor
Cox regression analysis of forest map. (B) Ten cross-validations of the adjusted parameters in LASSO
analysis: the horizontal coordinate is the logarithm of the lambdas, and the vertical coordinate is the
model error. The optimal lambda value is at the lowest point of the red curve, and the corresponding
number of variables is 7. (C) LASSO coefficient spectrum: the horizontal coordinate is the logarithm of
the lambdas, and the vertical coordinate is the variable coefficient. As the lambdas increase, the variable
coefficient approaches 0. When the optimal lambda is reached, the variable whose culling coefficient is
equal to 0. (D) Multivariate Cox regression analysis of forest map. (E) Stepwise regression analysis of
forest map.

Full-size Gl DOI: 10.7717/peer;j.19522/fig-4
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Table 4 Results of stepwise regression analysis.

Gene coef exp (coef) se (coef) z Pr (> |z])

CCDC68 —0.30553 0.736733 0.141426 —2.16035 0.030746

FAMI151A —0.97326 0.377849 0.31981 —3.04325 0.00234

MCIR 0.797626 2.220264 0.181711 4.389539 1.14E—05
Notes.

Coef, Coefficient; exp (coef), Exponential of coefficient; se (coef), Standard error of the coefficient; z, z-value; Pr(> |z|),
Probability of the Z-score being greater than its absolute value.
shorter survival and higher recurrence rates. The higher the TIDE score, the poorer the
response to immune checkpoint inhibitors and the shorter the survival time.

Fifty-one common chemotherapeutic drugs were effective in high-risk
patients for CRC

The IC50 values of 71 chemotherapeutic drugs showed significant differences between the
two risk group samples, with 51 drugs demonstrating better responses in the high-risk group
patients (IC50 values lower in the high-risk group than in the low-risk group) (Figs. 8-9),
while the remaining 20 drugs performed better in the low-risk group (Fig. 10). It was worth
noting that 20 of these drugs had already been clinically applied (Table 5). This suggested
a potential significant difference in chemotherapy drug sensitivity between the high-risk
and low-risk groups. Spearman correlation analysis revealed that FAM151A was positively
correlated with AG.014699, camptothecin, NVP.BEZ235, and TW.37 (r > 0.4), while
CCDC68 was negatively correlated with BMS.708163 and X681640 (r < —0.4) (Fig. 11).
These findings indicate that the expression levels of certain genes may be associated with
the sensitivity to specific drugs, suggesting that gene expression levels could influence
tumor cell response to these drugs, or the drugs could impact gene-related functions.

Three hub genes linked in other diseases

Pan-cancer analysis showed that CCDC68, FAM151A and MCIR were significantly different
in thyroid cancer (THCA), renal clear cell carcinoma (RCC) and lung squamous cell
carcinoma (LUSC) etc. (Fig. 12). In TCGA-CRC, the differential expression between
CCDC68 and FAM151A were more significant in the normal group, whereas MC1R had
opposite results to the above two genes.

Validation of expression of 3 biomarkers

In TCGA-CRGC, the differential expression of CCDC68 and FAM151A was more significant
in the normal tissue samples, whereas MCIR exhibited opposite expression patterns
(Fig. 13A). RT-qPCR validation of hub gene expression in clinical CRC and normal tissues
confirmed these findings. CCDC68 and FAM151A were more highly expressed in normal
samples compared to CRC samples, while MCIR expression was higher in CRC samples,
consistent with the dataset results (Figs. 13B—13D). Notably, the expression of FAM151A
(P < 0.0001) and MCIR (P < 0.0001) exhibited significant differences between clinical
CRC and normal samples.
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Figure 5 Risk model had good predictability for CRC patients. (A) Risk curves for the high-low risk
group of CRC patients in the training set. (B) Scatterplot of the high-low risk grouping of CRC patients in
the training set. (C) Survival curves of CRC high-low risk groups in the training set: red represents high
risk group, blue represents low risk group. (D) ROC curves of CRC patients at 1, 2 and 3 years of training
set. (E) Risk curves of CRC patients in high-low risk groups were validated. (F) Scatter plots of high-low
risk groups of CRC patients were validated. (G) Survival curves of the high-low risk group of CRC patients
in the validation set. (H) ROC curves of CRC patients at 1, 2, and 3 years were validated.
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Figure 6 RiskScore, age and N/M stages were independent prognostic factors for CRC. (A) Univariate
independent prognostic analysis of CRC forest map. (B) Multivariate independent prognostic analysis of
CRC forest map. (C) The survival nomogram of CRC patients was constructed based on risk model and
clinical features. (D) Calibration curve of clinical feature nomogram: the horizontal axis represents the
probability of different clinical outcomes predicted by the model, (continued on next page...)
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Figure 6 (...continued)

and the vertical axis represents the probability of actually observed clinical outcomes of patients, which is
represented by the form of median plus mean, and an ideal curve with slope of 1 is drawn as a reference.
The closer the actual curve is to the ideal curve, the better the calibration degree is, that is, the smaller the
deviation between the predicted results of the model and the actual results, the better the model effect. (E)
ROC curve of clinical features. (F) Correlation analysis between risk score and clinical features.

DISCUSSION

The rising incidence and mortality of CRC have elevated its status as a significant
public health issue (Bray et al., 2024). Recent studies have highlighted the pivotal role
of mitochondrial fusion—fission dynamics in the initiation and progression of CRC
(Wiu et al., 2024). Dysregulated mitochondrial fission or fusion can contribute to the
metabolic reprogramming of tumor cells, thereby activating oncogenic pathways that
drive cell proliferation, invasion, migration, and drug resistance (Wu et al., 2024). This
study, leveraging public databases, systematically establishes the association between
mitochondrial fission and CRC by constructing a risk model, exploring its biological
functions, and evaluating the prognostic efficacy of key genes, providing a theoretical
foundation for CRC treatment.

GO and KEGG enrichment analyses were performed on DE-MFRGs. These analyses
revealed that biological processes enriched by DE-MFRGs predominantly involve cell
division and motility. Cytokinesis, a post-mitosis process, ensures the equal distribution
of cell membrane, cytoskeleton, organelles, and soluble proteins to form two daughter
cells. The study showed that the cortical protein CTTN upregulates the expression of the
cytoplasmic division protein dedicator of cytokinesis 1 (DOCK1), and silencing DOCK1
impairs the migration and invasion capabilities of CTTN. Thus, CTTN promotes CRC
metastasis by increasing DOCKI expression (Jing et al., 2016). Furthermore, mutations
in adenomatous polyposis coli (APC), commonly found in CRC, inhibit cell division by
preventing mitotic spindle anchorage in the late cortex, thereby obstructing the initiation
of the cytokinetic furrow (Caldwell, Green ¢ Kaplan, 2007). Cellular components enriched
by DE-MFRGs include chromosomal regions and centromere regions. Chromosomal
rearrangements, such as deletions of chromosome arm 8p and amplifications of 8q, are
prevalent in CRC (Brueckner et al., 2013). Studies on interchromosomal eight deletions in
patients with CRC, using 11 microsatellite markers, revealed that eight markers are located
in the centromeric region of chromosome 8p (Chughtai et al., 1999). Tumor suppressor
genes may also be involved in a specific site of CRC, notably in a large centromere region
between D11S897 and D115925 (Connolly et al., 1999). These findings underscore the
critical role of chromosomal and centromeric regions in CRC initiation and progression,
aligning with the results of this study. Enriched molecular functions of DE-MFRGs include
ATP-dependent chromatin remodeling enzyme activity, caspase binding, and DNA helicase
activity. ATP-dependent chromatin remodeling enzymes, which alter nucleosome structure
(Sundaramoorthy ¢» Owen-Hughes, 2020), facilitate the accessibility of DNA sequences to
interacting proteins, thereby enabling precise regulation of eukaryotic gene expression
(Sundaramoorthy, 2019). Chromatin remodeling is essential for efficient DNA repair,
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Figure7 Associated pathways of three hub genes and their effects in the immune micro environment.
(A) KEGG enrichment signaling pathway in high-low risk groups: This diagram can be divided into three
parts. Part I: The top five lines are the lines of gene Enrichment Score. The vertical axis is the correspond-
ing Running ES, and there is a peak value in the line graph, which is the Enrichemnt score of this gene set,
and the genes before the peak value are the core genes under this gene set. The horizontal axis represents
each gene under this gene set, corresponding to the bar code-like vertical line in the second part. Part 2:
The barcode-like part, called Hits, where each vertical line corresponds to a gene under the gene set. Part

3: Sequencing of genes. (B) Proportion of immune cells in the high-low risk

group. (C) Differences in im-

mune cells between high and low risk groups. (D) Differences in 48 immune checkpoints between high
and low risk groups. (E) TIDE score difference between high and low risk groups violin chart.
Full-size & DOLI: 10.7717/peerj.19522/fig-7

genome stability, and therapeutic responses. Mutations or overexpression of Helicase,

lymphoid specific (HELLS), a member of the ATP-dependent chromatin remodeling SNF2

family, have been linked to various cancers, including CRC, hepatocellular carcinoma,

and leukemia (Peixoto et al., 2022). Caspases, an evolutionarily conserved cysteine protease

family, play pivotal roles in cell death and inflammation (Van Opdenbosch ¢ Lamkanfi,
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2019), with caspase activation marking the irreversible point of cell death (Boatright ¢
Salvesen, 2003). The combined expression of Caspase-8 and Caspase-3 exhibits synergistic
effects and serves as an effective prognostic indicator for patients with CRC (Jing et al.,
2016). Additionally, p20BAP31 has been shown to induce CRC cell apoptosis via the AIF
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Caspase-independent and ROS/JNK mitochondrial pathways (Jiang et al., 2023). DNA
helicases, which catalyze the unwinding of duplex nucleic acids using ATP hydrolysis,

are crucial for various DNA-related biological functions (Hidese et al., 2018). These

helicases not only maintain genome stability but also play significant roles in cancer.

Their involvement in DNA damage, replication stress responses, and repair pathways

underscores their critical function in cancer biology (Dhar, Datta ¢ Brosh Jr, 2020). These
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Table 5 Table of relevant information on 71 discrepant drugs.

drugs high_group_res low_group_res padj pvalue log2FoldChange References
Mitomycin.C —1.011 —1.029 0.09352216 0.048116473 0.028560435 PMID: 39531120
Sorafenib 3.844 3.826 0.083005791 0.042104387 0.014156188 PMID: 39577235
VX.680 2.478 2.364 0.075511125 0.037755563 0.039769178

X17.AAG —0.9516 —0.8502 0.072798168 0.035871561 —0.144174664

Methotrexate 0.9782 0.953 0.064334946 0.031235082 0.021896508 PMID: 363377
AZD.2281 4.856 4915 0.059041856 0.028237409 —0.090080215 PMID: 36082969
GSK.650394 4.256 4.187 0.055894746 0.026327236 0.05820392

CGP.082996 4.036 4.07 0.04924791 0.022839611 —0.033324433

ABT.263 2.787 2.855 0.042698772 0.019492918 —0.066165992

MK.2206 2.807 2.837 0.041125831 0.018476823 —0.02663862

KINO001.135 6.118 6.134 0.033967735 0.015014723 —0.022779748

JNK.OL —0.06688 —0.0392 0.031843664 0.013845071 —0.046716942

AP.24534 1.758 1.855 0.031843664 0.01364931 —0.124897566 PMID: 38722621
RDEAI119 2.148 1.979 0.031843664 0.013543565 0.117379887

Roscovitine 4.827 4.81 0.025538218 0.010548395 0.005275309

TW.37 —0.3615 —0.2439 0.021059601 0.008545925 —0.112737783

Camptothecin —3.94 —3.873 0.021059601 0.008499383 —0.189793129 PMID: 16990856
Rapamycin —0.1547 —0.2284 0.021059601 0.008429995 0.028144422 PMID: 37057884
JNJ.26854165 2.853 2.903 0.019286462 0.007407119 —0.096412009

KU.55933 5.121 5.135 0.018646596 0.007026254 —0.018304948

A.770041 3.721 3.837 0.018080039 0.006681753 —0.125054936

Axitinib 3.562 3.638 0.016782954 0.006080781 —0.070962035 PMID: 39851927
IPA.3 5.828 5.935 0.016529912 0.005869317 —0.083331087

AZD8055 0.362 0.3714 0.015447953 0.005373201 —0.013423386

GW843682X —2.316 —2.338 0.015309048 0.005213951 0.008854699

AZD6482 3.629 3.789 0.015068095 0.005022698 —0.129862683

NSC.87877 6.735 6.766 0.013382545 0.004363873 —0.024400818

EHT.1864 4.778 4.85 0.013382545 0.004300615 —0.061736239

VX.702 4.406 4.467 0.011565574 0.003603766 —0.040968786

SB590885 4.975 4.915 0.010444852 0.003178868 0.056102008

BI.2536 —1.595 —1.692 0.010444852 0.003117351 0.07229982

AZD6244 2.899 2.721 0.010435655 0.003024827 0.119951365

Docetaxel —5.362 —5.26 0.007690955 0.002173531 —0.177536721 PMID: 39911148
NVP.BEZ235 —2.387 —2.266 0.007245434 0.00199512 —0.119126921

NU.7441 3.534 3.595 0.006978244 0.001870979 —0.078773514

Bryostatin.1 —1.129 —1.09 0.006422026 0.001675311 —0.037451029

NVP.TAE684 1.689 1.721 0.006218487 0.001577153 —0.062869173

ZM.447439 2.739 2.766 0.005392136 0.001328497 —0.029209727

Metformin 10.65 10.53 0.005392136 0.001300887 0.083124597 PMID: 39861414
PD.173074 4.122 4.184 0.005392136 0.00128624 —0.080062717

OS1.906 3.718 3.84 0.005392136 0.001217238 —0.132662293

(continued on next page)
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Table 5 (continued)

drugs high_group_res low_group_res padj pvalue log2FoldChange References
Midostaurin 0.8398 0.9802 0.004306115 0.000936112 —0.127502408 PMID: 28644114
Dasatinib 2.085 2.413 0.003827739 0.00080438 —0.290838304 PMID: 36322825
Bexarotene 4.739 4.761 0.003827739 0.000803033 —0.029905707 PMID: 39007945
GDC.0449 5.653 5.714 0.003030732 0.000592969 —0.055388504 PMID: 24756807
AZD7762 0.1399 0.3149 0.002536853 0.000477958 —0.17295287
Imatinib 4.954 4.978 0.002422395 0.00043884 —0.028950786 PMID: 39023605
RO.3306 4.803 4.885 0.001404402 0.000244244 —0.099624065
Epothilone.B —4.903 —5.04 0.001241353 0.000206892 0.148448881
GSK269962A 3.635 3.755 0.001241353 0.00020276 —0.18013549
AZD.0530 4.053 4.181 0.000977892 0.00014881 —0.147212978
JNK.Inhibitor.VIIT 5.833 5.886 6.28E—05 6.37E—06 —0.054132883
Vinorelbine —3.475 —3.62 0.000415296 6.02E—05 0.146138882 PMID: 39776939
W02009093972 2.971 3.128 6.18E—05 5.82E—06 —0.167943832
PD.0325901 0.22 0.01011 0.000411263 5.66E—05 0.170290237
Shikonin 0.1304 0.3193 8.96E—06 5.19E—07 —0.171613126
Pazopanib 4.534 4.644 5.18E—05 4.51E—-06 —0.135988084 PMID: 36877187
Temsirolimus —1.091 —1.049 0.000333998 4.36E—05 —0.06551927 PMID: 22861825
CMK 3.639 3.663 0.000333998 4.13E—05 —0.022727652
BMS.708163 4.986 4.938 4.99E—05 3.98E—06 0.049136545
Elesclomol —2.976 —2.739 4.99E—05 3.82E—06 —0.257894071
GDC0941 2.169 2.222 4.99E—-05 3.57E—06 —0.055258206
FT1.277 3.699 3.757 0.000298753 3.46E—05 —0.061556158
BIBW2992 2.279 2.206 3.09E—09 2.24E—11 0.076788254 PMID: 39894491
X681640 2.668 2.531 4.28E—06 2.17E—07 0.16932215
CIL.1040 2.62 2.595 0.000163328 1.78E—05 0.022405468
GNEF.2 4.505 4.575 3.91E—-06 1.70E—-07 —0.083372586
AMG.706 4.112 4.193 7.28E—09 1.58E—10 —0.104445814
AG.014699 4.157 4.187 4.37E—-08 1.27E—-09 —0.040279378 PMID: 30830551
LFM.A13 6.142 6.205 2.83E—07 1.02E—08 —0.065518629
CCT007093 5.597 5.626 7.03E—09 1.02E—10 —0.024293532
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Figure 11 Gene correlation between chemotherapy drugs and risk model.
Full-size Gal DOI

:10.7717/peer;j.19522/fig-11
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Figure 12 Three hub genes linked in other diseases. (A) Differential analysis of CCDC68 in different
samples of pancarcinoma. (B) Differential analysis of FAM151A in different samples of pancarcinoma. (C)
Differential analysis of MCIR in different samples of pancarcinoma.

Full-size &l DOI: 10.7717/peer;j.19522/fig-12

findings provide valuable insights into the mechanistic understanding of CRC onset and

offer potential avenues for its prevention and treatment.
Three key nuclear genes—CCDC68, FAM151A, and MCIR—were identified through
the construction of a risk model, with their prognostic significance assessed and validated.

CCDC68 may

contribute to CRC pathogenesis via multiple signaling pathways, and
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Figure 13 Validation of expression of 3 biomarkers. (A) Difference analysis of risk model genes in dif-
ferent samples of training set. (B) Expression of CCDC68 in normal samples and CRC samples. (C) Ex-
pression of FAM151A in normal samples and CRC samples. (D) Expression of MCIR in normal samples
and CRC samples.
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functional experiments demonstrate its inhibitory effects on CRC cell growth in vitro and
tumor formation in vivo (Wang et al., 2021). While CCDC68 acts as a pro-carcinogenic
factor in IL-6-stimulated endometrial cancer cells (Li ef al., 2021), it also exhibits tumor-
suppressor properties in pancreatic ductal adenocarcinoma (Radulovich et al., 2015).
Although CCDC68 has not been directly implicated in mitochondrial division, its potential
role in cytoskeleton, signaling, and gene expression regulation may indirectly affect
mitochondrial morphology and function (Huang et al., 2017). FAM151, a member of the
PLC-like phosphodiesterase superfamily, remains enigmatic, with its substrate and function
yet to be identified (Findlay et al., 2020). No research has been conducted on the impact
of FAM151A in CRC; however, Fam151B homozygous knockout mice develop retinal
degeneration, with signs of retinal stress and rapid loss of photoreceptor cells in the eye,
while FAM151A homozygous mutant mice have no discernable phenotype, suggesting that
Fam151b and FAM151A may be functionally different (Findlay et al., 2020). Although no
direct evidence links FAM151A to mitochondrial fission, it may influence mitochondrial
dynamics through signal transduction, cellular structural interactions, and gene expression
regulation, warranting further investigation. In addition, FAM210B participates in the
mitochondrial energy metabolism of erythroblasts and makes a prominent contribution
to erythrocyte differentiation by regulating mitochondrial energy metabolism (Suzuki
etal., 2022). MCIR, a member of the G protein-coupled receptor (GPCR) subfamily,
regulates key physiological and behavioral features via melanocortin binding, making

Liu et al. (2025), PeerdJ, DOI 10.7717/peerj.19522 26/36


https://peerj.com
https://doi.org/10.7717/peerj.19522/fig-13
http://dx.doi.org/10.7717/peerj.19522

Peer

it a potential target for melanoma therapy (Guida, Guida ¢ Goding, 2022). High MCIR
expression is significantly associated with microsatellite instability (MSI) (Peng et al.,
2021). MCIR signaling accelerates G1/S phase progression and promotes breast cancer
progression through the cAMP-CREB/ATF-1 and ERK-NF«kB pathways (Chelakkot et al.,
2023). Polymorphisms in the MCIR gene, leading to red pigmentation, are linked to a
reduced risk of prostate cancer (Weinstein, Virtamo & Albanes, 2013), and MCIR is highly
expressed in esophageal squamous cell carcinoma (Zhou et al., 2022). Furthermore, MCIR
plays a pivotal role in CRC progression and may serve as a marker of poor prognosis in
CRC (Peng et al., 2021). Existing research suggests that MCIR may influence mitochondrial
fission through two primary mechanisms. The first involves oxidative stress regulation, as
MCIR plays a role in modulating oxidative stress responses in melanocytes (Lu et al., 2024).
Mitochondria serve as the primary source of intracellular reactive oxygen species (ROS),
and the balance between mitochondrial fission and fusion is essential for maintaining
mitochondrial function and cellular redox homeostasis (Westermann, 2012). MCIR activity
may influence mitochondrial function, thereby indirectly impacting mitochondrial fission.
The second mechanism is mediated through cellular signaling pathways. MCIR activation
by a-MSH directly triggers cAMP signaling, leading to AMPK activation (Sun et al.,
2023). Under energy stress, AMPK localizes to mitochondria, where it phosphorylates
Ser637 of mitochondrial dynamic associated protein 1 (DRP1) and Ser155/Ser172 of its
receptor, mitochondrial fission factor (MFF), facilitating DRP1 recruitment to the outer
mitochondrial membrane and inducing fission (Hsu et al., 2022). Additionally, MCIR
deficiency has been linked to metabolic dysregulation. MC1R-knockout mice exhibit
significant hepatomegaly, accompanied by elevated hepatic and plasma cholesterol and
triglyceride levels, suggesting that hepatocyte MCIR signaling regulates cholesterol and bile
acid metabolism, while its absence promotes hypercholesterolemia (Thapa et al., 2023).
Furthermore, some downregulated genes following MCIR knockout have been implicated
in cell migration and melanoma metastasis (Seong ¢ Kim, 2014), but its role in CRC cell
migration and metastasis remains uncharacterized and warrants further investigation.
This study reveals a strong association between CCDC68, FAM151A, and MCIR in CRC
development, suggesting a potential therapeutic strategy. The study model demonstrates
a correlation with N stage and M stage in CRC, and CCDC68 expression emerges as a
promising molecular marker for prognostic evaluation in patients with CRC.

Cancer development and progression are closely linked to alterations in the tumor
microenvironment. Cancer cells actively reshape their surroundings by secreting various
cytokines, chemokines, and other factors, which reprogram the neighboring cells to
support tumor survival and progression (De Visser ¢ Joyce, 2023). Immune cells, key
components of the tumor stroma, play a critical role in this dynamic process (Hinshaw
¢ Shevde, 2019). This study assessed the relative proportions of 22 immune cell types
in high- and low-risk CRC subgroups, evaluating both immune cell infiltration and
immune function scores. To investigate differences in immune infiltration between these
subgroups, Wilcoxon tests were performed. The results revealed five immune cell types
with significant differences between the high- and low-risk groups: resting dendritic cells,
resting memory CD4+ T cells, activated memory CD4+ T cells, plasma cells, and MO
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macrophages. Dendritic cells are pivotal in regulating adaptive immune responses and
are essential for T cell-mediated cancer immunity (Gardner & Ruffell, 2016). They play

a central role in initiating and modulating both innate and adaptive immune responses
(Weulek et al., 2020). Memory CD4+ T cells are involved in the immune response and have
been associated with better prognosis in various cancers (Liu ef al., 2021). Plasma cells, key
effectors of adaptive immunity, produce antibodies that protect the body from pathogens
(Varlet et al., 2020). Evidence suggests that plasma cells actively contribute to anti-tumor
immunity (Wouters ¢» Nelson, 2018). MO macrophages are predominantly infiltrated in
high-risk patients with CRC, where they suppress tumor immune responses and correlate
with poor survival (Castrogiovanni et al., 2022; Dong et al., 2024). MCIR has been shown to
stimulate HLA-A2-restricted cytotoxic T lymphocytes, enhancing their ability to recognize
peptides naturally processed on melanoma cells, further linking immune modulation to
tumor immunity (Salazar-Onfray et al., 1997).

This study investigated the relationship between chemotherapy drug sensitivity and
gene expression in a risk model. Notably, FAM151A exhibited a positive correlation with
four drugs (AG.014699, camptothecin, NVP.BEZ235, TW.37) (r > 0.4), while CCDC68
was positively associated with two drugs (BMS.708163, X681640) (r < —0.4). AG.014699
(rucaparib), a poly(ADP-ribose) polymerase inhibitor, was shown to protect Schwann cells
from cell death and reduce glycolysis, though it did not counteract the disruption of the TCA
cycle under high-glucose conditions in the absence of pyruvate (Yako et al., 2024). Relevant
studies (Bugajova et al., 2024) suggest that NVP.BEZ235 can reduce ATP production.
Treatment with NVP.BEZ235 increases the mitochondrial autophagy-related protein
BNIP3, promoting mitochondrial fission, enhancing protease activity, and facilitating the
degradation of mitochondrial proteins. Camptothecin, a potent topoisomerase inhibitor,
was found to increase the proportion of cells with decreased mitochondrial membrane
potential, correlating with lower ATP levels. In colorectal carcinoma cell lines (DLD1
and HCT-116), camptothecin elevated apoptosis rates and significantly reduced cell
viability after 24 h of treatment by lowering ATP production and pyruvate levels (Liskova
et al., 2022). In conclusion, NVP.BEZ235 may influence mitochondrial fission through
BNIP3-mediated mitochondrial autophagy, while camptothecin induces mitochondrial
dysfunction and fission by reducing mitochondrial membrane potential and ATP levels. The
main mechanism of action of AG.014699 (rucaparib) is not directly related to mitochondrial
fission, but its regulation of cell metabolism may indirectly affect mitochondrial function.

Although this study has made some progress, there are still some limitations. First, the
predictive power of the model (AUC value of about 0.6) has room for further improvement
and needs to be optimized and improved by introducing more and more predictive
features. Secondly, there is a lack of further in vivo and in vitro experiments for functional
verification, especially the exploration of the specific role and mechanism of MC1R gene
in colorectal cancer (CRC) is still insufficient. Therefore, future studies should validate
the model predictions through clinical data and in vivo/in vitro experiments (such as
mouse models, cell models, gene knockout or overexpression, drug treatment, etc.), and
further explore the mechanism by which MCIR regulates mitochondrial fission through
cAMP/AMPK/DRP1/MFF axis and promotes CRC development. In addition, further
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exploration of the functional role of these key genes in CRC progression, as well as their
potential value in therapy, is of great significance for the discovery of new immunotherapy
and targeted therapy strategies.

CONCLUSIONS

In this study, a series of bioinformatics methods were used to identify the prognostic value
of mitochondrial fission-related genes in CRC. Three genes (CCDC68, FAM151A, MCIR)
were identified as potential risk model genes in CRC. The risk model was constructed, and
the molecular mechanism of mitochondrial fission-related genes affecting CRC was further
analyzed, providing a new direction for CRC treatment.

ACKNOWLEDGEMENTS

We would like to express our sincere gratitude to all individuals and organizations who
supported and assisted us throughout this research. Without your support, this research
would not have been possible.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the Autonomous Region Health Commission Self-funded
Research Project (Z-A20240028). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The Autonomous Region Health Commission Self-funded Research Project: Z-A20240028.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Chao Liu conceived and designed the experiments, performed the experiments, analyzed
the data, authored or reviewed drafts of the article, and approved the final draft.

e Sheng Xu performed the experiments, analyzed the data, prepared figures and/or tables,
and approved the final draft.

e Yuanyuan Liu performed the experiments, prepared figures and/or tables, and approved
the final draft.

e Zhixing Lu performed the experiments, prepared figures and/or tables, and approved
the final draft.

e Jianrong Yang conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

Liu et al. (2025), PeerdJ, DOI 10.7717/peerj.19522 29/36


https://peerj.com
http://dx.doi.org/10.7717/peerj.19522

Peer

Human Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

The People’s Hospital of Guangxi Zhuang Autonomous Region granted Ethical approval
to carry out the study within its facilities (Ethical Application Ref: KY-ZC-2024-030).

Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving
body and any reference numbers):

Field experiments were approved by the Research Council of the People’s Hospital of
Guangxi Zhuang Autonomous Region (project number: KY-ZC-2024-030).

Data Availability
The following information was supplied regarding data availability:

The raw measurements are available in the Supplemental Files.

The datasets analyzed are available at GEO, GSE103479; TCGA (search terms
TCGA, TCGA-COAD and TCGA-READ, RNA-Seq, transcriptome profiling); MSigDB,
(search terms: Mitochondrial Fission; GOBP_MITOCHONDRIAL_FISSION and
GOBP_POSITIVE_REGULATION_ OF_MITOCHONDRIAL_FISSION).

Supplemental Information
Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj.19522#supplemental-information.

REFERENCES

Boatright KM, Salvesen GS. 2003. Caspase activation. Biochemical Society Symposia
233-242 DOI 10.1042/bss0700233.

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. 2024.
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians
74:229-263 DOI 10.3322/caac.21834.

Brueckner LM, Hess EM, Schwab M, Savelyeva L. 2013. Instability at the FRAS8I
common fragile site disrupts the genomic integrity of the KIAA0146, CEBPD and
PRKDC genes in colorectal cancer. Cancer Letters 336:85-95
DOI 10.1016/j.canlet.2013.04.007.

Bugajova M, Raudenska M, Hanelova K, Navratil J, Gumulec ], Petrlak F, Vicar T,
Hrachovinova S, Masarik M, Kalfert D, Grega M, Plzak J, Betka J, Balvan J. 2024.
Glutamine and serum starvation alters the ATP production, oxidative stress, and
abundance of mitochondrial RNAs in extracellular vesicles produced by cancer cells.
Scientific Reports 14:25815 DOI 10.1038/s41598-024-73943-2.

Caldwell CM, Green RA, Kaplan KB. 2007. APC mutations lead to cytokinetic failures in
vitro and tetraploid genotypes in Min mice. Journal of Cell Biology 178:1109-1120
DOI 10.1083/jcb.200703186.

Liu et al. (2025), PeerdJ, DOI 10.7717/peerj.19522 30/36


https://peerj.com
http://dx.doi.org/10.7717/peerj.19522#supplemental-information
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103479
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://dx.doi.org/10.7717/peerj.19522#supplemental-information
http://dx.doi.org/10.7717/peerj.19522#supplemental-information
http://dx.doi.org/10.1042/bss0700233
http://dx.doi.org/10.3322/caac.21834
http://dx.doi.org/10.1016/j.canlet.2013.04.007
http://dx.doi.org/10.1038/s41598-024-73943-2
http://dx.doi.org/10.1083/jcb.200703186
http://dx.doi.org/10.7717/peerj.19522

Peer

Castrogiovanni P, Barbagallo I, Imbesi R, Musumeci G, Sanfilippo C, Broggi G,
Caltabiano R, Tibullo D, Giallongo C, Forte S, Volti GLi, Di Rosa M. 2022.
Chitinase domain containing 1 increase is associated with low survival rate and M0
macrophages infiltrates in colorectal cancer patients. Pathology, Research and Practice
237:154038 DOI 10.1016/j.prp.2022.154038.

Chelakkot VS, Thomas K, Romigh T, Fong A, Li L, Ronen S, Chen S, Funchain P, Ni
Y, Arbesman J. 2023. MCI1R signaling through the cAMP-CREB/ATF-1 and ERK-
NF«B pathways accelerates G1/S transition promoting breast cancer progression. npj
Precision Oncology 7:85 DOI 10.1038/s41698-023-00437-1.

Chen M, Ye K, Zhang B, Xin Q, Li P, Kong AN, Wen X, Yang J. 2019. Paris Saponin II
inhibits colorectal carcinogenesis by regulating mitochondrial fission and NF-xB
pathway. Pharmacological Research 139:273-285 DOI 10.1016/j.phrs.2018.11.029.

Chughtai SA, Crundwell MC, Cruickshank NR, Affie E, Armstrong S, Knowles MA,
Takle LA, Kuo M, Khan N, Phillips SM, Neoptolemos JP, Morton DG. 1999.

Two novel regions of interstitial deletion on chromosome 8p in colorectal cancer.
Oncogene 18:657—-665 DOI 10.1038/sj.onc.1202340.

Colpman P, Dasgupta A, Archer SL. 2023. The role of mitochondrial dynamics and
mitotic fission in regulating the cell cycle in cancer and pulmonary arterial hyper-
tension: implications for dynamin-related protein 1 and mitofusin2 in hyperprolifer-
ative diseases. Cell 12:1897 DOI 10.3390/cells12141897.

Connolly KC, Gabra H, Millwater CJ, Taylor KJ, Rabiasz GJ, Watson JE, Smyth JF,
Wyllie AH, Jodrell DI. 1999. Identification of a region of frequent loss of heterozy-
gosity at 11q24 in colorectal cancer. Cancer Research 59:2806—2809.

De Visser KE, Joyce JA. 2023. The evolving tumor microenvironment: from cancer initi-
ation to metastatic outgrowth. Cancer Cell 41:374-403 DOI 10.1016/j.ccell.2023.02.016.

Deng X, Thompson JA. 2023. An R package for survival-based gene set enrichment
analysis. Research Square 26:rs.3.rs-3367968 DOI 10.21203/rs.3.1s-3367968/v1.

Dhar S, Datta A, Brosh Jr RM. 2020. DNA helicases and their roles in cancer. DNA
Repair 96:102994 DOI 10.1016/j.dnarep.2020.102994.

DongJ, Zhao J, Wu Z, Liu J, Wang B, Qi X. 2024. The predictive value of neutrophil
extracellular trap-related risk score in prognosis and immune microenviron-
ment of colorectal cancer patients. Molecular Biotechnology 67:1509-1525
DOI 10.1007/512033-024-01135-4.

Findlay AS, McKie L, Keighren M, Clementson-Mobbs S, Sanchez-Pulido L,

Wells S, Cross SH, Jackson IJ. 2020. Fam151b, the mouse homologue of C.
elegans menorin gene, is essential for retinal function. Scientific Reports 10:437
DOI 10.1038/541598-019-57398-4.

Friedman J, Hastie T, Tibshirani R. 2010. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software 33:1-22.

Gardner A, Ruffell B. 2016. Dendritic cells and cancer immunity. Trends in Immunology
37:855-865 DOI 10.1016/j.it.2016.09.006.

Liu et al. (2025), PeerdJ, DOI 10.7717/peerj.19522 31/36


https://peerj.com
http://dx.doi.org/10.1016/j.prp.2022.154038
http://dx.doi.org/10.1038/s41698-023-00437-1
http://dx.doi.org/10.1016/j.phrs.2018.11.029
http://dx.doi.org/10.1038/sj.onc.1202340
http://dx.doi.org/10.3390/cells12141897
http://dx.doi.org/10.1016/j.ccell.2023.02.016
http://dx.doi.org/10.21203/rs.3.rs-3367968/v1
http://dx.doi.org/10.1016/j.dnarep.2020.102994
http://dx.doi.org/10.1007/s12033-024-01135-4
http://dx.doi.org/10.1038/s41598-019-57398-4
http://dx.doi.org/10.1016/j.it.2016.09.006
http://dx.doi.org/10.7717/peerj.19522

Peer

Geeleher P, Cox N, Huang RS. 2014. pRRophetic: an R package for prediction of
clinical chemotherapeutic response from tumor gene expression levels. PLOS ONE
9:¢107468 DOI 10.1371/journal.pone.0107468.

Ghazi B, El Ghanmi A, Kandoussi S, Ghouzlani A, Badou A. 2022. CAR T-cells for
colorectal cancer immunotherapy: ready to go? Frontiers in Immunology 13:978195
DOI 10.3389/fimmu.2022.978195.

Guida S, Guida G, Goding CR. 2022. MCIR functions, expression, and implica-
tions for targeted therapy. Journal of Investigative Dermatology 142:293-302
DOI 10.1016/j.jid.2021.06.018.

Hinzelmann S, Castelo R, Guinney J. 2013. GSVA: gene set variation analysis for mi-
croarray and RNA-seq data. BMC Bioinformatics 14:7 DOI 10.1186/1471-2105-14-7.

Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. 2023. Mitochondria in
health, disease, and aging. Physiological Reviews 103:2349-2422
DOI 10.1152/physrev.00058.2021.

Hidese R, Kawato K, Nakura Y, Fujiwara A, Yasukawa K, Yanagihara I, Fuji-
wara S. 2018. Thermostable DNA helicase improves the sensitivity of digital
PCR. Biochemical and Biophysical Research Communications 495:2189-2194
DOI 10.1016/j.bbrc.2017.12.053.

Hinshaw DC, Shevde LA. 2019. The tumor microenvironment innately modulates can-
cer progression. Cancer Research 79:4557-4566
DOI10.1158/0008-5472.Can-18-3962.

Hsu CC, Peng D, Cai Z, Lin HK. 2022. AMPK signaling and its targeting in cancer pro-
gression and treatment. Seminars in Cancer Biology 85:52—68
DOI 10.1016/j.semcancer.2021.04.006.

Huang N, Xia Y, Zhang D, Wang S, Bao Y, He R, Teng J, Chen J. 2017. Hierarchical as-
sembly of centriole subdistal appendages via centrosome binding proteins CCDC120
and CCDC68. Nature Communications 8:15057 DOI 10.1038/ncomms15057.

Islam MR, Akash S, Rahman MM, Nowrin FT, Akter T, Shohag S, Rauf A, Aljohani
ASM, Simal-Gandara J. 2022. Colon cancer and colorectal cancer: prevention and
treatment by potential natural products. Chemico-Biological Interactions 368:110170
DOI 10.1016/j.cbi.2022.110170.

Ito K, Murphy D. 2013. Application of ggplot2 to pharmacometric graphics. CPT:
Pharmacometrics & Systems Pharmacology 2:79 DOI 10.1038/psp.2013.56.

Jiang X, Li G, Zhu B, Zang J, Lan T, Jiang R, Wang B. 2023. p20BAP31 induces
cell apoptosis via both AIF caspase-independent and the ROS/JNK mitochon-
drial pathway in colorectal cancer. Cellular & Molecular Biology Letters 28:25
DOI10.1186/511658-023-00434-z.

Jing X, Wu H, Ji X, Wu H, Shi M, Zhao R. 2016. Cortactin promotes cell migration and
invasion through upregulation of the dedicator of cytokinesis 1 expression in human
colorectal cancer. Oncology Reports 36:1946—1952 DOI 10.3892/0r.2016.5058.

Liu et al. (2025), PeerdJ, DOI 10.7717/peerj.19522 32/36


https://peerj.com
http://dx.doi.org/10.1371/journal.pone.0107468
http://dx.doi.org/10.3389/fimmu.2022.978195
http://dx.doi.org/10.1016/j.jid.2021.06.018
http://dx.doi.org/10.1186/1471-2105-14-7
http://dx.doi.org/10.1152/physrev.00058.2021
http://dx.doi.org/10.1016/j.bbrc.2017.12.053
http://dx.doi.org/10.1158/0008-5472.Can-18-3962
http://dx.doi.org/10.1016/j.semcancer.2021.04.006
http://dx.doi.org/10.1038/ncomms15057
http://dx.doi.org/10.1016/j.cbi.2022.110170
http://dx.doi.org/10.1038/psp.2013.56
http://dx.doi.org/10.1186/s11658-023-00434-z
http://dx.doi.org/10.3892/or.2016.5058
http://dx.doi.org/10.7717/peerj.19522

Peer

Kashatus JA, Nascimento A, Myers L], Sher A, Byrne FL, Hoehn KL, Counter
CM, Kashatus DF. 2015. Erk2 phosphorylation of Drpl promotes mitochon-
drial fission and MAPK-driven tumor growth. Molecular Cell 57:537-551
DOI 10.1016/j.molcel.2015.01.002.

Kleele T, Rey T, Winter J, Zaganelli S, Mahecic D, Perreten Lambert H, Ruberto
FP, Nemir M, Wai T, Pedrazzini T, Manley S. 2021. Distinct fission signa-
tures predict mitochondrial degradation or biogenesis. Nature 593:435-439
DOI 10.1038/541586-021-03510-6.

Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network
analysis. BMC Bioinformatics 9:559 DOI 10.1186/1471-2105-9-559.

Li S, Chen S, Wang B, Zhang L, Su Y, Zhang X. 2020. A robust 6-IncRNA prognostic
signature for predicting the prognosis of patients with colorectal cancer metastasis.
Frontiers in Medicine 7:56 DOI 10.3389/fmed.2020.00056.

LiX, Li H, Pei X, Zhou Y, Wei Z. 2021. CCDC68 upregulation by IL-6 promotes
endometrial carcinoma progression. Journal of Interferon and Cytokine Research
41:12-19 DOI 10.1089/jir.2020.0193.

Liskova V, Kajsik M, Chovancova B, Roller L, Krizanova O. 2022. Camptothecin,
triptolide, and apoptosis inducer kit have differential effects on mitochondria in col-
orectal carcinoma cells. FEBS Open Bio 12:913-924 DOI 10.1002/2211-5463.13401.

Liu C, Liu R, Wang B, Lian ], Yao Y, Sun H, Zhang C, Fang L, Guan X, ShiJ, Han S,
Zhan F, Luo S, Yao Y, Zheng T, Zhang Y. 2021. Blocking IL-17A enhances tumor
response to anti-PD-1 immunotherapy in microsatellite stable colorectal cancer.
Journal for ImmunoTherapy of Cancer 9:¢001895 DOI 10.1136/jitc-2020-001895.

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2. Genome Biology 15:550
DOI 10.1186/513059-014-0550-8.

Lu]J, Wang]J, NiH, LiB, YangJ, ZhuJ, Qian J, Gao R, Xu R. 2024. Activation of the
melanocortin-1 receptor attenuates neuronal apoptosis after traumatic brain
injury by upregulating Merlin expression. Brain Research Bulletin 207:110870
DOI 10.1016/j.brainresbull.2024.110870.

Ohshima K, Oi R, Nojima S, Morii E. 2022. Mitochondria govern histone acetylation in
colorectal cancer. Journal of Pathology 256:164—173 DOI 10.1002/path.5818.

Peixoto E, Khan A, Lewis ZA, Contreras-Galindo R, Czaja W. 2022. The chromatin
remodeler HELLS: a new regulator in DNA repair, genome maintenance, and cancer.
International Journal of Molecular Sciences 23:9313 DOI 10.3390/ijms23169313.

Peng L, Chang]J, Liu X, Lu S, Ren H, Zhou X, Liu Z, Hu P. 2021. MCIR is a prognostic
marker and its expression is correlated with MSI in colorectal cancer. Current Issues
in Molecular Biology 43:1529-1547 DOI 10.3390/cimb43030108.

Plecita-Hlavata L, Lessard M, Santorova J, BewersdorfJ, Jezek P. 2008. Mito-
chondrial oxidative phosphorylation and energetic status are reflected by mor-
phology of mitochondrial network in INS-1E and HEP-G2 cells viewed by
4Pi microscopy. Biochimica et Biophysica Acta/General Subjects 1777:834—846
DOI 10.1016/j.bbabio.2008.04.002.

Liu et al. (2025), PeerdJ, DOI 10.7717/peerj.19522 33/36


https://peerj.com
http://dx.doi.org/10.1016/j.molcel.2015.01.002
http://dx.doi.org/10.1038/s41586-021-03510-6
http://dx.doi.org/10.1186/1471-2105-9-559
http://dx.doi.org/10.3389/fmed.2020.00056
http://dx.doi.org/10.1089/jir.2020.0193
http://dx.doi.org/10.1002/2211-5463.13401
http://dx.doi.org/10.1136/jitc-2020-001895
http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1016/j.brainresbull.2024.110870
http://dx.doi.org/10.1002/path.5818
http://dx.doi.org/10.3390/ijms23169313
http://dx.doi.org/10.3390/cimb43030108
http://dx.doi.org/10.1016/j.bbabio.2008.04.002
http://dx.doi.org/10.7717/peerj.19522

Peer

Quiles JM, Gustafsson AB. 2022. The role of mitochondrial fission in cardiovascular
health and disease. Nature Reviews Cardiology 19:723-736
DOI 10.1038/541569-022-00703-y.

Radulovich N, Leung L, Ibrahimov E, Navab R, Sakashita S, Zhu CQ, Kaufman E, Lock-
wood WW, Thu KL, Fedyshyn Y, Moffat J, Lam WL, Tsao MS. 2015. Coiled-coil do-
main containing 68 (CCDC68) demonstrates a tumor-suppressive role in pancreatic
ductal adenocarcinoma. Oncogene 34:4238-4247 DOI 10.1038/onc.2014.357.

Rehman J, Zhang HJ, Toth PT, Zhang Y, Marsboom G, Hong Z, Salgia R, Husain AN,
Wietholt C, Archer SL. 2012. Inhibition of mitochondrial fission prevents cell cycle
progression in lung cancer. FASEB Journal 26:2175-2186 DOI 10.1096/1].11-196543.

Sachs MC. 2017. plotROC: a tool for plotting ROC curves. Journal of Statistical Software
79:2 DOI 10.18637/j55.v079.c02.

Salazar-Onfray F, Nakazawa T, Chhajlani V, Petersson M, Kirre K, Masucci G, Celis
E, Sette A, Southwood S, Appella E, Kiessling R. 1997. Synthetic peptides derived
from the melanocyte-stimulating hormone receptor MCIR can stimulate HLA-A2-
restricted cytotoxic T lymphocytes that recognize naturally processed peptides on
human melanoma cells. Cancer Research 57:4348—4355.

Sedlak JC, Yilmaz OH, Roper J. 2023. Metabolism and colorectal cancer. Annual Review
of Pathology: Mechanisms of Disease 18:467—492
DOI 10.1146/annurev-pathmechdis-031521-041113.

Seong I, Kim J. 2014. Gene expression regulation by agonist-independent constitutive
signaling of melanocortin-1 receptor. Endocrinology and Metabolism 29:179-184
DOI 10.3803/EnM.2014.29.2.179.

SunY, LiX, Yin C, Zhang J, Liang E, Wu X, Ni Y, Arbesman J, Goding CR, Chen S.
2023. AMPK phosphorylates ZDHHCI3 to increase MCIR activity and suppress
melanomagenesis. Cancer Research 83:1062—-1073
DOI 10.1158/0008-5472.Can-22-2595.

Sundaramoorthy R. 2019. Nucleosome remodelling: structural insights into ATP-
dependent remodelling enzymes. Essays in Biochemistry 63:45—58
DOI 10.1042/ebc20180059.

Sundaramoorthy R, Owen-Hughes T. 2020. Chromatin remodelling comes into focus.
F1000Research 9:F1000 DOIT 10.12688/f1000research.21933.1.

Suzuki C, Fujiwara T, Shima H, Ono K, Saito K, Kato H, Onodera K, Ichikawa S,
Fukuhara N, Onishi Y, Yokoyama H, Nakamura Y, Igarashi K, Harigae H. 2022.
Elucidation of the role of FAM210B in mitochondrial metabolism and erythro-
poiesis. Molecular and Cellular Biology 42:e0014322 DOI 10.1128/mcb.00143-22.

Thapa K, Kadiri JJ, Saukkonen K, Pennanen I, Ghimire B, Cai M, Savontaus E, Rinne P.
2023. Melanocortin 1 receptor regulates cholesterol and bile acid metabolism in the
liver. Elife 12:e84782 DOI 10.7554/eLife.84782.

Van Opdenbosch N, Lamkanfi M. 2019. Caspases in cell death, inflammation, and
disease. Immunity 50:1352-1364 DOI 10.1016/j.immuni.2019.05.020.

Liu et al. (2025), PeerdJ, DOI 10.7717/peerj.19522 34/36


https://peerj.com
http://dx.doi.org/10.1038/s41569-022-00703-y
http://dx.doi.org/10.1038/onc.2014.357
http://dx.doi.org/10.1096/fj.11-196543
http://dx.doi.org/10.18637/jss.v079.c02
http://dx.doi.org/10.1146/annurev-pathmechdis-031521-041113
http://dx.doi.org/10.3803/EnM.2014.29.2.179
http://dx.doi.org/10.1158/0008-5472.Can-22-2595
http://dx.doi.org/10.1042/ebc20180059
http://dx.doi.org/10.12688/f1000research.21933.1
http://dx.doi.org/10.1128/mcb.00143-22
http://dx.doi.org/10.7554/eLife.84782
http://dx.doi.org/10.1016/j.immuni.2019.05.020
http://dx.doi.org/10.7717/peerj.19522

Peer

Varlet E, Ovejero S, Martinez AM, Cavalli G, Moreaux J. 2020. Role of polycomb
complexes in normal and malignant plasma cells. International Journal of Molecular
Sciences 21:8047 DOI 10.3390/ijms21218047.

Wang C,Li H, WuL, Jiao X, Jin Z, Zhu Y, Fang Z, Zhang X, Huang H, Zhao L. 2021.
Coiled-coil domain-containing 68 downregulation promotes colorectal cancer cell
growth by inhibiting ITCH-mediated CDK4 degradation. Frontiers in Oncology
11:668743 DOI 10.3389/fonc.2021.668743.

Weculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. 2020. Dendritic
cells in cancer immunology and immunotherapy. Nature Reviews [mmunology
20:7-24 DOI 10.1038/s41577-019-0210-z.

Weinstein SJ, Virtamo J, Albanes D. 2013. Pigmentation-related phenotypes and risk of
prostate cancer. British Journal of Cancer 109:747—750 DOI 10.1038/bjc.2013.385.

Westermann B. 2012. Bioenergetic role of mitochondrial fusion and fission. Biochimica
Et Biophysica Acta/General Subjects 1817:1833-1838 DOI 10.1016/j.bbabio.2012.02.033.

Wouters MCA, Nelson BH. 2018. Prognostic significance of tumor-infiltrating B
cells and plasma cells in human cancer. Clinical Cancer Research 24:6125-6135
DOI10.1158/1078-0432.Ccr-18-1481.

WuT, HuE, Xu§, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu
S, Bo X, Yu G. 2021. clusterProfiler 4.0: a universal enrichment tool for interpreting
omics data. Innovation 2:100141 DOI 10.1016/j.xinn.2021.100141.

Wu Z, Xiao C, Li F, Huang W, You F, Li X. 2024. Mitochondrial fusion-fission dynamics
and its involvement in colorectal cancer. Molecular Oncology 18:1058—-1075
DOI 10.1002/1878-0261.13578.

Yako H, Niimi N, Takaku S, Kato A, Kato K, Sango K. 2024. Role of exogenous pyruvate
in maintaining adenosine triphosphate production under high-glucose conditions
through PARP-dependent glycolysis and PARP-independent tricarboxylic acid cycle.
International Journal of Molecular Sciences 25:11089 DOI 10.3390/ijms252011089.

Yoshino T, Oki E, Misumi T, Kotaka M, Manaka D, Eto T, Hasegawa J, Takagane
A, Nakamura M, Kato T, Munemoto Y, Nakamura F, Bando H, Taniguchi H,
Sakamoto Y, Shiozawa M, Nishi M, Horiuchi T, Yamagishi H, Sakamoto J,
Mizushima T, Ohtsu A, Mori M. 2022. Final analysis of 3 versus 6 months of
adjuvant oxaliplatin and fluoropyrimidine-based therapy in patients with stage III
colon cancer: the randomized phase III ACHIEVE trial. Journal of Clinical Oncology
40:3419-3429 DOI 10.1200/jc0.21.02628.

Zhang Z, Li TE, Chen M, Xu D, Zhu Y, Hu BY, Lin ZF, Pan JJ, Wang X, Wu C,

Zheng Y, Lu L, Jia HL, Gao S, Dong QZ, Qin LX. 2020. MFN1-dependent al-
teration of mitochondrial dynamics drives hepatocellular carcinoma metastasis
by glucose metabolic reprogramming. British Journal of Cancer 122:209-220
DOI10.1038/s41416-019-0658-4.

Zhang C, Zheng Y, Li X, Hu X, Qi F, Luo J. 2019. Genome-wide mutation profiling
and related risk signature for prognosis of papillary renal cell carcinoma. Annals of
Translational Medicine 7:427 DOI 10.21037/atm.2019.08.113.

Liu et al. (2025), PeerdJ, DOI 10.7717/peerj.19522 35/36


https://peerj.com
http://dx.doi.org/10.3390/ijms21218047
http://dx.doi.org/10.3389/fonc.2021.668743
http://dx.doi.org/10.1038/s41577-019-0210-z
http://dx.doi.org/10.1038/bjc.2013.385
http://dx.doi.org/10.1016/j.bbabio.2012.02.033
http://dx.doi.org/10.1158/1078-0432.Ccr-18-1481
http://dx.doi.org/10.1016/j.xinn.2021.100141
http://dx.doi.org/10.1002/1878-0261.13578
http://dx.doi.org/10.3390/ijms252011089
http://dx.doi.org/10.1200/jco.21.02628
http://dx.doi.org/10.1038/s41416-019-0658-4
http://dx.doi.org/10.21037/atm.2019.08.113
http://dx.doi.org/10.7717/peerj.19522

Peer

Zhou X, Chang]J, Peng L, Liu X, Yu F, Xu ], Zhang S, Hu P, Liu Z, Zhang G. 2022.
MCIR is highly expressed in esophageal squamous cell carcinoma. Nan Fang Yi Ke
Da Xue Xue Bao 42:1552—1559 DOI 10.12122/j.issn.1673-4254.2022.10.16.

Liu et al. (2025), PeerdJ, DOI 10.7717/peerj.19522 36/36


https://peerj.com
http://dx.doi.org/10.12122/j.issn.1673-4254.2022.10.16
http://dx.doi.org/10.7717/peerj.19522

