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ABSTRACT
Understanding the trophic ecology of deep-sea communities is central to assessing
ecological structure and function, which is often lacking in remote oceanographic
environments such as hydrothermal vents. Using stomach content analysis coupled
with published stable isotope data, we assessed diet and prey selectivity in two common
predators, eelpouts (Pyrolycus manusanus) and crabs (Austinograea alayseae), from
a South Pacific deep-sea hydrothermal vent community. Using specimens collected
during a cruise in 2007, we found that eelpouts strongly preferred alvinocarididshrimp.
This observation is s upported by the Ivlev index, which measures the selection of prey
in relation to their abundance or availability. Crabs exhibited a diverse diet, including
polychaetes and shrimp, suggesting a scavenging or omnivorous feeding strategy. Due
to the lack of intact stomach contents in the crab, we were unable to apply the Ivlev
method to quantify its prey selectivity. Our results emphasize the need to combine
stomach contents, stable isotope analysis, and other complementary methodologies, to
elucidate the role of predators in deep-sea food webs. In sum, our study underscores the
importance of direct stomach content examination in revealing trophic relationships
in hydrothermal vent systems.

Subjects Ecology, Marine Biology, Zoology
Keywords Trophic ecology, Hydrothermal vents, Prey selectivity, Feeding guilds, Ivlev index,
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INTRODUCTION
Understanding the feeding ecology of marine animals is essential for elucidating their
roles in trophic interactions, energy flow, and community structure within ecosystems
(Hayden et al., 2019). Prey selectivity, a key aspect of feeding ecology, reveals how predators
influence prey populations and the cascading effects on ecological stability and biodiversity
(Li, Wetterer & Hairston Jr, 1985; Schmitz, Beckerman & O’Brien, 1997; Cupples et al., 2011;
Chen et al., 2021). By selecting prey based on size, nutritional value, or availability, predators
regulate energy transfer and shape the composition of their communities (Gerking, 2014;
Chen et al., 2021; Vinterstare et al., 2023).

In the deep sea, prey selectivity is particularly significant due to the scarcity of biological
resources, driving the evolution of specialized feeding strategies. For example, deep-
sea predators such as zoarcid fish exhibit preferences that highlight their roles as apex
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predators, which can redefine previously held assumptions about food web structures in
these systems (Heger & Sutton, 2008; Sancho et al., 2005). Understanding prey selectivity
not only elucidates trophic interactions, but also provides critical insights into ecosystem
resilience and responses to environmental disturbances, underscoring its importance in
conservation efforts (Ripple et al., 2014).

Stomach content analysis (SCA) is a primary tool in trophic ecology, revealing dietary
composition and prey selection (Baker, Buckland & Sheaves, 2014). SCA provides valuable
insights into the recent diet of marine organisms by identifying specific prey items, offering
a direct and detailed assessment of dietary composition. This method allows for the
precise identification and quantification of ingested prey, facilitating a comprehensive
understanding of an organism’s feeding habits and prey preferences (Hyslop, 1980).
Additionally, SCA provides critical information on trophic interactions and food web
dynamics, shedding light on the ecological roles of species within their communities
(Baker, Buckland & Sheaves, 2014). By analyzing temporal and spatial variations in diet,
SCA also helps researchers assess how environmental factors influence feeding behavior,
contributing to a broader understanding of ecosystem functioning (McMeans et al., 2019).
SCA serves as a benchmark for validating alternative dietary assessment methods, such as
stable isotope and DNA-based analyses, ensuring the accuracy and reliability of dietary
studies (Carreon-Martinez & Heath, 2010). Thus, these advantages make SCA an essential
tool in understanding the feeding ecology of marine environments.

Despite these benefits, SCA has several limitations. For example, SCA only reflects
an organism’s diet over a short period before capture, making it unable to represent
long-term dietary patterns, which can skew understanding of trophic dynamics (Cortés,
1997). Additionally, the digestion process often degrades or partially digests prey items,
leading to potential underrepresentation of soft-bodied organisms that are more difficult
to identify in stomach contents (Hyslop, 1980). SCA is also labor-intensive and can require
large sample sizes to capture diet variability, which may be challenging in studies of rare or
hard-to-collect species (Amundsen & Sánchez-Hernández, 2019).

Stable isotope analysis (SIA) of consumer tissues is also often used in studies of trophic
ecology and is especially valuable in the study of deep-sea systems, where direct observation
of feeding behaviors is often impossible (Smith Jr & Baldwin, 1997). SIA offers a time-
averaged estimate of the trophic level of an organism (δ15N) and potential prey items
(δ13C), but usually cannot identify prey to the species level. This restricts understanding of
dietary interactions (Kelly, 2000; Bearhop et al., 2004). Additionally, the method is sensitive
to variations in baseline isotopic values across ecosystems, which may lead to inaccuracies
unless carefully accounted for (Post, 2002). Overlapping isotopic signatures among prey
species can also obscure dietary interpretations, highlighting the need for complementary
methods like SCA for a more detailed dietary profile (Phillips et al., 2014). Integrating
multiple dietary assessment methods enhances our understanding of complex trophic
relationships and ecological roles within marine systems. When SCA is combined with SIA,
species’ positions within the food web can be more accurately assessed, providing insights
into both short-term feeding habits and long-term trophic integration (Shin et al., 2022).
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Eelpout fish and bythograeid crabs are key components of deep-sea chemosynthetic
ecosystems, though the study of their feeding ecology remains challenging due to the
logistical difficulties of accessing these remote and extreme environments (Canals et al.,
2021). Hydrothermal vent environments, with their extreme conditions of temperature,
pressure, and toxicity, shape the evolutionary adaptations and feeding strategies of
species residing there (Chapman, 2018). This study focuses on two hydrothermal vent
inhabitants—an eelpout (Pyrolycus manusanus) and a crab (Austinograea alayseae)—to
explore their feeding ecology and prey selectivity in a South Pacific vent community.

Pyrolycus manusanus (Family Zoarcidae) is a scaleless fish that is endemic to
hydrothermal vents in the Southwest region of the Pacific Ocean (Machida & Hashimoto,
2002). As benthic predators, P. manusanus have a laterally compressed and elongated
body (length range: 14.75 cm to 18 cm), adapted to living in crevices and tight spaces
(Machida & Hashimoto, 2002). They have gelatinous flesh which is a common trait of
deep-sea fish (Gerringer et al., 2017). Pyrolycus manusanus separates itself from other
scaleless eelpouts by having an occipital pore, a distinguishing taxonomic feature (Machida
& Hashimoto, 2002). They have a terminal mouth that is used for active prey acquisition
(Ferry, 1997). Members of the family Zoarcidae, including Pyrolycus manusanus, play
key roles in deep-sea chemosynthetic ecosystems, feeding on crustaceans, molluscs, and
other fish while serving as the most abundant predator species (Ferry, 1997; Micheli et al.,
2002; Sancho et al., 2005; Frable et al., 2023). Studies of related species, such as Bothrocara
brunneum and and Bothrocara zestum in the eastern Bering Sea reveal dietary specialization
despite morphological similarities (Stevenson & Hibpshman, 2010). Bothrocara brunneum
primarily consumes shrimps and mysids, while Bothrocara zestum is predominantly
piscivorous, feeding on bathylagids and other zoarcids (Stevenson & Hibpshman, 2010).
Such insights highlight the complexity of trophic interactions in deep-sea systems,
emphasizing the need for further comparative studies in chemosynthetic habitats.

Austinograea alayseae, a blind crab from family Bythograeidae, is a notable inhabitant
of Pacific hydrothermal vents (Guinot & Segonzac, 2018). This species is characterized
by its pale carapace, chelae with distinct spots, and carapace length ranging from 5–
15 cm (Guinot, 1989). Distinguishing A. alayseae from other Austinograea species requires
molecular analysis and detailed examination of reproductive structures, such as gonopods,
which exhibit unique morphological traits (Leignel, Hurtado & Segonzac, 2017; Guinot
& Segonzac, 2018). Like other bythograeids, A. alayseae has adapted to the extreme
environments of hydrothermal vent systems, relying on specialized feeding strategies
to exploit available resources.

Bythograeid crabs are primarily scavengers and opportunistic predators, feeding on a
variety of organic material found around vent communities. Their diet typically includes
vent-endemic species such as polychaetes, small molluscs, and other crustaceans, as well as
microbial mats that proliferate near vent openings (DeBevoise, Childress & Withers, 1990;
Zhang et al., 2017; Guinot & Segonzac, 2018). These crabs have specialized adaptations for
shredding and grinding their food, enabling them to process tough or coarse organic
material (Martin, Jourharzadeh & Fitterer, 1998). Their feeding habits are shaped by the
highly variable nature of hydrothermal vent ecosystems, where food availability depends

Davis and Smith (2025), PeerJ, DOI 10.7717/peerj.19476 3/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.19476


on the proximity to vent emissions and the density of surrounding biota (Lutz & Kennish,
1993; Fisher, Takai & Le Bris, 2007).

Studies have shown that bythograeids play a crucial role in vent ecosystems by
contributing to the recycling of organic material, acting as scavengers that prevent the
accumulation of detritus (Van Dover, 2000; Zhang et al., 2017). Their ability to exploit a
wide range of food sources ensures their survival in environments with fluctuating energy
inputs, making them key players in maintaining the ecological balance of vent communities
(Leignel, Hurtado & Segonzac, 2017; Van Dover, 2000). These dietary strategies, combined
with their morphological adaptations, highlight the evolutionary success of A. alayseae and
its relatives in one of Earth’s most extreme habitats.

Both P. manusanus and A. alayseae cohabit the South Su hydrothermal vent within
the Manus Basin, a microhabitat dominated by gastropods of the genus, Ifremeria, which
harbor chemoautotrophic bacteria (Collins, Kennedy & Van Dover, 2012; Van Audenhaege
et al., 2019). Stable isotope analysis places both species as high-trophic omnivores but
does not capture fine-scale dietary preferences or prey selectivity (Collins, Kennedy &
Van Dover, 2012). Hydrothermal vent ecosystems, such as those in the North Fiji Basin,
illustrate how vent fauna partition resources and niches to sustain coexistence within small,
energy-limited environments. For instance, vent crabs, as apex predators, exploit diverse
prey, while other taxa specialize in specific carbon sources or microhabitats (Suh et al.,
2022). To better understand the feeding ecology and diet of P. manusanus and A. alayseae,
we conducted SCA by direct examination. For eelpouts, we employed the Ivlev Index to
evaluate their dietary composition in relation to prey availability (Bardach, 1962).

MATERIALS & METHODS
Sample selection
To characterize the stomach contents of eelpout, Pyrolycus manusanus, and crab,
Austinogrea alayseae, individuals were collected as by-catch in 2007 from the South Su
hydrothermal vent aboard the CSWave Mercury, during the Luk Luk cruise, a partnership
between Duke University and Nautilus Minerals. During the cruise, invertebrate benthic
samples across∼22 taxa were collected by the Perry Slingsby ROV, modified for biological
sampling and equipped with a slurp-gun as described in Collins, Kennedy, & Van Dover
(2012). The quantitative species-abundance matrices from the Collins, Kennedy & Van
Dover (2012) study were used as a baseline against which we assessed prey selectivity.
Specimens were collected from a site known as IF2 (3.811◦S, 152.104◦E) at a depth of
1,399 m, and subsequently vouchered at Duke University Marine Laboratory. Specimens
were fixed in 10% borax-buffered formalin and preserved with 70% ethanol. A total of 7
eelpouts (mean length, 16.21 cm± 1.18 SD) and 25 crabs (carapace length > 2.6 cm) were
used for stomach content analysis, as described below.

Stomach content collection and analysis
Pyrolycus manusanus and Austinogrea alayseae samples were carefully dissected and the
gastro-intestinal tissue was pulled apart by forceps to expose stomach contents. Preserved
digested materials were observed under a microscope, and all items were photographed
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and kept for future identification. Prey items were identified to their lowest taxonomic
level, and recognizable items were counted. Non-organic materials including plastic and
sulfides were discarded and were not used in any subsequent analyses. As crab stomach
contents were shredded by their mandibles, this made the total number of individuals in
the stomach contents indeterminable. Thus, the presence (not abundance) of prey items
was noted for crabs.

Ivlev’s index
Ivlev’s index (Bardach, 1962) of selectivity is a measure to determine the proportion of
prey selection with respect to its availability. It has been used in vertebrates, especially fish
(O’Brien & Vinyard, 1974). The index (E) is the proportion of an item in the stomach (r1)
minus the proportion of the item in the environment (p1) divided by the proportion of
an item in the stomach (r1) plus the proportion of the item in the environment (p1). Prey
availability (p1) was derived from the species-abundance matrix of Collins, Kennedy & Van
Dover (2012) for the Ifremeria habitat. The equation is described as E = (r1−p1)/(r1+p1).
The Ivlev index (E) has a range of −1 to 1. When the E value is closer to 1, this shows
high prey selectivity, while a value of −1 means the prey is least likely to be selected by its
predator. When E values are 0, prey selection is random or non-selective. After calculating
E values, we determined if prey selectivity was influenced by eelpout size (body length) by
conducting a regression analysis between eelpout body length and Ivlev values for all prey
including alvinocaridid shrimp, Lepetodrilus schrolli (small limpet), Shinkailepas tollmanni
(large limpet) and Eochionelasmus ohtai (barnacle). Eelpouts of different body lengths have
been shown to ingest different prey, and thus, predator size can influence prey selectivity
and stomach content composition (Gyldenskog, 2019).

Taxa identification
Prey items were identified to the lowest possible taxonomic level using morphological
characteristics, cross-referenced with existing taxonomic keys and the World Register
of Marine Species. In cases where digestion obscured diagnostic features, identifications
were inferred based on remaining morphological traits, ecological context, and habitat
assessment as described by Collins, Kennedy, & Van Dover (2012), who referred to
Desbruyères, Hashimoto, & Fabri (2006) and taxonomic experts for identification. For
instance, if a barnacle remnant was found in a predator’s stomach contents, we referenced
Collins, Kennedy, & Van Dover (2012) who documented only a single barnacle species in
this habitat, allowing us to reasonably infer the remnant belonged to that species. When
necessary, themost probable taxonomic assignment wasmade to account for fragmentation
due to digestive processes.

RESULTS
A total of 22 taxa (13,199 individuals) were observed at South Su by Collins, Kennedy, &
Van Dover (2012), and of these, four taxa (32 individual prey items) were present in the
stomach contents of eelpout, Pyrolycus manusanus, and 10 taxa (unknown quantity) were
present in the stomach contents of the crab, Austinogrea alayseae (Table 1). Four taxa
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Table 1 Taxa abundance observed in the stomach contents of eelpout and crab.Number of individuals
observed at South Su Manus Basin and in the gut contents of eelpout (Pyrolycus manusanus, n = 7) and
crab (Austinograea alayseae, n= 25).

Taxa present South Sua Eelpout Brachyuran

Porifera
Abyssocladia sp. 6 0 0

Cnidaria
Keratoisis sp. 1 0 1

Mollusca
Neomphalid n. gen., n. sp. 166 0 0
Bathyacmaea jonassoni 0 0
Lepetodrilus schrolli 11,360 9 2
Shinkailepas tollmanni 859 3 0
P uncturella sp. 1 0 0
Alviniconcha spp. 1 0 0
Ifremeria sp. 131 0 0

Annelida
Hesionidae sp. 1 0 0
Branchinotogluma sp. 3 0 1
Branchinotogluma segonzaci 1 0 0
Branchinotogluma trifurcus 109 0 0
Thermopolynoe branchiata 7 0 0
Prionspio sp. 2 0 0
Amphisamytha cf. galapagensis 327 0 9

Arthropoda
Eochinoelasmus ohtai 25 4 7
Chorocaris sp. 173 16 13
Amphipoda spp. 2 0 2
Alvinocaris sp. 4 0 0
Austinograea alayseae 19 0 0

Totals
Total no. of taxa 22 4 10
Total no. of individuals 13,199 32 35

Notes.
aRaw data from Collins, Kennedy & Van Dover (2012).

were observed in both species including, Shinkailepas tollmanni (large limpet), Lepetodrilus
schrolli (small limpet), alvinocaridid shrimp, and Eochinoelasmus ohtai (barnacle) (Table 1,
Fig. 1). Eelpout stomach contents were dominated by alvinocaridid shrimp and Lepetodrilus
schrolli, followed by Shinkailepas tollmanni (Table 1). Crab stomach contents had pieces
of an unidentified crustacean in the highest proportion, followed by alvinocaridid shrimp
and an unidentified polychaete (Fig. 2).

Eelpouts showed the highest selectivity for alvinocaridid shrimp (Fig. 1A), as E values
were high, ranging from 0.9 to 1.0 (Table 2). The other three taxa (Shinkailepas tollmanni,
Lepetodrilus schrolli, Eochinoelasmus ohtai) were selected less by eelpout (negative E values;
Table 2) despite their high abundance at South Su (Table 1). Observations show that
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Figure 1 Prey items in the gut of an individual eelpout, Pyrolycus manusanus, collected from South
SuManus Basin. Stomach contents of an individual eelpout, Pyrolycus manusanus, collected from South
Su Manus Basin. (A) Examples of prey items removed from the stomach showcasing (B) Alvinocaridids
(shrimp) embedded in digestive tissue, (C) Alvinocaridids removed from stomach, (D) Eochinoelasmus
ohtai (barnacle) penis, (E) Shinkailepas tollmanni (large limpet). (F) Lepetodrilus schrolli (small limpet).
Scale bar: two mm.

Full-size DOI: 10.7717/peerj.19476/fig-1

eelpouts exceeding 16.5 cm in length preferred the large limpet, Shinkailepas tollmanni
(Fig. 1E), while those under 16.5 cm preferred the barnacle, Eochinoelasmus ohtai (Fig. 1D),
although there was no significant association between prey selection and eelpout body
size for all prey (Table 2). The smallest eelpouts (<15.25 cm) preferred small limpets
(Lepetodrilus schrolli; Fig. 1F). Alvinocaridid shrimp were present in 100% of eelpout
stomach contents (Fig. 3) but was only observed in 52% of crab stomach contents (Fig. 2).

DISCUSSION
Using stomach content analysis, deep sea organisms can be highly selective in their prey
selection (Ginger et al., 2001; Hudson et al., 2003). Here, the eelpout, Pyrolycus manusanus,
consumed alvinocaridid shrimp at a higher frequency relative to their abundance as they
were the 4thmost abundant organism in the South Su Ifremeria system. In contrast, limpets
such as Lepetodrilus schrolli and Shinkailepas tollmanniwere consumed at a lower frequency
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Figure 2 Gut contents of Austinograea alayseae. Mean (±SE) proportion of brachyurans, A. alayseae
(n = 25), containing various prey items during gut content analysis, collected at South Su, Manus Basin,
Papua New Guinea.

Full-size DOI: 10.7717/peerj.19476/fig-2

Table 2 Assessment of prey selectivity in the eelpout Pyrolycus manusanus through the application of
the Ivlev index (E). Prey selectivity using the Ivlev index (E) for eelpout Pyrolycus manusanus (n = 7) at
South Su, Ifermeria, Papua New Guinea. E values at 0 indicate random or no selectivity for a prey item,
values above 0 indicate relatively higher prey selectivity, and values below 0 indicate lower prey selectiv-
ity. R-square values from regression analyses between the Ivlev Index (E) and eelpout body length (cm)
for alvinocaridid shrimp, Lepetodrilus schrolli (small limpet), Shinkailepas tollmanni (large limpet) and Eo-
chionelasmus ohtai (barnacle). n.s. indicates no significance (P < 0.05).

Species E R2

Alvinocarididae 0.94 0.18 n.s
Shinkailepas tollmanni −0.52 0.09 n.s
Lepetodrilus schrolli −0.80 0.15 n.s
Eochinoelasmus ohtai −0.43 0.04 n.s

despite being the most abundant invertebrate (11,360 and 858 individuals, respectively)
within the South Su prey field. Our data show that the eelpout are selective predators.
Preference for shrimp suggests that they are either of relatively higher nutrient quality,
or easier to capture (Sabelis, 1990; Underwood, Chapman & Crowe, 2004). Given that all
eelpouts had alvinocaridid shrimp in their diet, they are likely to be ecologically important
to their feeding biology. This is further supported by Machida & Hashimoto (2002), who
collected eelpouts from the Manus Basin in Papua New Guinea and found alvinocaridid
shrimp within their stomach contents. Similarly, a recently discovered species of Pyrolycus
associated with a hydrothermal seep on the Pacific margin of Costa Rica was found to
have a comparable diet, further underscoring the reliance of eelpouts on deep-sea shrimp
(Frable et al., 2023).

Austinograea alayseae had a more diverse diet than their eelpout counterparts. They
consumed 10 species of invertebrates compared to the four species consumed by eelpouts.
Furthermore, crabs ingested polychaetes, which were never observed in the stomach
contents of eelpouts. Such dietary preferences could be attributed to the morphology of
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Figure 3 Gut contents of eelpout, Pyrolycus manusanus. Mean (±SE) proportion of eelpouts, Pyroly-
cus manusanus (n = 7), containing various prey items during gut content analysis, collected at South Su,
Manus Basin, Papua New Guinea.

Full-size DOI: 10.7717/peerj.19476/fig-3

their feeding structures (Guinot, 1989;Machida & Hashimoto, 2002). Using their chelipeds
and mandibles, crabs are able to puncture and eviscerate the setae, cuticle and appendages
of a polychaete (Quammen, 1984; Petti, Nonato & Paiva, 1996). Furthermore, none of their
prey were observed intact, making it difficult to identify their prey to a low taxonomic level.
Given their broad and less selective diet, our analysis supports that Austinograea alayseae
is likely to be a generalist omnivore (Van Audenhaege et al., 2019) and are in a different
feeding guild than eelpouts.

Our data show that eelpouts of all sizes had a strong preference for alvinocaridid shrimp
with E values ranging from 0.9 to 1 but selected against all other prey taxa as a result of
negative E values. However, eelpouts with a body length less than 16 cm preferred both
species of limpets (Shinkailepas tollmanni and Lepetodrilus schrolli). Indeed, one individual
had eight individual limpets (L. schrolli) within its stomach. Eelpouts possess a row of teeth
that could aid them in prying off limpets from the substrate. Dietary observations from two
eelpouts revealed that the only structure of the barnacle (Eochinoelasmus ohtai) present in
their stomach was the annulated penis, with no other barnacle structures observed. This
could be due to dissolvement of other barnacle structures before SCA was conducted.
Given that the barnacle, Eochinoelasmus ohtai, was the most abundant barnacle observed
in the study area, we infer that the annulated penis found in the stomach belong to this
species. Indeed, one eelpout had three individual barnacle penises within its stomach. This
suggests that either eelpouts are able to selectively ingest the barnacle penis while they are
copulating, or that all other internal structures were digested well before the penis was
digested.

We did not observe that eelpout size was significantly associated with prey selection,
which may be attributed to our small sample size. However, we observed that larger
individuals (more than 16 cm) tend to select shrimp and barnacles, while smaller individuals
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(less than 16 cm) prefer to consume shrimp and L. schrolli limpets, which were the smallest
prey items observed during stomach content analysis. Eelpouts may be selective predators
as they consume co-occurring prey at different rates and sizes (Ferry, 1997; Micheli et al.,
2002; Gyldenskog, 2019). This type of selection can be used to understand the importance
of certain prey items to a predator’s success, the structure of a food web (Allesina, Alonso
& Pascual, 2008), as well as energy flow in a trophic cascade (Ripple et al., 2016).

The Ivlev index, while informative in understanding prey selectivity in certain studies,
has faced challenges. For example, the Ivlev index assumes an even distribution of both
predatory fish and their prey, which is not always the case (O’Brien & Vinyard, 1974). For
instance, plankton can be aggregated within the water column, affecting prey selection
for planktivorous fish (O’Brien & Vinyard, 1974). By applying the Ivlev index to stomach
content analysis, obtaining unbiased samples that reflect prey abundances across habitats
in which they are distributed can be difficult (Strauss, 1979). This can be particularly
difficult in aquatic systems where traditional sampling methods for determining relative
abundances and biomass of benthic invertebrates have been shown to be unreliable (Strauss,
1979). The index has been criticized as ineffective when relative abundances of prey vary
across habitats (O’Brien & Vinyard, 1974; Strauss, 1979; Collins, Kennedy & Van Dover,
2012). Despite these challenges, the Ivlev index can still be informative, especially in cases
where observing feeding behavior in situ is not feasible (Rosca, Novac & Surugiu, 2010). The
variability of vent communities in space and time, along with the inherent bias of stomach
content analyses toward hard-bodied organisms, may skew results. Future research could
address these limitations by employing genetic barcoding to identify digested gut material
more comprehensively (Komura et al., 2018).

CONCLUSIONS
We hypothesized that eelpouts and crabs would be selective in their prey choice, despite
co-occurring in the same deep sea hydrothermal vent community. We found that eelpouts
had a strong preference for alvinocaridid shrimp, which supported by the high Ivlev index
value. Crab prey selectivity was not quantified using the Ivlev index due the damaged
condition of their stomach contents. Crabs were observed preying upon shrimp as well as
polychaetes. By analyzing the stomach content of co-occurring eelpouts and crabs, instead
of using inferences from isotopic data analysis, we are able to directly assess prey preference
for these two common predators, providing insight on their trophic position and their
feeding biology within the Ifremeria habitat. While this study was limited by sample size for
both predators and quantification methods for crab prey selectivity, we show that eelpouts
and crabs occupy different feeding guilds than originally described. Using a combination of
stomach content analysis, isotopic data, and other metrics (e.g., video evidence of predation
etc.), future research can assess the role of such predators in the food webs of deep-sea
hydrothermal vent communities.
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