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ABSTRACT

Continuous glucose monitoring (CGM) has become a important technology in the
management and research of both type 1 and type 2 diabetes, providing real-time data
on glucose fluctuations that were previously inaccessible with traditional monitoring
methods. Numerous analytical tools have been developed for platforms like R and
Python to calculate standard metrics and extract insights from CGM data. However,
these tools often fail to address the full spectrum of analytical requirements. Further-
more, there is a lack of updated, open-source tools tailored for MATrix LABoratory
(MATLAB)—a platform widely used by the research community. To address this
gap, we introduce Quantification of Continuous Glucose Monitoring (QoCGM),
a comprehensive, open-source post-hoc analytical tool for CGM data specifically
designed for MATLAB. A case study involving 324 individuals with insulin-treated
type 2 diabetes mellitus (T2DM) demonstrates the utility of QoCGM, highlighting
the distinct aspects of glucose dynamics captured by different CGM-derived metrics
through an analysis of their coefficients of determination (R?).

Subjects Diabetes and Endocrinology, Computational Science

Keywords Diabetes mellitus, Continuous glucose monitoring, Continuous overall net glycemic
action, Glycemic risk index, Mean amplitude of glycemic excursions, Software, Metrics, Time-in-
Range, T2DM

INTRODUCTION

Continuous glucose monitoring (CGM) has emerged as a cornerstone in the management
and study of both type 1 and type 2 diabetes (The Juvenile Diabetes Research Foundation
Continuous Glucose Monitoring Study Group, 2008; Rodbard, 2016; Carlson, Mullen &
Bergenstal, 2017; Martens et al., 2021), offering real-time insights into glucose fluctuations
that were previously unattainable through traditional monitoring methods. The data
generated by CGM devices provides an unprecedented opportunity for both clinical and
scientific applications, enabling precise glycemic control, better prediction of hypoglycemic
and hyperglycemic events, and a deeper understanding of glucose dynamics. Key metrics
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derived from CGM data, such as time-in-ranges and glycemic variability have become
integral to both patient care and diabetes research, facilitating personalized treatment plans
and the development of novel therapeutic strategies (Danne et al., 2017; Battelino et al.,
2019; Battelino et al., 2023).

In several previous studies, we have shown how CGM derived metrics can be utilized in
the prediction of emerging hypoglycemic events (Cichosz et al., 2014; Fleischer, Hansen ¢
Cichosz, 20225 Thomsen et al., 2023; Kronborg et al., 2024), week-to-week risk of excessive
hyperglycemia, hypoglycemia and glycemic variability (Cichosz, Jensen ¢ Olesen, 2024),
elevated ketone levels, (Cichosz ¢ Bender, 2024) and identification of gastroparesis (Cichosz
& Hejlesen, 2022).

Over the years, several analytical tools have been developed to harness the potential
of CGM data, providing capabilities for calculating standard metrics and generating
insights from the complex glucose profiles captured (Piersanti et al., 2023; Olsen et al.,
2024). Examples of such tool are cgmquantify, iglu, GLU, rGV, and CGManalyzer, which
are all available for R or Python (Millard et al., 2020; Bent, Henriquez ¢» Dunn, 2021; Broll
et al., 2021; Olawsky et al., 2022). Also, the AGATA toolbox exists for analytics needs in
MATLAB/ Octave environment and is focused on visualization of the analytic results
(Cappon, Sparacino & Facchinetti, 2024). However, these tools do often not address the
full spectrum of analytical needs. Specifically, there is a growing demand for tools that
can incorporate newer, clinically relevant metrics, perform nuanced analyses of nocturnal
versus diurnal glucose patterns, event detection of hypoglycemia, novel glycemic variability
metrics and assess day-to-day variations in glucose levels—factors that are critical for
both advanced research and personalized clinical interventions. Moreover, while various
software solutions exist, there is a notable gap in the availability of updated, open-source
tools for the MATLAB environment (Olsen et al., 2024), which is widely used in the
Engineering research community.

This article presents an open-source tool Quantification of Continuous Glucose
Monitoring (QoCGM) designed for comprehensive post-hoc CGM data analysis within
the MATLAB environment. This tool does not only include newer metrics but also offers
features for examining night/day glucose variations and day-to-day changes, making it
a valuable resource for researchers and clinicians. Portions of this text were previously
published as part of a preprint (https:/doi.org/10.1101/2025.01.01.25319870).

IMPLEMENTATION

QoCGM is implemented in MATLAB and has been tested with version R2021b.
The source code is available on GitHub (https:/github.com/simcich/QoCGM, DOI:
10.5281/zenodo.15018569). QoCGM is designed to process preprocessed CGM data from
comma-separated value (CSV) files. The input CSV files should contain two columns:
one for the timestamp in the format YYYY-MM-DD HH:MM:SS’, and one for the
corresponding glucose values, which can be in either mg/dL or mmol/L.

The processing of CGM data in QoCGM occurs in two primary stages: (i) preprocessing
and handling missing data, and (ii) deriving metrics. The source code includes examples
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Figure 1 Raw CGM signal with the corresponding interpolated signal and missing periods.
Full-size &l DOI: 10.7717/peer;j.19501/fig-1

that demonstrate how to use QoCGM with a single file or to batch process multiple files
within a directory.

To run QoCGM, users load the CGM data into a table and provide the following
additional arguments:

e Sampling frequency: A numeric value representing the expected sampling frequency in
minutes. For example, set this to 5 if measurements are expected every 5 min.

e Sampling tolerance: A numeric threshold (in minutes) defining the acceptable variation
in sampling times. Measurements that fall outside this threshold are corrected.

e End of night: An integer (0-24) specifying the hour at which the ‘morning’ period
begins, thereby marking the end of the ‘night’. For instance, set this to 6 for a 6 AM start.

e Conversion flag: A binary flag (1 or 0) indicating whether to convert CGM values from
mmol/L to mg/dL. Since the metrics are derived based on mg/dL values, conversion is
necessary if the CGM units are in mmol/L.

e Plotting flag: A binary flag, set to 1 to enable plotting of figures related to signal quality
control and data processing. Examples of these plots are presented in Figs. 1-3.

e Handling of missing data: either interpolation (default) or by removing periods with
missing data.

Upon execution, QoCGM generates a CSV file containing the derived CGM metrics,
which can then be imported into statistical software for further analysis.

Preprocessing and handling missing data
Data preprocessing and removal of duplicates

The preprocessing of the CGM signal begins with the removal of duplicate entries in the
dataset. The process removes duplicate values that share identical timestamps, as these can
arise during data export from CGM platforms or due to synchronization issues. This step
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Figure 2 CGM signal with the corresponding nadirs and peaks detected for calculation of MAGE. The
plot illustrate a window from approximately 3 days of CGM monitoring.
Full-size Gl DOI: 10.7717/peerj.19501/fig-2
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Figure 3 Fasting approximation. Example of CGM signal with highlighted detected nadirs values during
nights used for fasting approximation (FGxP).

Full-size ] DOI: 10.7717/peerj.19501/fig-3

is critical to ensure that each time point in the data is unique, preventing potential errors
in subsequent analyses.

Identification of missing periods in the CGM signal

CGM systems are configured to sample glucose levels at specific intervals. For example,
a common sampling frequency involves recording data every 5 min. This interval is
considered the expected time between consecutive measurements.
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Small deviations from the expected sampling interval can occur due to natural variability
in device performance or other factors. To account for this, a tolerance range is established
around the expected interval, defining the maximum allowable intervals between
consecutive readings. The time differences between consecutive glucose measurements
are calculated to identify intervals that fall outside the permissible % range. Any interval
that is longer than the defined tolerance indicates a potential gap or missing period in the
data. The specific points in time where data is missing are identified by examining the
calculated time differences. These points mark the beginning of periods when the expected
glucose measurements are absent.

Interpolation of missing data
To reconstruct the missing portions of the CGM signal, interpolation is performed over
the identified gaps using Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
(Rabbath & Corriveau, 2019).

The final PCHIP interpolating function H(x) is defined piecewise over each interval

(xi,xit1) as:
H (x) = Hi(x) for xi <x <xjy.

This method was chosen for its ability to maintain the shape and smoothness of the
original data, making it suitable for CGM signals, which typically exhibit smooth and
continuous changes in glucose levels. This reconstructed signal filled the gaps identified
earlier, providing a continuous and complete signal for further analysis. Figure 1 illustrates
a CGM signal with missing periods, the raw signal, and the PCHIP interpolation. It is also
possible to handle missing periods without interpolation by setting input argument to
removing these periods.

CGM derived metrics
After preprocessing and interpolation of the signal, QCGM derives a set of CGM metrics,
listed in Table 1. Glucose metrics output by QoCGM were chosen to represent categories of
glucose characteristics that reflect a set of broad domains that relate to outcomes, glycemic
control, or be influenced by exposures in clinical trials.

The domains are:

e Basic descriptive statistics
e Time-in-range (TIR) metrics
e Glycemic risk indicators

Glycemic variability metrics

Glycemic control indicators

Entropy and complexity measures

The QoCGM tool calculates basic descriptive statistics and time-in-range (TIR) metrics
for the entire day, as well as separately for nighttime and daytime periods. Additionally,
it provides the day-to-day standard deviation for selected variables. All other metrics are
derived from the complete CGM signal provided.
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Table 1 The figure displays the CGM metrics calculated by QoCGM with a short description.

Metric Description All Day Night
MonitoringDays Number of days with monitoring X
CompletenessRate The completeness of the monitored period X

sample_n Number of samples X X X
Mean Mean glucose value X X X
Median Median glucose value X X X
Std Standard deviation of glucose values X X X
Ccv Coefficient of variation X X X
IQR Interquartile range X X X
Pctile75 75th percentile of glucose values X X X
Pctile25 25th percentile of glucose values X X X
TIR Time in range (70-180 mg/dL) X X X
TITR Time in tight range (70-140 mg/dL) X X X
TBR1 Time below range (54-70 mg/dL) X X X
TBR2 Time below range (<54 mg/dL) X X X
TBR Total time below range (TBR1 + TBR2) X X X
TARIL Time above range (180-250 mg/dL) X X X
TAR2 Time above range (>250 mg/dL) X X X
TAR Total time above range (TAR1 + TAR2) X X X
Hypo_episodes_n Number of hypoglycemia events (<70 mg/dL) X

GRI_Hypo Glucose Risk Index for hypoglycemia X

GRI_Hyper Glucose Risk Index for hyperglycemia X

GRI Glucose Risk Index X

CONGA_1H Continuous Overall Net Glycemic Action over 1 h X

CONGA_2H Continuous Overall Net Glycemic Action over 2 h X

CONGA_6H Continuous Overall Net Glycemic Action over 6 h X

CONGA_24H Continuous Overall Net Glycemic Action over 24 h X

MAGE Mean Amplitude of Glycemic Excursion X

Mobility Signal mobility X

DTpM Distance traveled per minute X

FGxP Fasting glucose proxy X

GMI Glucose Management Indicator X

LBGI Low Blood Glucose Index X

HBGI High Blood Glucose Index X

MCI Multiscale Complexity Index X

GRADE Glycemic Risk Assessment Diabetes Equation score X

GRADE_hypo Percentage of GRADE score for hypoglycemia X

GRADE _eu Percentage of GRADE score for euglycemia X

GRADE_hyper Percentage of GRADE score for hyperglycemia X

D2d_mean Day-to-day standard deviation of mean glucose X

D2d_TIR Day-to-day standard deviation of time in range X
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QoCGM aggregates the average of each summary variable across all days for each
participant, resulting in a single overall value for each metric. For instance, QoCGM
reports TIR metrics such as: (i) mean TIR for whole days, (ii) TIR for nighttime based
on a predefined interval, (iii) TIR for daytime based on a predefined interval, and (iv)
day-to-day variation in TIR. Metrics for each day for a given individual can be calculated
by splitting the CGM signal into separate files corresponding to unique days.

Basic descriptive statistics

We included a range of basic descriptive statistics to characterize the CGM data for
each participant. These metrics provide foundational insights into the central tendency,
dispersion, and distribution of glucose values over the monitored period.

Mean glucose: The average glucose level over the monitoring period.

e Median glucose: The midpoint of the glucose distribution, less influenced by outliers.

e Standard deviation (SD): A measure of glucose variability around the mean.

e Coefficient of variation (CV): The standard deviation normalized by the mean, expressed
as a percentage.

e Interquartile range (IQR): The range between the 25th and 75th percentiles, representing
the spread of the middle 50% of glucose values.

e 75th and 25th percentiles: Indicators of the upper and lower bounds of the middle half

of the glucose distribution.

These metrics were calculated for the entire period, as well as separately for daytime and
nighttime, to capture diurnal variations in glucose levels.

Time-in-range (TIR) metrics

TIR metrics were employed to assess the proportion of time that glucose levels remained
within clinically relevant thresholds, providing a detailed view of glycemic control. The
following TIR metrics were included in the analysis:

e TIR (70-180 mg/dL) (Danne et al., 2017): Percentage of time within the target range,
indicating overall glycemic control.

e TITR (70-140 mg/dL) (Beck et al., 2024): Percentage of time within a narrower target

range, reflecting tighter glucose control.

TBR1 (54-70 mg/dL) (Danne et al., 2017): Percentage of time in level 1 hypoglycemia.

TBR2 (<54 mg/dL) (Danne et al., 2017): Percentage of time in level 2 hypoglycemia.

Total TBR (Hill et al., 2007): Combined percentage of time in TBR1 and TBR2.

TARI (180-250 mg/dL) (Danne et al., 2017): Percentage of time in level 1 hyperglycemia.

TAR2 (>250 mg/dL) (Danne et al., 2017): Percentage of time in level 2 hyperglycemia.

Total TAR (Danmne et al., 2017): Combined percentage of time in TAR1 and TAR2.

These metrics were calculated for the whole day and separately for daytime and nighttime.

Glycemic risk indicators
Glycemic risk indicators were calculated to quantify the risk associated with hyperglycemia

and hypoglycemia, providing a nuanced assessment of the overall glycemic profile. The

Cichosz et al. (2025), PeerJ, DOI 10.7717/peerj.19501 719


https://peerj.com
http://dx.doi.org/10.7717/peerj.19501

Peer

following metrics were included from the Glycemic Risk Index (GRI), Low/High Blood
Glucose Index (LBGI/HBGI), and The Glycemic Risk Assessment in Diabetes (GRADE):

e Glycemic Risk Index for Hypoglycemia (GRI Hypo) (Klonoff et al., 2023): This metric
quantifies the risk associated with hypoglycemic episodes, with higher values indicating
a greater risk of low glucose levels.

e Glycemic Risk Index for Hyperglycemia (GRI Hyper) (Klonoff et al., 2023): This metric
assesses the risk of hyperglycemia, with higher values indicating a greater risk of elevated
glucose levels.

e Overall Glycemic Risk Index (GRI) (Klonoff et al., 2023): A composite metric combining
the risks of both hypoglycemia and hyperglycemia, calculated as a weighted sum of GRI
Hypo and GRI Hyper.

e Low Blood Glucose Index (LBGI) (Kovatchev et al., 1998): This score measures the
risk of experiencing low blood glucose levels, with higher values indicating increased
hypoglycemia risk.

e High Blood Glucose Index (HBGI) (Kovatchev et al., 2002): This score quantifies the
risk of high blood glucose levels, with higher values indicating an increased risk of
hyperglycemia.

e GRADE (Overall) (Hill et al., 2007): This metric provides a summary measure of
glycemic risk across all glucose ranges, combining the risks of hypoglycemia, euglycemia,
and hyperglycemia.

e GRADE for hypoglycemia (Hill et al., 2007): The specific component of the GRADE
metric that assesses the risk of hypoglycemia.

e GRADE for euglycemia (Hill et al., 2007): The component of the GRADE metric that
evaluates the time spent in the euglycemic range (normal glucose levels).

e GRADE for hyperglycemia (Hill et al., 2007): The component of the GRADE metric
that quantifies the risk associated with hyperglycemia.

These glycemic risk indicators were calculated based on the entire CGM signal, offering
a detailed view of the participant’s glycemic risk profile. A detailed mathematical definition
of the metrics is provided in Supplementary Material S1.

Glycemic variability metrics

Glycemic Variability Metrics were utilized to assess fluctuations in glucose levels over time,
providing insights into the stability and predictability of glycemic control. The following
metrics were included:

e Continuous overall net glycemic action (CONGA) (Mcdonnell et al., 2005): This metric
measures glucose variability over different time intervals. We calculated CONGA for
1-hour, 2-hour, 6-hour, and 24-hour periods (CONGA 1H, CONGA 2H, CONGA 6H,
and CONGA 24H), reflecting short-term to daily fluctuations in glucose levels.

e Mean amplitude of glycemic excursions (MAGE) (Service et al., 1970): MAGE captures
the average magnitude of significant glucose swings, both increases and decreases, by
focusing on excursions that exceed one standard deviation from the mean. It is a widely
used indicator of glycemic variability and the likelihood of large glucose fluctuations.
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e Mobility: This metric assesses the signal mobility by measuring the variance of glucose
changes (differences between consecutive glucose readings) relative to the overall
variance of the glucose signal. Higher mobility indicates greater variability in glucose
levels. The metrics have especially been shown to separate healthy form individuals with
dysglycemia (Cichosz et al., 2025)

e Distance traveled per minute (DTpM) (Peyser et al., 2018): DTpM quantifies the total
amount of glucose fluctuation over time by summing the absolute changes in glucose
levels and normalizing by the total duration of monitoring. This metric provides a rate of
glucose change, highlighting periods of rapid fluctuations. The metric is closely related to
the established metric mean absolute glucose (MAG) (Hermanides et al., 2010; Kohnert
et al., 2013)

e Standard deviation day-to-day (SD d2d): This metric measures the day-to-day variability
in glucose levels, specifically assessing the mean glucose and TIR variability across days.
It captures the consistency of glycemic control from one day to the next.

These glycemic variability metrics provide a comprehensive understanding of the
dynamics of glucose levels, identifying periods of instability that may increase the
risk of hypo- or hyperglycemic events and contribute to long-term complications in
diabetes management. A detailed mathematical definition of the metrics is provided in
Supplementary Material S1. For example, in Fig. 2, the peaks and nadirs above o (1 SD)
is highlighted in the CGM trace. The absolute excursions ||, both positive and negatives,
are used to calculate the MAGE metric as show in the equation below:

I, .
MAGE =~ _[Ailif (1% = o).

i=1

Glycemic control indicators

Glycemic control indicators were assessed to evaluate the effectiveness of diabetes
management strategies by examining specific aspects of glucose control. The following
metrics were included in the analysis:

e Fasting glucose proxy (FGxP) (Millard et al., 2020): This metric estimates the fasting
glucose levels based on the CGM data. It serves as a proxy for assessing baseline glycemic
control and helps to approximate the glucose levels typically observed during fasting
periods.

e Glucose management indicator (GMI) (Bergenstal et al., 2018): The GMI provides an
estimate of average glucose levels by applying a formula that correlates with hemoglobin
AI1C values. This metric offers a standardized measure of overall glycemic control and
helps in evaluating the long-term efficacy of diabetes management.

e Hypoglycemia events: This metric quantify the numbers of hypoglycemic episodes
below 70 mg/dL for a minimum duration of 15 min.

Several methodologies have been proposed for approximating fasting glucose levels
from CGM data. We employed a robust approach developed by Millard et al. (2020) which
does not require information about mealtimes. This method estimates fasting glucose
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by calculating the mean of the 30 lowest consecutive minutes of glucose readings during
nighttime. Figure 3 illustrates the CGM readings used to estimate fasting glucose from an
individual.

GMI is calculated based on Bergenstal et al. (2018):

GMI (%) =3.3140.02392 x Mean Glucose [mg/dL].

Entropy and complexity measures
The entropy and complexity measure multiscale entropy (MSE) were utilized to evaluate
the irregularity and unpredictability of glucose fluctuations, providing insights into the
dynamic nature of glycemic control. MSE quantifies the complexity of the glucose time
series by analyzing its entropy across multiple time scales. This metric captures the degree
of randomness and structure within glucose data, providing a comprehensive measure of
variability and the underlying complexity of glycemic fluctuations. The calculation involves
embedding the data into various time scales and assessing the entropy at each scale. The
sum of these entropy measures gives the Multiscale Entropy index, reflecting the overall
complexity of the glucose signal. We adopted the implementation described by Kohnert et
al. (2017) where Multiscale Complexity Index (MCI) is defined as the sum over the range
of scales, from 1 to 7, at the window length m = 2, the sensitivity criterion r = 0.15 times
the standard deviation. This metric has previously been as an early marker for changes in
glucose control (Colds et al., 2019).

Tip: To reduce computational time significantly, the calculation of this metric can be
omitted by removing the MSE code part.

Computation time

The average computation time for a 30-day CGM signal sampled at 288 points per day is
approximately 24.3 s for the full set of metrics, and 4.6 s when excluding MSE—which is
notably the most computationally intensive metric. These benchmarks were obtained on a
PC with an 11th Gen Intel(R) Core(TM) i7-11850H @ 2.50 GHz processor and 32 GB of
RAM.

Example of usage

In this section, we demonstrate the application of QoCGM by deriving metrics from CGM
data collected from individuals with Type 2 diabetes mellitus (T2DM) undergoing insulin
therapy. We investigate the correlations between the various metrics generated by QoCGM.

Study sample

We used CGM data (Dexcom, G6) from the Diabetes teleMonitoring of patients in insulin
Therapy (DiaMonT) trial (NCT04981808), comprising 331 people with insulin-treated
T2DM (Hangaard et al., 2022; Hangaard et al., 2025). We encompassed participants from
both the intervention and the control arm. Written and oral informed consent was obtained
from each participant prior to their enrollment in the study. For consistency, we limited
the analysis to the initial seven days of CGM monitoring post the inclusion date for all
participants. We included all participants with any measurements in the first seven days.
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The baseline characteristics of the participants were as follows: mean age 61.3 years (SD
10.6), mean duration of diabetes 17.5 years (SD 11.5), mean BMI 33.1 kg/m2 (SD 6.4),
mean HbA1c 64.0 mmol/mol (SD 14.4), and 61.6% of the participants were male. QoCGM
was used to calculate CGM metric based on the seven-day profile from each participant.
Sampling frequency was set to 5 min, with a sampling variation allowed threshold of 0.05,
morning start was set to 8AM, and PCHIP interpolation was applied on periods without
CGM coverage.

Analyses

We conducted a coefficient of determination analysis (R?) to explore the linear relationships
between the derived CGM metrics. R? represents the proportion of variance in one metric
that is explained by another metric. R* ranges from 0 to 1, where 1 indicates that the
variability in one variable can be completely explained by the other, and 0 indicates no
explanatory power. This analysis provides insights into how different CGM-derived metrics
are interrelated, offering guidance on their potential differences.

RESULTS

A total of 324 participants with T2DM had continuous glucose monitoring (CGM) data
available for the first week following enrollment.

The median (25th; 75th percentile) glucose level of the participants was 162 mg/dL (145;
193 mg/dL), with a time-in-range (TIR) of 65% (39; 78%), and a coefficient of variation
(CV) of 24% (21; 29%). The median CGM coverage was 100% (99; 100%). The full
summery statistics for the full period, night and daytime can be found in Supplementary
Material S2.

The coefficient of determination (R?) analysis is illustrated in a heatmap, Fig. 4.
Furthermore, coefficient of determination matrix plots with annotation of value is provided
in Supplementary Material S2.

This analysis indicates that many metrics exhibit significant overlap with one or more
other metrics. Notably, a few metrics from the whole-signal category show a low R? value
(<0.5) when compared with other metrics. These include the day-to-day standard deviation
of TIR and mean, mean continuous improvement (MCI), Mobility, and DTpM. Figure 5
illustrates the six metrics with the lowest cumulative R? values across all metrics. For each
of these metrics, the corresponding highest R? values are depicted in a circular plot.

The analysis of diurnal and nocturnal metrics (Supplementary Material S2) also
highlights significant differences between TIR metrics calculated from diurnal and
nocturnal periods, underscoring the importance of measuring these as distinct entities
in scientific studies on glucose regulation. QoCGM supports this approach by enabling the
calculation of metrics for both nighttime and daytime periods, in addition to metrics for
the full CGM signal.

CONCLUSIONS

In this paper, we introduced QoCGM, an open-source tool designed for researchers
working with CGM data. QoCGM automates the preprocessing of data and derives a
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Figure 4 Correlation heatmap for whole data CGM metrics. Metrics is arranged (top to bottom) with
the lowest cumulative R* values across all metrics at top and the highest cumulative R* values at the bot-
tom of the y-axe. The five color gradient from dark blue to dark red show the R? tier value between the
metrics. Hence, dark red equals high R? of > 0.8, light red equals > 0.6—0.8, light blue equals > 0.4—0.6,
medium blue equals > 0.2—0.4 and dark blue equals 0—0.2. Metric definitions: Mean (Mean glucose
value), Median (Median glucose value), Std (Standard deviation of glucose values), CV (Coefficient of
variation), IQR (Interquartile range), Pctile75 (75th percentile of glucose values), Pctile25 (25th percentile
of glucose values), TIR (Time in range: 70-180 mg/dL), TITR (Time in tight range: 70—140 mg/dL), TBR1
(Time below range: 54-70 mg/dL), TBR2 (Time below range: <54 mg/dL), TBR (Total time below range:
TBR1 + TBR2), TAR1 (Time above range: 180-250 mg/dL), TAR2 (Time above range: >250 mg/dL),
TAR (Total time above range: TAR1 + TAR2), Hypo_episodes_n (Number of hypoglycemia events: <70
mg/dL), GRI_Hypo (Glucose Risk Index for hypoglycemia), GRI_Hyper (Glucose Risk Index for hy-
perglycemia), GRI (Glucose Risk Index), CONGA_1H (Continuous Overall Net Glycemic Action over

1 h), CONGA_2H (Continuous Overall Net Glycemic Action over 2 h), CONGA_6H (Continuous Over-
all Net Glycemic Action over 6 h), CONGA_24H (Continuous Overall Net Glycemic Action over 24 h),
MAGE (Mean Amplitude of Glycemic Excursion), Mobility (Signal mobility), DTpM (Distance traveled

per minute), FGxP (Fasting glucose proxy), GMI (Glucose Management).
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comprehensive set of metrics that capture key characteristics of glucose dynamics. The

widespread adoption of this tool across various research populations could facilitate the

identification of CGM metrics with the greatest clinical relevance in different contexts and

patient groups. This can enhance the efficient and effective use of CGM in clinical research

and practice. Additionally, a case study analyzing the coefficient of determination (R?)
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above range: 180-250 mg/dL), TBR2 (Time below range: <54 mg/dL), MCI (Multiscale Complexity In-
dex), Mobility (Signal mobility), D2d_TIR (Day-to-day standard deviation of time in range).
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between the derived CGM metrics in people with insulin-treated T2DM demonstrated that
different metrics capture distinct aspects of glucose dynamics. Notably, certain metrics
exhibit a low R? with all other metrics, suggesting that they capture unique, independent
information. Further research is required to explore the clinical implications of these
findings. Moreover, a direct comparison between QoCGM and established CGM analysis
tools in Python and R could provide additional insights into the distinct advantages and
potential discrepancies across platforms. While such a comparative evaluation is beyond
the scope of this paper, it represents an important direction for understanding QoCGM’s
added value in CGM data analysis and presentation.
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