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ABSTRACT

Background. Aiming to evaluate the effects of the smart metal artifact reduction (MAR)
algorithm and combinations of various scanning parameters, including radiation dose
levels, tube voltage, and reconstruction algorithms, on metal artifact reduction and
overall image quality, to identify the optimal protocol for clinical application.
Methods. A phantom with a pacemaker was examined using standard dose (effective
dose (ED): 3 mSv) and low dose (ED: 0.5 mSv), with three scan voltages (70, 100, and
120 kVp) selected for each dose. Raw data were reconstructed using 50% adaptive
statistical iterative reconstruction-V (ASIR-V), ASIR-V with MAR, high-strength
deep learning image reconstruction (DLIR-H), and DLIR-H with MAR. Quantitative
analyses (artifact index (AI), noise, signal-to-noise ratio (SNR) of artifact-impaired
pulmonary nodules (PNs), and noise power spectrum (NPS) of artifact-free regions)
and qualitative evaluation were performed.

Results. Quantitatively, the deep learning image recognition (DLIR) algorithm or high
tube voltages exhibited lower noise compared to the ASIR-V or low tube voltages
(p <0.001). AI of images with MAR or high tube voltages was significantly lower than
that of images without MAR or low tube voltages (p < 0.001). No significant difference
was observed in Al between low-dose images with 120 kVp DLIR-H MAR and standard-
dose images with 70 kVp ASIR-V MAR (p =0.143). Only the 70 kVp 3 mSv protocol
demonstrated statistically significant differences in SNR for artifact-impaired PNs (p =
0.041). The fyeax and £, values were similar across various scenarios, indicating that the
MAR algorithm did not alter the image texture in artifact-free regions. The qualitative
results of the extent of metal artifacts, the confidence in diagnosing artifact-impaired
PNs, and the overall image quality were generally consistent with the quantitative
results.

Conclusion. The MAR algorithm combined with DLIR-H can reduce metal artifacts
and enhance the overall image quality, particularly at high kVp tube voltages.
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Machine Learning, Data Science
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INTRODUCTION

With the accelerated global aging population, metal implants for fixation or prosthetic
replacement—including dental prostheses (Bayerl et al., 2023), spinal screws (Enache et
al., 2025), hip arthroplasty (Zhao et al., 2023), and cardiovascular implantable electronic
devices (CIEDs) (Wong ¢ Devereaux, 2019)—have been extensively utilized. These metallic
devices induce substantial imaging artifacts through multiple physical mechanisms such
as photon starvation phenomena, beam-hardening effects and scatter, which collectively
degrade diagnostic image quality in CT. Specifically, metal artifacts generated by CIEDs
during CT scanning significantly degrade visualization of adjacent anatomical structures,
including mediastinal vasculature, lymph nodes, and parenchymal tissues (Pennig et

al., 20215 Zhao et al., 2023). These artifacts critically compromise diagnostic accuracy in
routine thoracic CT applications, particularly impacting lung cancer screening sensitivity,
treatment planning, and therapeutic response assessment (Kikuchi et al., 2020).

In recent years, various technical strategies have been developed to mitigate metal
artifacts in CT imaging, including optimization of acquisition parameters (increased tube
voltage and tube current) (Selles et al., 2024), high-keV virtual monoenergetic imaging of
spectral CT (Laukamp et al., 2019; Bongers et al., 2015; Khodarahmi et al., 2018; Long et al.,
2019) and metal artifact reduction (MAR) algorithms (e.g., projection completion MAR,
iterative MAR) (Lehti et al., 2020; Wichtmann et al., 2023). Among these, MAR techniques
have emerged as pivotal solutions due to their ability to correct abnormal X-ray attenuation
profiles caused by metallic implants through either projection data compensation or image
domain iterations (Chae et al., 2020; Choo et al., 2021; Dunet et al., 2017; Kim et al., 2020;
Kanani et al., 2022; Kovacs et al., 2018). Specifically, projection-based MAR algorithm
such as smart MAR (GE HealthCare, Chicago, IL, USA) synthesizes corrected projections
using a combination of both the original and substitutive projection data, potentially
inducing global alterations in the projection domain (Fukugawa et al., 2022). However,
most existing research predominantly focuses on the artifact reduction in artifact-impeded
areas, while less attention is paid to artifact-free regions, particularly in terms of image
texture preservation.

Furthermore, in images with metal artifacts, it’s important to consider not only the
extent of artifacts but also the overall image quality, including image noise, contrast
and textures preservation. These comprehensive image quality metrics, as well as artifact
reduction, are influenced by a variety of parameters. For instance, tube voltage impacts
both image contrast and artifacts degree (Zhao et al., 2023), while the radiation dose
and reconstruction algorithm generally impact the image noise (Szczykutowicz et al.,
2021) in general. However, in some literature, certain reconstruction algorithms have
demonstrated significant potential to reduce beam hardening artifacts (Fujita et al., 2023;
Yasaka et al., 2017). For instance, Li et al. (2024) demonstrated that the artificial intelligence
iterative reconstruction (AIIR) algorithm can mitigate streak artifacts caused by irregular
arm positioning, thus reducing the likelihood of misdiagnosis. With the advancement
of artificial intelligence, deep learning image reconstruction (DLIR, TrueFidelity, GE
Healthcare) algorithms have emerged. This is a vendor-specific, deep convolutional neural
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network-based image reconstruction technique that is trained under supervision with
millions of parameters simultaneously, in order to produce an output image similar to
filtered back projection (FBP) (Zhu et al., 2024). Compared to adaptive statistical iterative
reconstruction-V (ASIR-V), which applies advanced noise, physics, and object modeling,
they can effectively balance noise, radiation dose, and image texture (Yang et al., 2021).
Previous studies have demonstrated that DLIR has an excellent ability to improve image
quality and reduce radiation doses in metal-free scenarios, including thoracic (Jiang et
al., 2022a; Zhao et al., 2022; Yao et al., 2022), abdominal (Jensen et al., 2022; Caruso et al.,
2024), and cerebral CT (Jiang et al., 2022b; Jiang et al., 2024). While in images with metal
artifacts, as we know, only Sun et al. (2024) investigated the feasibility of metal artifact
reduction in low-dose spinal CT for post-surgical children based on a combination of the
MAR and DLIR algorithms.

This study therefore performed a pacemaker-embedded (a specific type of CIED)
phantom experiment to systematically investigate the metal reduction and image quality
improvement of the combination between MAR and DLIR algorithms under various scan
conditions (different tube voltages and radiation doses). The dual objectives focus on (1)
optimizing metal-implant CT protocols, while (2) pioneering the clinical implementation
of DLIR in artifact management. The key innovations reside in the novel integration of
DLIR with MAR across diverse radiation dose regimes, coupled with the first comprehensive
assessment of image texture fidelity in artifact-free regions.

METHODS AND MATERIALS

Phantom

In this study, the Lungman chest phantom (Lungman ph-1, Kyoto Kagaku Inc., Japan)
was utilized. The anatomical structures, including the trachea, pulmonary vessels, and
mediastinum, were simulated using tissue substitutes. Thirteen spherical nodules (CT
value = —800 HU, corresponding diameters = 12, 10, 8, and 5 mm; CT value = —630 HU,
corresponding diameters = 12, 10, 8, 5, and 3 mm; CT value = 100 HU, corresponding
diameters = 12, 10, 8, 5 mm) were randomly placed in the phantom using cotton. To
investigate the impact of metal artifacts, a pacemaker was attached to the upper left of
the chest phantom (Fig. 1A). Four non-solid pulmonary nodules (PNs) were obscured by
streak artifacts (Fig. 1B).

Image acquisition and reconstruction

All scans were conducted using a 256-row multidetector CT scanner (Revolution Apex CT,
GE Healthcare). To investigate the impacts of various scanning conditions on metal artifact
reduction, three tube voltages (70, 100, and 120 kVp), along with their corresponding tube
currents, were selected to achieve standard (3 mSv) and low (0.5 mSv) effective doses. The
remaining scanning parameters were fixed across all scanning scenarios, as follows: display
field of view (DFOV) of 42 cm x 42 cm, a pitch of 0.992, a detector width of 80 mm, a
rotation time of 0.8 s/r, and a slice thickness of 1.25 mm. Furthermore, all acquisitions were
reconstructed using high strength DLIR (DLIR-H), DLIR-H with metal artifact reduction
(DLIR-H MAR), 50% adaptive statistical iterative reconstruction-V (ASIR-V), and ASIR-V
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Figure 1 Phantom configuration and corresponding CT images. (A) The anthropomorphic thoracic
phantom and implanted cardiac pacemaker. (B) Axial CT image with severe metal artifact impairment,
where the artifact-impaired non-solid PNs are marked (yellow arrow).

Full-size Gl DOI: 10.7717/peerj.19516/fig-1

with metal artifact reduction (ASIR-V MAR). CT scanning was repeated three times for
each scenario.

Objective image quality evaluation

For quantitative analysis, the artifact index (AI), background noise, signal-to-noise ratio
(SNR) of artifact-impaired non-solid PNs, noise power spectrum (NPS) of artifact-free
regions were calculated. All image sequences were loaded into MITK software (v2024.06,
The German Cancer Research Center, Heidelberg, Germany), and region of interests
(ROIs) were delineated in background air, artifact areas, and artifact-impaired PNs by a
well-experienced radiologist (with nine years of chest radiology experience) based on 3
mSv 120 kVp DLIR-H MAR images. To ensure consistent quantitative analysis of the same
ROIs in other images, these ROIs were saved and subsequently imported into other images
for analysis. According to a previous study (Chae et al., 2020), the Al was quantified using

the following formula: Al = SDirtifact — SDtZ)ackground’ where SDartifact and SDpackground

represent the standard deviation (SD) of the streak artifact and background, respectively.
To represent the extent of the artifacts as comprehensively as possible, ROIs (50 mm?) were
placed in five consecutive artifact-pronounced slices. Background ROIs (50 mm?) were
located in the air among five consecutive artifact-free slices, and the SDpackground in the Al
formula was the average of these five background SD. To assess the influence of artifacts
on PNs, the SNR values of artifact-impaired non-solid PNs (Fig. 1B) were calculated using
the following formula: SNR = “nseg—gm, where meanpy and SDpy refer to the average and
SD of the CT values of the four PNs at the maximum slice, respectively. To investigate the
influence of DLIR and MAR algorithms on the image texture of artifact-free regions, NPS
was evaluated in a homogeneous heart using imQuest software (Clinical Imaging Physics
Group, Duke University, Durham, NC, USA) and the NPS area, average spatial frequency
(favg) and peak spatial frequency (fycak) were calculated.
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Subjective image quality evaluation

Two radiologists (5/9-year-experience in CT image diagnosis) independently performed
subjective evaluations using a 5-point scale to assess the extent of metal artifacts, the
confidence in diagnosing artifact-impaired PNs, and the overall image quality. The extent
of metal artifacts was rated as follows: severe artifacts, unable to be diagnosed = 0,
pronounced artifacts = 1, moderate artifacts = 2, mild artifacts = 3, and no artifacts = 4.
The confidence in diagnosing artifact-impaired PNs was graded as follows: undetectable
= 0, poorly detectable = 1, moderately detectable = 2, well detectable = 3, and manifestly
detectable = 4. The overall image quality was rated as follows: very poor = 0, poor = 1,
acceptable = 2, good = 3, and excellent = 4.

Statistical analysis

IBM SPSS statistical software (version 25.0, IBM Corp) was used for statistical analyses.
According to the Shapiro—Wilk test, the objective parameters and subjective scores did
not exhibit the normality. Therefore, Al noise and SNR were expressed as M [Q1, Q3],
where M represents the median, and Q1 and Q3 denote the first quartile and third quartile,
respectively. The differences in these parameters among various image sets were compared
using the Kruskal-Wallis test with a Bonferroni post hoc test. The evaluation of subjective
consistency between two radiologists was conducted using Cohen’s kappa test, with values
greater than 0.75 indicating high consistency, values ranging from 0.4 to 0.75 indicating
average consistency, and values less than 0.4 indicating poor consistency. p < 0.05 indicates
statistically significant differences.

RESULTS

Objective image quality evaluation
Table 1 summarized the results of noise and Al evaluations of various reconstruction
algorithms and scanning scenarios (radiation doses and tube voltages). Compared to
ASIR-V, the background noise of DLIR-H was reduced by 25.95% to 53.50% (paired
calculation), whereas the background noise of DLIR-H MAR was reduced by 27.73% to
54.24% compared to ASIR-V MAR (paired calculation) across different dose levels and tube
voltages (all p < 0.001). The noise of low-dose images with DLIR were similar to those of
standard-dose images with ASIR-V, although there were statistically significant differences
(p < 0.05, Table 1). Furthermore, for different tube voltages, the noise values of 70 kVp
images were significantly higher than those of the other two tube voltages (p < 0.001),
except for DLIR-H (p = 0.87) and DLIR-H MAR (p = 0.735) images at 0.5 mSv. The
background noise values showed no statistically significant difference between MAR and
non-MAR images across different tube voltages and radiation doses (Figs. 2A-2F). Under
the same tube voltage and reconstruction algorithm for different radiation doses, the noise
of the 3 mSv image group is lower than that of the 0.5 mSv group (all p < 0.001, File S1).
Al decreased significantly with MAR (MAR: 27.3—46.1 HU; without MAR: 60.7-115.6
HU; all p < 0.001) and with high tube voltages (except for 0.5 mSv ASIR-V MAR and
DLIR-H MAR, all p < 0.001), as shown in Table 1 and Figs. 2G-21L.. Compared to low-kVp
images, the Al values for high-kVp images decreased except 0.5 mSv ASIR-V MAR and
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Table 1 Background noise and Al analysis across four different reconstruction algorithms (DLIR, DLIR-MAR, ASIR-V, and ASIR-V MAR),
tube voltage (70 kVp/100 kVp/120 kVp) and dose level (3 mSv and 0.5 mSv) (Median [Q1,Q3]).

[mSv, kVp] ASIR-V ASIR-V MAR DLIR-H DLIR-H MAR p
Noise
[3, 70] 32.9(32.1,35.1] " 35.5[33.0, 36.8] " 17.8 [17.2,18.9]" 18.9 [18.1,20.2] " <0.001
[3, 100] 28.4(28.1,29.1] 32.5(30.4, 33.4] 15.7 [15.2, 16.0]* 17.0 [16.2,17.9] <0.001
[3, 120] 29.9 [29.6, 31.0] 30.5 [29.6, 32.2] 17.2 [16.1,17.7] 16.6 [16.1,17.4] <0.001
p <0.001 <0.001 0.001 <0.001
[0.5,70] 67.4 [62.6,68.9] 63.8 [62.6, 66.0] " 37.3 [36.5, 38.3] 38.8 [37.0, 40.2] <0.001
[0.5, 100] 59.9 [58.0, 63.4] 58.4 [56.8, 60.4] 36.4 [35.1, 40.8] 37.3 [36.3, 39.5] <0.001
[0.5, 120] 60.9 [58.4, 63.1] 60.6 [58.6, 62.6] 38.2 [34.6, 40.8] 38.2 [36.0, 40.3] <0.001
p <0.001 <0.001 0.87 0.735
Al
[3, 70] 103.5[85.1,219.3] > 39.4 [35.0, 48.3] 92.4[81.4,111.0] " 31.9 [30.2, 38.4] " <0.001
[3, 100] 115.0 [68.6, 221.5]* 29.1 [24.6, 35.6] 72.6 [59.4, 94.3]* 27.9 [25.0, 33.2] <0.001
[3,120] 75.7 [58.7, 99.4] 29.2 [25.8, 34.9] 60.7 [50.3, 66.5] 27.3(23.3,31.4] <0.001
p 0.002 <0.001 <0.001 0.001
[0.5,70] 113.0 [98.8, 124.0] " 46.1 [33.5, 54.9] 115.6[104.3, 124.3] >* 43.1 [36.6, 48.3] <0.001
[0.5,100] 67.8 [61.7,77.7] 38.3 [20.7, 50.9] 79.6 [68.8, 83.5] 39.7 [29.8, 46.5] <0.001
[0.5, 120] 65.3 [56.2, 78.6] 38.2 [4.5,44.5] 71.2 [66.5, 80.7] 37.3 [28.7, 46.0] <0.001
p <0.001 0.078 <0.001 0.149
Notes.

Al artifact index; ASIR-V, 50% adaptive statistical iterative reconstruction-V; ASIR-V MAR, ASIR-V 50% with MAR; DLIR-H, deep learning image reconstruction with
high strength; DLIR-H MAR, DLIR-H with MAR.

*Value was statistically different between 70 kVp and 120 kVp group.

*Value was statistically different between 70 kVp and 100 kVp group.

XValue was statistically different between 100 kVp and 120 kVp group.

DLIR-H MAR (e.g., ASIR-V and 0.5 mSv 70/100/120 kVp: 113.0 [98.8, 124.0]/67.8 [61.7,
77.71165.3 [56.2,78.6] HU), with the lowest Al value obtained using the high-kVp combined
with the MAR algorithm (3 mSv 120 kVp in DLIR-H MAR: 27.3 [23.3, 31.4] HU; 0.5 mSv
120 kVp in DLIR-H MAR: 37.3 [28.7, 46.0] HU). Furthermore, there was no statistically
significant difference in Al values between ASIR-V and DLIR-H, or between ASIR-V MAR
and DLIR-H MAR , among four groups comparison (Kruskal-Wallis test among ASIR-V,
ASIR-V MAR, DLIR-H and DLIR-H MAR) (Figs. 2G-2L). These results indicate that the Al
of low-dose images with 120 kVp DLIR-H MAR was comparable to that of standard-dose
images with 70 kVp ASIR-V MAR (p =0.143). Under different radiation doses, the Al of
images in the 3 mSv group was significantly lower than that of the 0.5 mSv group across
multiple protocols (70 kVp DLIR-H, DLIR-H MAR; 100 kVp ASIR-V, DLIR-H MAR; 120
kVp ASIR-V MAR, DLIR-H, DLIR-H MAR; p < 0.001, File S2).

Figure 3 and Table 2 indicate that among the four reconstruction algorithms, only
the 70 kVp 3 mSv protocol demonstrated statistically significant difference in SNR for
artifact-impaired PNs (p = 0.041), whereas no significant SNR differences were observed
in other comparative analyses. In the 70 kVp 3 mSv group, ASIR-V MAR showed a median
SNR increase of approximately 74.5% compared to ASIR-V, while DLIR-H MAR exhibited
a 137.3% higher median SNR than DLIR-H. Under the same reconstruction algorithm
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Figure 2 Comparison of noise and Al across four reconstruction algorithms (DLIR, DLIR-MAR,

ASIR-V, and ASIR-V MAR). The labels (A—F) denote the noise levels of the four groups under the
following six scanning conditions: 120 kVp 3 mSv, 100 kVp 3 mSv, 70 kVp 3 mSv, 120 kVp 0.5 mSv, 100
kVp 0.5 mSv, and 70 kVp 0.5 mSv. (continued on next page...)

Full-size &8 DOI: 10.7717/peerj.19516/fig-2
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Figure 2 (...continued)

The labels (G-I) denote the Al levels of the four groups under the following six scanning conditions:
120 kVp 3 mSv, 100 kVp 3 mSv, 70 kVp 3 mSv, 120 kVp 0.5 mSv, 100 kVp 0.5 mSv, and 70 kVp 0.5
mSv. Ns means no statistical difference. Al artifact index; ASIR-V, 50% adaptive statistical iterative
reconstruction-V; ASIR-V MAR, ASIR-V 50% with MAR; DLIR-H, deep learning image reconstruction
with high strength; DLIR-H MAR, DLIR-H with MAR.
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Figure 3 Boxplots of SNR across four reconstruction algorithms. Boxplots of SNR across four recon-
struction algorithms (DLIR, DLIR-MAR, ASIR-V, and ASIR-V MAR). The labels (A-F) denote the SNR
levels of the four groups under the following six scanning conditions: 120 kVp 3 mSv, 100 kVp 3 mSv, 70
kVp 3 mSv, 120 kVp 0.5 mSv, 100 kVp 0.5 mSv, and 70 kVp 0.5 mSv. ASIR-V, 50% adaptive statistical it-
erative reconstruction-V; ASIR-V MAR, ASIR-V 50% with MAR; DLIR-H, deep learning image recon-
struction with high strength; DLIR-H MAR, DLIR-H with MAR.

Full-size &4 DOI: 10.7717/peer;j.19516/fig-3

and radiation dose, there was no statistical difference in the SNR of artifact- impaired
PNs among three tube voltages (p-values refer to Table 2). Furthermore, except for the
70 kVp ASIR-V and 70 kVp DLIR-H groups, the SNR for artifact-impaired PNs in the

3 mSv groups was significantly higher than that of the 0.5 mSv groups across all other scan
protocols (with varying voltages and reconstruction algorithms), demonstrating statistical
significance (p < 0.05).

Regarding the NPS, the trends of the NPS area under various kVp levels, radiation doses,
and reconstruction algorithms were similar to those of background noise. Higher kVp,
higher doses, or DLIR were more likely associated with the lower NPS areas. Regarding
noise texture, the differences in fyeq/favg values between MAR and non-MAR images were
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Table2 SNR of artifact impaired non-solid PNs across four different reconstruction algorithms
(DLIR, DLIR-MAR, ASIR-V, and ASIR-V MAR), tube voltage (70 kVp/100 kVp/120 kVp) and dose level
(3 mSv and 0.5 mSv) (Median [Q1,Q3]).

[mSv, kVp] ASIR-V ASIR-V MAR DLIR-H DLIR-H MAR P
SNR

[3,70] 10.6 [7.7, 18.4] 18.5 [17.5,20.5] 7.5 (6.5, 18.6] 17.8 [14.5, 25.2] 0.041
[3,100] 12.7 [9.8, 16.9] 15.4 [12.8, 23.0] 10.8 [9.6, 17.7] 17.1 [11.9, 25.8] 0.194
[3,120] 14.9 [11.7, 20.6] 18.7 [16.0, 21.8] 16.5 [11.1, 20.7] 20.7 [14.2, 26.6] 0.405
p 0.190 0.641 0.199 0.879

[0.5,70] 7.4 (6.1,9.6] 8.9 [8.5,10.2] 6.47 [5.69, 9.30] 9.1[7.3,13.6] 0.143
[0.5, 100] 7.7 (6.7, 8.7] 9.5 (8.2, 12.0] 7.0 [5.9, 9.4] 9.4 (6.9, 13.5] 0.331
[0.5, 120] 8.8 [8.1,9.21] 10.5 [8.4,11.8] 7.9 [6.7,9.8] 10.3 [8.0, 13.2] 0.271
p 0.462 0.574 0.543 0.911

Notes.

SNR, signal-to-noise ratio; ASIR-V, 50% adaptive statistical iterative reconstruction-V; ASIR-V MAR, ASIR-V 50% with
MAR; DLIR-H, deep learning image reconstruction with high strength; DLIR-H MAR, DLIR-H with MAR.
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Figure 4 NPS curves across four reconstruction algorithms (DLIR, DLIR-MAR, ASIR-V, and ASIR-V
MAR). The labels (A-F) denote the NPS curves of the four groups under the following six scanning condi-
tions: 120 kVp 3 mSyv, 100 kVp 3 mSv, 70 kVp 3 mSv, 120 kVp 0.5 mSv, 100 kVp 0.5 mSv, and 70 kVp 0.5
mSv. obtained at various scanning scenarios. ASIR-V, 50% adaptive statistical iterative reconstruction-V;
ASIR-V MAR, ASIR-V 50% with MAR; DLIR-H, deep learning image reconstruction with high strength;
DLIR-H MAR, DLIR-H with MAR.

Full-size Gl DOI: 10.7717/peer;j.19516/fig-4

insignificant, and both were closer to the reference values (3 mSv, FBP). Similarly, the
influences of different voltages and radiation doses on fyeai/favg Were also negligible in our
study (Table 3 and Fig. 4).
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Table 3 NPS analysis across four different reconstruction algorithms (DLIR, DLIR-MAR, ASIR-V, and
ASIR-V MAR), tube voltage (70 kVp/100 kVp/120 kVp) and dose level (3 mSv and 0.5 mSv).

[mSv, kVp] ASIR-V ASIR-V MAR DLIR-H DLIR-H MAR Ref (3 mSv, FBP)
NPS area (HU? mm)
[3,70] 41.7 41.6 22.0 22.1 77.7
[3, 100] 35.9 36.8 20.0 20.3 66.2
[3,120] 36.4 36.6 20.4 20.3 67.1
[0.5, 70] 93.8 93.4 41.3 41.3 77.7
[0.5, 100] 85.1 84.4 39.7 39.7 66.2
[0.5, 120] 84.8 85.0 40.4 40.2 67.1
fpea (mm™")
[3,70] 0.44 0.42 0.39 0.40 0.45
[3,100] 0.42 0.45 0.40 0.41 0.45
[3,120] 0.45 0.43 0.40 0.42 0.43
[0.5, 70] 0.42 0.43 0.43 0.42 0.45
[0.5, 100] 0.42 0.42 0.42 0.42 0.45
[0.5, 120] 0.43 0.41 0.43 0.41 0.43
fovg (mm~")
[3,70] 0.43 0.42 0.43 0.42 0.43
[3,100] 0.43 0.43 0.43 0.43 0.44
[3,120] 0.43 0.43 0.43 0.43 0.44
[0.5, 70] 0.41 0.41 0.43 0.43 0.43
[0.5, 100] 0.41 0.41 0.43 0.43 0.44
[0.5, 120] 0.41 0.41 0.43 0.43 0.44
Notes.

NPS, noise power spectrum; ASIR-V, 50% adaptive statistical iterative reconstruction-V; ASIR-V MAR, ASIR-V 50% with
MAR; DLIR-H, deep learning image reconstruction with high strength; DLIR-H MAR, DLIR-H with MAR; f,eq, the peak
spatial frequency of NPS; f,,, the average spatial frequency of NPS.

Qualitative analysis

The interobserver agreements were significant concerning the extent of metal artifacts, the
confidence in diagnosing artifact-impaired PNs, and the overall image quality (x =0.79,
0.82, 0.78 for 3 mSv, all p < 0.001; 0.74, 0.74, 0.73 for 0.5 mSv, all p < 0.001). The
median [Q1, Q3] of the extent of metal artifacts assessments for 0.5 mSv ASIR-V, ASIR-V
MAR, DLIR-H, and DLIR-H MAR were as follows: 2 [2, 2], 3 [3, 3], 2 [2, 3], and 3 [3, 3]
(p <0.001), and for 3 mSv were as follows: 2 [2, 3], 4 [4,4],2 [2,3],and 4 [4, 4] (p < 0.001).
The influence of artifacts in images with MAR was significantly lower than those in images
without MAR, aligning with the findings from the objective evaluation. The median [Q],
Q3] of the overall image quality assessments for 0.5 mSv ASIR-V, ASIR-V MAR, DLIR-H,
and DLIR-H MAR were as follows: 2 [1, 3], 3 [3, 3], 2 [2, 3], and 3 [3, 3] (p < 0.001),
while for 3 mSv, the values were 2 [1, 3], 4 [3, 4], 2 [1.75, 3], and 4 [4, 4] (p < 0.001).
These results indicate that DLIR-H MAR/ASIR-V MAR exhibited superior image quality
compared to DLIR-H/ASIR-V (p < 0.001). In terms of diagnostic confidence for PNs, there
were statistically significant differences in the subjective scores among different algorithms,
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Table 4 Subjective score across four different reconstruction algorithms (DLIR, DLIR-MAR, ASIR-V,
and ASIR-V MAR), tube voltage (70 kVp/100 kVp/120 kVp) and dose level (3 mSv and 0.5 mSv).

[mSv, kVp] ASIR-V ASIR-V MAR DLIR-H DLIR-H MAR
The extent of metal artifact
(3, 70] 2 3.67 2 4
(3, 100] 2 4 2 4
(3, 120] 2.83 4 3.17 4
[0.5, 70] 1.83 3 2 3
[0.5, 100] 2 3 2 3
[0.5, 120] 2.5 3 3 3.5
The confidence of PNs diagnosis
[3,70] 2 3 2 4
(3, 100] 2.33 4 3 4
[3, 120] 3 4 3 4.17
[0.5, 70] 2 3 2 3
[0.5, 100] 2 3 2 3
[0.5, 120] 2.5 3 3 3
The overall image quality
[3,70] 1 3 1.33 4
(3, 100] 2 4 2 4
(3, 120] 3 4 3 4
[0.5, 70] 1 3 2 3
[0.5, 100] 2 3 2 3
[0.5, 120] 3 3 3 3.5

the median [Q1, Q3] for 0.5 mSv ASIR-V, ASIR-V MAR, DLIR-H, and DLIR-H MAR were
as follows: 1 [1, 2], 3 [2, 3], 2 [1, 2], and 4 [2.75, 4] (p < 0.001), while for 3 mSv, the values
were 2 [1.75, 3], 4 [3.5, 4], 3 [3, 3], and 4 [4, 4] (p < 0.001), indicating that metal artifacts
in the images significantly affected the diagnostic confidence for PNs lesions under the
influence of artifacts (Table 4).

DISCUSSION

In this study, we assessed the performance of the combinations of MAR and DLIR
algorithms under various scanning scenarios on artifact reduction and image quality
improvement. Both objective and subjective analyses showed that the MAR algorithm
combined with DLIR-H at 120 kVp could significantly reduce metal artifacts and improve
image quality while preserving image texture in artifact-free regions.

As demonstrated in Fig. 2 and Table 1, noise levels were predominantly influenced
by the utilization of the DLIR algorithm and radiation dose, whereas MAR algorithms,
designed for artifact suppression, demonstrated negligible impact on noise characteristics.
Regarding the DLIR algorithm, previous literature has demonstrated its potential to
improve image quality (Li et al., 2024), enhance diagnostic confidence (Zhu et al., 2024),
and reduce radiation dose (Yang et al., 2021; Jiang et al., 2022a), particularly in the detection
of lung nodules. Jiang et al. (2022a) demonstrated the feasibility of using DLIR for lung
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nodule screening with chest X-ray doses, showing that images at 0.07/0.14 mSv yielded
comparable results in lung nodule detection, SNR, and malignant features to those of

3 mSv enhanced images. Zhao et al. (2023) presented superior accuracy and repeatability
in the detection of pulmonary lesions and nodules based on DLIR (D’Hondt et al., 2024).
In line with these studies (Szczykutowicz et al., 2021), our research also showed that DLIR
maintained lower noise levels than ASIR-V, regardless of tube voltages or radiation dose
levels (all p < 0.001). The noise of low-dose images with DLIR-H were comparable to
those of standard-dose images with ASIR-V, although there were statistically significant
differences (p < 0.05, Table 1). For different tube voltages, under identical reconstruction
algorithms and radiation dose conditions, the 70 kVp protocol exhibited significantly
higher noise compared to 100 kVp/120 kVp settings in all groups (p < 0.001) except the 0.5
mSv DLIR-H (0.87) and DLIR-H MAR (0.735). This observation may be explained by the
characteristics of metal-implanted scans: higher kVp settings improve photon penetration
efficiency, allowing the detector to capture more effective signals, thereby reducing noise
in reconstructed images.

For the Al results, previous studies have demonstrated that the MAR algorithm alone can
reduce metal artifacts to improve the delineation accuracy in dental implants (Fukugawa
et al., 2022) or diagnostic confidence in knee implant (Zhang et al., 2020). In line with
these papers, our study demonstrated that Al values in MAR images were significantly
lower than those in images without MAR across various tube voltages, radiation dose levels
and reconstruction algorithms (all p < 0.001). Furthermore, the Bonferroni post hoc tests
of Al between DLIR-H and ASIR-V groups (or DLIR-H MAR VS ASIR-V MAR) were
not statistically significant among the four-groups comparison: ASIR-V, ASIR-V MAR,
DLIR-H and DLIR-H MAR. Kovacs et al. (2018) reported similar results. However, when
only compared the Al between ASIR-V and DLIR-H images (or DLIR-H MAR VS ASIR-V
MAR) using Mann—Whitney test across various scenarios, DLIR-H reconstructed images
exhibited lower Al than those of ASIR-V, and differences were statistically significant at
3 mSv without MAR algorithm across various tube voltages. The p-values were 0.001,
0.003, and 0.036 for 120, 100, and 70 kVp, respectively. The lack of statistical differences
between the ASIR-V and DLIR-H subgroups (Bonferroni post hoc test of Kruskal-Wallis
test) in the multi-group comparison (Kruskal-Wallis test) may result from the pronounced
differences between images with and without MAR, which obscured the Al differences
between DLIR-H and ASIR-V. Regarding the tube voltage in metal artifact reduction, some
studies have demonstrated that high keV of spectral CT combined with the MAR algorithm
effectively reduces artifacts and improves diagnostic confidence (Chae et al., 2020), while
other studies have indicated that moderate keV (70-80 keV) with the MAR algorithm has
the best trade-off between vascular clarity and artifact levels (Zhao et al., 2023). In our
study, the 70 kVp protocol produced significantly higher Al values compared to other
tube voltages (p < 0.001) in all groups except the 0.5 mSv ASIR-V MAR (p=0.078) and
DLIR-H MAR (p = 0.149). The lack of statistically significant differences in Al values
between different tube voltages within these two low-dose groups may be attributed to
the combined effects of increased noise from low radiation doses and the effective artifact
reduction by MAR algorithms, which collectively diminished the inherent advantages of
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higher kVp in metal artifact reduction. Furthermore, the Al of 120 kVp images with DLIR-H
MAR at 0.5 mSv was comparable to this of 70 kVp images with ASIR-V MAR at 3 mSv
(p=0.143). Thus, DLIR-H combined with high kVp and MAR algorithm allows for the
possibility of low-dose scanning in the context of metal implants. Qualitative evaluations
of the extent of metal artifact by observers demonstrated significant concordance with
quantitative metrics.

For most of the SNR values for artifact-impaired PN, there were no statistical differences
among the four groups of reconstruction algorithms (except for 3 mSv, 70 kVp). This may
be because the degree of artifact impact on the four nodules varied, resulting in a wide
range of SNR values under the same algorithm. Therefore, even though the differences
in medians were substantial, there was no statistical significance. However, considering
the statistical results of the 70 kVp 3 mSv group and the median SNR values of the other
groups, the SNR values in the MAR algorithm groups are higher than that in the no-MAR
algorithm groups (ASIR-V vs. ASIR-V MAR or DLIR-H vs. DLIR-H MAR). The increase
in SNR is primarily attributed to two factors: an increase in CT values or a decrease in SD
values. The reduction in SD values is mainly due to the decrease in artifacts and noise. In
non-enhanced images, the advantages of high contrast and CT values in low keV images
are diminished due to the absence of iodine contrast agents. Thus, decreased SD is the
primary contributor to the increased SNR. Results showed that the noise value of MAR
images is comparable to non-MAR images; however, the Al value decreases significantly in
MAR images, leading to a lower SD. Thus, due to the metal artifact reduction, images with
MAR had the higher SNR compared to images without MAR.

Furthermore, to the best of our knowledge, our study is the first to introduce the NPS
for evaluating whether the MAR algorithm alters image texture in artifact-free regions. The
results indicated that image texture was not affected by the choice of tube voltage, dose
levels and reconstruction algorithm with or without MAR.

This study has several limitations: first, this study was performed on a phantom, which
inherently lacks the anatomical complexity and did not account for the clinical diversity
of patients. Future clinical studies with large sample sizes are warranted to investigate
the clinical efficacy of combining MAR with DLIR in enhancing diagnostic accuracy
and artifact suppression capability in CT images with metal implants. Second, to assess
the ability of metal artifact suppression, three tube voltages were selected, but 140 kVp
was not among them. Third, the metrics related to PNs, particularly volume, were not
assessed in this study, because volume measurements by the Al software were inaccurate
due to interference from metal artifacts and cotton. Finally, the exclusive investigation
of GE’s proprietary reconstruction algorithms (DLIR and ASIR-V) inherently limits the
generalizability of our conclusions to other vendor platforms.

CONCLUSION

In conclusion, the combination of the MAR algorithm with DLIR-H demonstrated
significant noise and Al reductions, SNR improvements, while preserving the image texture
of artifact-free regions. Interestingly, the low-dose images reconstructed by DLIR-H MAR
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at 120 kVp had comparable noise and Al compared to standard-dose images by ASIR-V
MAR at 70 kVp.
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