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ABSTRACT

Background: N6-methyladenine (6mA) is an important DNA methylation
modification that serves a crucial function in various biological activities. Accurate
prediction of 6mA sites is essential for elucidating its biological function and
underlying mechanism. Although existing methods have achieved great success,
there remains a pressing need for improved prediction accuracy and generalization
cap ability across diverse species. This study aimed to develop a robust method to
address these challenges.

Methods: We proposed HD-6mAPred, a hybrid deep learning model that combines
bidirectional gated recurrent unit (BiGRU), convolutional neural network (CNN)
and attention mechanism, along with various DNA sequence coding schemes. Firstly,
DNA sequences were encoded using four different ways: one-hot encoding,
electron-ion interaction pseudo-potential (EIIP), enhanced nucleic acid composition
(ENAC) and nucleotide chemical properties (NCP). Secondly, a hold-out search
strategy was employed to identify the optimal features or feature combinations for
both BiGRU and CNN. Finally, the attention mechanism was introduced to weigh
the importance of features derived from the BiGRU and CNN.

Results: A series of experiments on the Rosaceae, rice and Arabidopsis datasets were
conducted to demonstrate the superiority of HD-6mAPred. In Rosaceae, the
HD-6mAPred model achieved excellent performance: accuracy (ACC) of 0.996,
Matthew correlation coefficient (MCC) of 0.993, sensitivity (SN) and specificity (SP)
0f 0.995 and 0.998, respectively. In rice, the evaluation metrics are 0.952 (ACC), 0.905
(MCC), 0.955 (SN), and 0.949 (SP). In Arabidopsis, the corresponding metrics are
0.937 (ACC), 0.875 (MCC), 0.927 (SN), and 0.948 (SP). Compared to existing
methods, these results demonstrate that HD-6mAPred achieves state-of-the-art
performance in predicting 6mA sites across three plant species. Furthermore,
HD-6mAPred not only improves the accuracy of 6mA site prediction, but also shows
excellent generalization capability across species. The source code utilized in this
study is publicly accessible at https://doi.org/10.5281/zenodo.15355131.
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Keywords 6mA sites, Convolutional neural network, Bidirectional gated recurrent unit, Attention
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INTRODUCTION

DNA methylation is involved in the processes of species formation and evolution
(Vanyushin et al., 1968). DNA N6-methyladenine (6mA) refers to an epigenetic
modification characterized by the incorporation of a methyl group to the N6 atom of
adenine in the DNA molecule. It is a significant methylation modification, and was first
reported clearly in eukaryotes by Gorovsky, Hattman ¢ Pleger (1973). This modification is
essential for various biological functions, including gene regulation (Xie et al., 2020), DNA
replication (Costa ¢ Diffley, 2022), repair (Awwad et al., 2023) and inheritance (Lee et al.,
2023). Moreover, 6mA has been related to numerous diseases, such as cancer, neurological
disorders, metabolic disorders, immune-related diseases, and inflammation (Lin et al.,
2022). Therefore, accurately identifying 6mA sites is crucial for elucidating the role and
mechanism of 6mA epigenetic modification.

Currently, several wet experiments have been designed to identify 6mA sites in DNA,
such as liquid chromatography and tandem mass spectrometry (LC-MS/MS) (Ye et al.,
2023), SMRT sequencing (SMRT-seq) (Adhikari, Erill & Curtis, 2021), restriction
enzyme-based sequencing (6mA-REseq) (Li ef al., 2022) and 6mA-IPseq (Zhang et al.,
2018). While LC-MS/MS (Ye et al., 2023) allows for precise mass analysis of nucleosides
and can identify and quantify 6mA, it is limited to detecting modified adenosine present in
specific target motifs. Despite its high sensitivity for abundant 6mA, SMRT-seq suffers
from relatively lower specificity and cannot reliably distinguish between 6mA and m1A
(Luo et al., 2015). Additionally, 6mA-REseq (Li et al., 2022) is constrained by specific
restriction sites and exhibits a high false positive rate. Similarly, 6mA-IPseq (Li et al., 2022)
faces challenges with low specificity and relatively low sensitivity, also struggling to
differentiate between m1A, 6mA and reliably enriching the unmethylated DNA fragments.
Furthermore, these methods are commonly time-consuming, labor-intensive and
expensive, which poses challenges for high-throughput detection of 6mA sites.

To overcome the limitations of biological experiments, several machine learning (ML)
algorithms have been introduced to detect 6mA modifications in plants, exemplified by
i6mA-pred (Chen et al., 2019), i6mA-Fuse (Hasan et al., 2020), Meta-i6mA (Hasan et al.,
2021), ibmA-stack (Khanal et al., 2021), ibmA-vote (Teng et al., 2022) and 6mA-
StackingCV (Huang, Huang ¢ Luo, 2023). The success of these approaches is largely
determined by two critical factors: feature extraction and the chosen ML algorithms. For
example, i6mA-Fuse (Hasan et al., 2020) is the first computational model designed to
predict 6mA sites in the Rosaceae genomes, employing five different encoding schemes to
construct five random forest (RF) models. Meta-ibmA (Hasan et al., 2021) used a
two-stage feature selection process to identify optimal characteristics and leveraged six
different ML methods including RF, support vector machine (SVM), extreme random tree
(ERT), logistic regression (LR), naive Bayes (NB) and AdaBoost to establish baseline
models in the Rosaceae genome. In i6mA-vote (Teng et al., 2022), one-hot encoding, a
widely used method for encoding DNA or RNA sequences (Alipanahi et al., 2015; Kelley,
Snoek ¢ Rinn, 2016; Zhou & Troyanskaya, 2015) is used for dinucleotides, and an
ensemble learning framework is constructed through the incorporation of the five ML
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methods to predict 6mA in Rosaceae, rice and Arabidopsis. 6mA-StackingCV (Huang,
Huang ¢ Luo, 2023) employed a hold-out validation strategy to evaluate the effectiveness
of feature combination and ML-based ensembles. i6mA-stack (Khanal et al., 2021)
implemented a recursive feature elimination approach for extracting the optimal feature
combination and selected SVM as a meta-classifier alongside a combination of SVM, LR,
RF and Gaussian naive Bayes as base-classifiers to predict m6A sites in F. vesca and

R. chinensis. 6mA-Finder (Xu et al., 2020) also adopted the similar feature selection
methods with i6mA-stack and demonstrated that RF outperformed other classifiers in
6mA predictions specific to mice and rice. While these methods have yielded promising
results, they primarily rely on traditional ML algorithms that need handcrafted features,
making them susceptible to noise.

Deep learning methodologies possess the ability to autonomously identify more
effective characteristics from original datasets. In the realm of relevant research, a number
of deep-learning methods have been put forward with the aim of accurately predicting
various methylation sites, among which 6mA sites is included (Liu et al., 2019; Rehman
et al., 2022; Tang et al., 2022; Tsukiyama et al., 2022; Tsukiyama, Hasan & Kurata, 2022;
Nguyen-Vo et al., 2023; Nguyen-Vo, Rahardja ¢ Nguyen, 2024; Yang et al., 2024). i6mA-
Caps (Rehman et al., 2022) used a single encoding scheme for DNA sequence numerical
representation, with convolution layers extracting low-level features from the numerical
data and a capsule network using these to extract intermediate- and high-level features for
6mA sites classification on Rosaceae, rice and Arabidopsis thaliana. CNN6mA
(Tsukiyama, Hasan ¢ Kurata, 2022) is an interpretable neural network model based on
position-specific CNN and cross-interactive network for 6mA site prediction in 11 species.
BERT6mA (Tsukiyama, Hasan & Kurata, 2022) ultilized a hybrid models including the
BERT with Bi-LSTM and the 1D-CNN with Bi-LSTM to predict 6mA sites also in 11
species. i6mA-CNN (Nguyen-Vo, Rahardja ¢ Nguyen, 2024) employed convolutional
neural networks with a fusion of multiple receptive field to identify 6mA sites in mouse
genomes. iDNA6mA-Rice (Lv et al., 2019) is an advanced computational model utilizing
deep learning methods, which encodes and extracts essential genomic characteristics using
an embedding layer, as well as multiple fully connected layers. Notably, while MM-
6mAPred (Pian et al., 2020) introduced a Markov model-based classification method,
utilizing the transfer probabilities between adjacent nucleotides to identify 6mA sites, its
feature processing ideas could be effectively combined with deep learning approaches.
Overall, these methods have demonstrated effective results, providing valuable insights for
subsequent research and establishing a foundation for this study. However, they also
exhibit certain limitations, such as insufficient generalization across different species, a
need for improved accuracy and opportunities to enhance feature extraction
methodologies.

In view of this, we introduce an ensemble model, termed HD-6mAPred, that integrates
bidirectional gated recurrent unit (BiGRU), convolutional neural network (CNN) and
attention mechanism to enhance the prediction performance of DNA 6mA sites by
employing multiple encoding strategies. Firstly, we compared the accuracy (ACC) values
of single encodings and their corresponding combinations using the BIGRU and CNN
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models based on one-hot encoding (Alipanahi et al., 2015; Kelley, Snoek ¢ Rinn, 2016;
Zhou & Troyanskaya, 2015), electron-ion interaction pseudo-potential (EIIP) (Alakus,
2023), enhanced nucleic acid composition (ENAC) (Huang et al., 2018) and nucleotide
chemical properties (NCP) (Chen et al., 2015). Secondly, based on the obtained ACC
values, CNN employed a joint encoding strategy of NCP (Chen et al., 2015) and ENAC
(Huang et al., 2018), while BIGRU utilizes the combination of ENAC, one-hot and NCP
encodings. Finally, the outputs of the BiGRU and CNN were fused using an attention
mechanism to test the importance of features. In terms of encoding ways, HD-6mAPred
considers the physical and chemical properties of nucleotides, as well as their local
composition and sequence information. Structurally, HD-6mAPred not only addresses
long-range dependencies within the sequence but also pays attention to the extraction of
local features, while accounting for the importance of different features. A series of
experimental results demonstrate the excellent performance of HD-6mAPred, in
predicting 6mA sites.

MATERIALS AND METHODS

Datasets

High-quality datasets are essential for model construction and evaluation. For the
convenience of the comparison, we utilized the same datasets which are previously
employed in 6mA prediction (6mA-StackingCV (Huang, Huang ¢ Luo, 2023) and i6mA-
vote (Teng et al., 2022). The datasets include: the Rosaceae training dataset, the Rosaceae
testing dataset, the Rice dataset, and the Arabidopsis dataset. In which, the Rosaceae
training dataset is employed to train the model and debug parameters, and the other three
datasets, also named independent testing sets, are utilized to test the performance of the
model. The Rice dataset is built by Lv et al. (2019), whereas the Rosaceae and Arabidopsis
datasets are curated by Hasan et al. (2021). In summary, the Rosaceae training dataset
contains 29,237 positive samples (6mA site-containing sequences) and 29,433 negative
samples (non 6mA site-containing sequences), and the Rosaceae testing dataset consists of
7,298 positive samples and 7,300 negative samples. The numbers of positive samples and
negative samples are 153,635 and 153,629 in the Rice dataset, respectively; and they are
31,414 and 31,843 in the Arabidopsis dataset. Each sequence is 41 bp long, with nucleobase
A located at position 21. The information of these datasets has been given in 6mA-
StackingCV (Huang, Huang ¢» Luo, 2023), and the specific data can be downloaded from
https://github.com/Xiaohong-source/6mA-stackingCV provided in the article.

Feature extraction
Feature selection is vital to the effectiveness of a predictive model. We explored four
different feature encoding ways including one-hot encoding (Alipanahi et al., 2015; Kelley,
Snoek & Rinn, 2016; Zhou & Troyanskaya, 2015), EIIP (Alakus, 2023), NCP (Chen et al.,
2015) and ENAC (Huang et al., 2018), which are widely used to represent DNA sequences
for predicting 6mA sites.

In one-hot encoding, each nucleotide is encoded as a 4-dimensional binary vector, i.e.,
nucleotides A, C, G, and T, respectively denoted as A = [1, 0, 0, 0], C = [0, 1, 0, 0],
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G=1[0,0,1,0],and T = [0, 0, 0, 1] (Alipanahi et al., 2015; Kelley, Snoek & Rinn, 2016; Zhou
¢ Troyanskaya, 2015). EIIP expresses nucleotides according to their electron—ion energy
distribution in a given DNA sequence, and the four nucleotides are respectively
represented as A = 0.1260, C = 0.1340, G = 0.0806 and T = 0.1335 (Alakus, 2023). NCP
encodes nucleotides based on their chemical properties, and the four nucleotides are
expressed as A =[1,1,1],C=1[0,1,0],G=[1,0,0] and T = [0, 0, 1], respectively
(Chen et al., 2015). ENAC is the frequency of occurrence of a nucleotide in a sequence
starting from the 5" end to the 3’ end, determined through

_INawin1  Nc wini NG win1 N7, win1 Na, winL-s+1  Nc, winL—s+1
V - S ) S M S ) S PR S ) S M
NG, winL—=s+1  NT, winL—s+1
S ’ S

where S denotes the width of the sliding window (Huang et al., 2018) and it equals five in
this study, N, winj represents the occurrence number of nucleotide M in the window j,
Me{A CGT}Lj=1,2,..., L-S+L

To obtain the optimal combination of features, we implemented a hold-out search
strategy similar to that used in 6mA-StackingCV (Huang, Huang ¢ Luo, 2023). This
strategy can test the performance of various feature combinations in distinguishing 6mA
sites from non-6maA sites. Unlike 6mA-StackingCV (Huang, Huang ¢ Luo, 2023), which
aims to identify better features within a conventional ML framework, we employed BiGRU
and CNN as our learning algorithms to achieve improved performance with the deep
learning paradigm. To illustrate the generalization of selected features, we only carried out
a series of experiments on the Rosaceae training dataset. The Rosaceae training dataset was
split into the hold out-training dataset and hold out-testing dataset as a ratio of 8:2. First,
we computed the ACC of the BiGRU using a single feature encoding and selected the
feature with the largest ACC value as the first baseline feature, named as the first-order
encoding. Second, we combined the first-order encoding with the remaining three single
encoding ways. The increasing ACC values mean that the added feature encoding
contributed positively to the performance. If there exist ACC values that are more than
that of the first-order encoding, then the combination having the highest ACC score is
chosen as the updated encoding, denoted as the second-order encoding. The process
continued, adding remaining single encoding ways to the current combination, until no
further ACC improvements were observed. The feature combination with the highest ACC
value is used to construct the 6mA sites predictor. The strategy for selecting the optimal
encoding ways under the CNN is the same as above.

Deep learning approach

As illustrated in Fig. 1, in constructing the model, we mainly employed three deep learning
modules: BiGRU, CNN and attention mechanism. As an improved form of recurrent
neural network (RNN), GRU can address the vanishing gradient problem often
encountered in the processing of long sequences and has demonstrated excellent
performance in addressing sequential challenges. Conversely, CNN excels at achieving
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Figure 1 An overview of the proposed HD-6mAPred. Convl and Conv2 represent the first and the
second convolutional layers, respectively; Maxpoolingl and maxpooling2 denote the first and the second
max pooling layers, respectively. The term BiGRU+CNN represents the fusion module integrating
BiGRU and CNN. Full-size K&l DOT: 10.7717/peerj.19463/fig-1

parallel computation and capturing local dependencies in data (Wang et al., 2024). To
effectively integrate the outputs from both networks, we employed an attention
mechanism that fuses features extracted by the BiGRU and CNN. Firstly, the sequences
were fed to the BIGRU and CNN modules according to their corresponding optimal
encoding ways. Subsequently, the attention mechanism assigns weights to the features
extracted by both the BiGRU and CNN, highlighting important features and filtering out
less relevant information. Finally, the features refined by the attention mechanism were
processed through a fully connected layer (Dense) and a sigmoid activation function,
resulting in a score between 0 and 1 in identifying the DNA 6mA sites. The details of the
methods involved in the model were listed follows.

BiGRU: In DNA sequence data, the BIGRU module is designed to capture both forward
and backward dependencies (Nguyen-Vo et al., 2023; Jia et al., 2024). It is composed of
forward and backward GRUs, which read the sequences from two opposite directions.
Special gating mechanisms regulate the retention and forgetting of information from
previous states. These mechanisms generate candidate hidden states, which are then used
to calculate the current hidden state. Finally, the outputs of the forward and backward
GRUs are concatenated along the feature dimension to obtain a comprehensive feature
representation.

CNN: CNN utilizes convolution and pooling operations to extract essential local
features. Through the introduction of non-linearity using the ReLU activation function,
the network can efficiently reduce data dimensions via pooling. In this study, the
computation can be expressed as follows Eqs. (1)-(3):

¥[i| = > Wi X(i+ ] 1)
]

RELU(x) = max(0, x) (2)

Ypooli] = max(X[i: i+ k]) (3)

where X is the input sequence, W denotes the convolution kernel, Y[i] represents the
convolution output, W[j] is the convolution weight, X[i + j] is the local region of the input
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sequence. k is the size of the pooling window, and Y;,01[i] is the maximum pooling. While
the max function selects the maximum value from the defined window, effectively
reducing feature dimensions.

Attention mechanism: The essence of the attention mechanism is to calculate the values
representing the significance of different components. It comprises three components:
Query (Q), Key (K) and Value (V). The similarity of Q and K is usually quantified through
dot products:

score(Q,K) = Q- KT (4)
T

Attention = softmax (Q \/£ >V (5)

Q = Wq - hgru (6)

K = Wk - hoan (7)

V =Wy - henn (8)

where di denotes the size of the K vector, softmax is used to normalize the weights. W,
Wy and Wy are the learned weight matrices. In our model, the Query originates from the
output of BiGRU, while the Key and Value are derived from the output of CNN.

Output layer: The ultimate result is generated by a dense layer that maps the outcomes
of the attention mechanism to the final predictions as Eq. (9).

Vpred = a(W, - attention + b,) (9)

where W, represents the weight matrix in the output layer, b, means the bias term, and o
denotes the sigmoid function.

Loss function: The model employs binary cross entropy (Ma, Liu ¢ Qian, 2004) as its
loss function, appropriate for binary classification tasks, and the formula is as follows:

loss — _éi [Yi log(ypred’i> + (1-vy) log(l — Ypred,i>:| (10)

where y; is the true label and y,,.q; is the predicted probability.

Detail procedure and hyperparameters setting
In this section, we give the detail procedure and hyperaramters about HD-6mAPred.

For the BiGRU module, the number of BiGRU layers is set to 2, with 64 units per layer.
The activation function is tanh, and the gated activation function is sigmoid. The dropout
rate is 0.5.

For the CNN module, the number of convolutional layers is 2, with 128 filters per layer.
The kernel size is 3, and the activation function is the rectified linear unit (ReLU). After
each convolutional layer, the max pooling layer has a pooling size of 2. After the two
convolutional operations, a flatten layer converts the multi-dimensional output into a
one-dimensional vector, with an additional dropout rate of 0.5.
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The outputs of the two subnetworks are connected through the concatenate layer, and
the attention mechanism is used for feature weighting. The dimension of query, key, and
value in the attention mechanism is 16. The output of attention is processed through layer
normalization, and the final output is obtained from a fully connected layer (Dense),
whose activation function is sigmoid.

For model optimization, the optimizer is Adam, and the initial learning rate is 0.0001.
We utilized a 5-fold cross-validation method for training and testing the model. During
each fold’s training phase, we set the maximum number of epochs to 100 and the batch size
to 64. An early stopping strategy was implemented to monitor the validation set loss.
Training ceases if there is no improvement after five consecutive epochs, and the model
reverts to the optimal weights obtained.

Evaluation metrics

To test the performance of HD-6mAPred, we implemented a 5-fold cross-validation.
Specifically, all samples were partitioned into five groups randomly, the four of which were
used to train the model, while the remaining one was designated for testing the model. This
procedure is repeated five times to ensure that each sample serves as a testing set at least
once. The final testing results were obtained by averaging the metrics from the five
iterations. Four standard evaluation metrics consisting of accuracy (ACC), Matthews
correlation coefficient (MCC), sensitivity (SN) and specificity (SP) are employed for
evaluating the performance of HD-6mAPred. These metrics can be formulated by

Egs. (11)-(14).

TP + TN

ACC = 11
TN + FP + TP + FN (1)
TP x TN + FP x EN
MCC = XN X (12)
/(TP + FP)(TN + EN)(TP + FN)(TN + FP)
sN=_ P (13)
~ TP +EN
TN
SP—— 14
TN + FP (14)

where, TP (true positives) and TN (true negatives), respectively denote the number of
the correctly predicted 6mA and non-6mA samples; FP (false positives) and FN (false
negatives) are the number of the falsely predicted non-6mA and 6mA samples,
respectively. In addition, we utilized the receiver operating characteristic (ROC) curves to
visually test the prediction performance of HD-6mAPred. AUC is computed as the area
beneath the ROC curve.

RESULTS

Selection of the optimal feature combination

We conducted a series of five-fold cross-validations on the Rosaceae training set using both
the BIGRU and CNN models to identify the optimal feature combinations. ACC and AUC
values of various features and their corresponding combinations were compared.
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Table 1 Performance comparison of different feature encoding ways for BIGRU model.

Feature encoding ways ACC AUC
One-hot 0.520 0.521
EITP 0.498 0.500
NCP 0.498 0.500
ENAC 0.903 0.957
ENAC+one-hot 0.914 0.831
ENAC+EIIP 0.822 0.649
ENAC+NCP 0.817 0.640
ENAC+one-hot+EIIP 0.733 0.669
ENAC+one-hot+NCP 0.920 0.860
ENAC+one-hot+NCP+EIIP 0.857 0.716
Note:

Values in bold indicate the best results for each metric.

Table 2 Performance comparison of different feature encoding ways for CNN model.

Feature encoding ways ACC AUC
One-hot 0.934 0.976
EITP 0.913 0.963
NCP 0.940 0.979
ENAC 0.930 0.976
NCP+one-hot 0.938 0.979
NCP+EIIP 0.939 0.979
NCP+ENAC 0.943 0.981
NCP+ENAC+one-hot 0.940 0.980
NCP+ENAC+EIIP 0.942 0.981
Note:

Values in bold indicate the best results for each metric.

As presented in Table 1, the BiIGRU model demonstrates that ENAC encoding yields the
highest ACC of 0.903 and AUC of 0.957 for a single feature. Consequently, we selected
ENAC encoding as our first-order feature. Subsequently, we examined the combination of
ENAC encoding with the other three feature encoding ways: one-hot, EIIP and NCP.
Among the combinations, ENAC combined with one-hot (denoted as ENAC+one-hot)
achieved the highest ACC of 0.914 and AUC of 0.831. Accordingly, ENAC+one-hot is
selected as the optimal second-order feature. Further investigations into the combination
of ENAC+one-hot with other single features illustrates that ENAC-+one-hot+NCP has the
highest ACC of 0.920 and AUC of 0.860, but those of them in ENAC+one-hot+NCP+EIIP
are descreased. Therefore, the third-order feature ENAC+one-hot+NCP is selected as the
optimal feature for the BIGRU model.

For the CNN model, as shown in Table 2, NCP encoding provided the highest ACC
(0.940) and AUC (0.979) when considered as a single feature. Therefore, we chose NCP
encoding as our first-order feature. We then explored the combination of NCP with the
other three encodings: one-hot, EIIP and ENAC. Among the combinations, NCP
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combined with ENAC (denoted as NCP+ENAC) achieved the highest ACC and AUC
values. Accordingly, NCP+ENAC is selected as the optimal second-order feature. Further
investigations into the combination of NCP+ENAC with other single features revealed that
when combining all three encoding ways, the highest ACC value achieved is 0.942, which is
lower than the 0.943 obtained from NCP+ENAC. Therefore, NCP+ENAC is chosen as the
optimal feature combination for the CNN model.

Motif analysis

To analyze position-specific differences in 6mA and non-6mA-containing sequences for
Rosaceae, rice and Arabidopsis, the two-sample logo software (Vacic, lakoucheva ¢
Radivojac, 2006) at a level of p < 0.05 was used. As shown in Fig. 2, the ‘A’ nucleotide is at
the 21st position in 41-nt DNA sequences.

Figure 2 reveals distinct over-representation (enrichment) and under-representation
(depletion) of nucleotides at specific positions. For Rosaceae, the ‘A’ base is enriched at
positions 12, 17-19, 25 and 28 but depleted at 22, 24, 2 and 30. The ‘G’ base is enriched at
positions 22, 23 and 26, while depleted at 27 and 28. The ‘C’ base is over-represented at
positions 24, 27 and 30 but under-represented at 20, 25, 28 and 29. In rice, the ‘A’ base is
enriched at positions 15-18, 25, and 28. The ‘C’ base is more abundant at positions 19, 23,
27 and 30. The ‘G’ base is over-represented at 13, 20, 26 and 29 and under-represented at
27. For Arabidopsis, ‘A’ is enriched at positions 15-18, 20, 25, 29 and 32; ‘C’ at 19 and 27;
‘G’ at 20, 22-24, and 28; and ‘T’ is depleted at 14-20, 25-26, and 37-41. Given these
sequences containing 6mA are enriched and depleted with some nucleotides at some
positions, it is speculated that the sequence information contribute in discriminating the
6mA from non-6maA.

Model analysis

To verify the effectiveness of combining BiGRU, CNN, and an attention mechanism in
improving predictive performance, we compared six different models using their
corresponding optimal encoding ways on the independent testing sets of Rosaceae, rice and
Arabidopsis. Among these models, one model is our proposed HD-6mAPred, the other five
models are BiGRU, CNN, the combination of BiGRU and CNN (denoted as BiGRU
+CNN), and the two models that incorporate attention mechanisms, referred to as BIGRU
+Attention and CNN+Attention, respectively.

Table 3 presents a comprehensive performance comparison of these models. Notably,
the HD-6mAPred exhibited superior performance across all testing species. Specifically,
for Rosaceae, HD-6mAPred achieved an ACC value of 0.996, outperforming BiGRU by
0.481, CNN by 0.050, BiGRU+Attention by 0.414, CNN+Attention by 0.064, and BiGRU
+CNN by 0.050. For rice, the ACC value for HD-6mAPred is 0.952, which is 0.014 higher
than BiGRU, 0.016 higher than CNN, 0.015 higher than BiGRU+Attention, 0.024 higher
than CNN+Attention, and 0.016 higher than BiIGRU+CNN. In Arabidopsis, HD-6mAPred
achieved an ACC of 0.937, exceeding BiGRU by 0.100, CNN by 0.074, BiGRU+Attention
by 0.082, CNN+Attention by 0.085, and BiIGRU+CNN by 0.074. Furthermore, the
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Figure 2 Nucleotide preferences of 6mA and non-6mA-containing sequences of Roseaceae, rice and Arabidopsis.
Full-size K&l DOT: 10.7717/peerj.19463/fig-2

HD-6mAPred demonstrated significant improvements in MCC, SN and SP, indicating its
robust capability to accurately identify both true positive and true negative 6mA sites. The
ROC curves, illustrated in Fig. 3, further support these findings, with AUC values for
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Table 3 Comparative results of the six models on the independent test datasets.

Species Feature encoding ways Models ACC MCC SN SP
Rosaceae ENAC+one-hot+ NCP BiGRU 0.515 0.029 0.489 0.540
NCP+ENAC CNN 0.946 0.892 0.949 0.943
ENAC+one-hot+ NCP BiGRU+Attention 0.582 0.161 0.381 0.781
NCP+ENAC CNN-+Attention 0.932 0.864 0.934 0.930
OEERM BiGRU+CNN 0.946 0.892 0.947 0.945
OEERM HD-6mAPred 0.996 0.993 0.995 0.998
Rice ENAC+one-hot+ NCP BiGRU 0.938 0.875 0.943 0.932
NCP+ENAC CNN 0.936 0.871 0.945 0.926
ENAC+one-hot+ NCP BiGRU+Attention 0.937 0.874 0.944 0.931
NCP+ENAC CNN-+Attention 0.928 0.857 0.939 0.918
OEERM BiGRU+CNN 0.936 0.872 0.948 0.924
OEERM HD-6mAPred 0.952 0.905 0.955 0.949
Arabidopsis ENAC+one-hot+ NCP BiGRU 0.837 0.674 0.823 0.851
NCP+ENAC CNN 0.863 0.727 0.852 0.874
ENAC+one-hot+ NCP BiGRU+Attention 0.855 0.709 0.836 0.873
NCP+ENAC CNN-+Attention 0.852 0.704 0.838 0.865
OEERM BiGRU+CNN 0.863 0.726 0.851 0.875
OEERM HD-6mAPred 0.937 0.875 0.927 0.948
Note:

“OEERM” represents adopting the corresponding optimal encoding for each module in the model. For example, CNN
adopts NCP+ENAC, and BiGRU adopts ENAC+one-hot+ NCP. Values in bold indicate the best results for each metric.
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Figure 3 ROC curves of different models on the three independent test datasets. (A) ROC curve on the Rosaceae dataset; (B) ROC curve on the
Rice dataset; (C) ROC curve on the Arabidopsis dataset. Full-size &) DO 10.7717/peerj.19463/fig-3

HD-6mAPred being 1.000 for Rosaceae, 0.985 for rice, and 0.980 for Arabidopsis. These
results demonstrate the effectiveness of employing a hybrid model that integrates BIGRU,
CNN and the attention mechanism to enhance predictive performance for 6mA site
identification.
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Performance comparison with existing methods

In recent years, several excellent computational methods have been developed to identify
6mA sites. We conducted a comparison of our HD-6mAPred approach with these existing
methods using 5-fold cross-validation across three independent testing sets: the Rosaceae
testing set, the Rice testing set and the Arabidopsis testing set. Table 4 lists the comparison
methods and results. We complied the code of CNN6mA (Tsukiyama, Hasan ¢ Kurata,
2022) on our test datasets, and the values of evaluation metrics for other existing methods
were directly cited from the results reported by i6mA-Caps (Rehman et al., 2022) or 6mA-
StackingCV (Huang, Huang ¢» Luo, 2023). As shown in Table 4, among all the comparison
methods, 6mA-StackingCV and i6mA-Caps are the latest and the best methods,
respectively, for predicting 6mA sites in the three plant species. Therefore, we mainly
reported the comparison results with these two methods.

On the Rosaceae dataset, HD-6mAPred demonstrates the most excellent results,
surpassing all other approaches. Its values of ACC, MCC, SN and SP are 0.996, 0.993, 0.995
and 0.998, respectively. Compared with 6mA-StackingCV, they are 0.036, 0.073, 0.036 and
0.037 higher, respectively; compared with i6mA-Caps, they are 0.029, 0.055, 0.029 and 0.03
higher, respectively.

On the Rice dataset, although the SN value (0.955) of HD-6mAPred is slightly lower
than that of several methods, including Meta-i6mA, iDNA6mA-Rice, MM-6mAPred,
6mA-vote, 6mA-StackingCV and CNN6mA, and its MCC value (0.905) is lower than that
of CNN6mA (0.995), HD-6mAPred performed best in the other two evaluation metrics.
Its ACC and SP are 0.952 and 0.949, respectively. Compared with 6mA-StackingCV, these
two metrics are 0.107 and 0.223 higher, respectively. In addition, compared with i6mA-
Caps, HD-6mAPred increased the ACC by 0.012, the MCC by 0.025, the SN by 0.004, and
the SP by 0.02.

On the Arabidopsis dataset, HD-6mAPred performed best in three of the four
evaluation metrics, and its SP value (0.948) is almost the same as that of i6mA-Fuse_FV
(0.949). The values of ACC, MCC, SN and SP of HD-6mAPred are 0.937, 0.875, 0.927 and
0.948, respectively. Compared with 6mA-StackingCV, these values are increased by 0.155,
0.299, 0.250 and 0.082, respectively; compared with i6mA-Caps, they are increased by
0.069, 0.135, 0.105 and 0.033, respectively.

To visually highlight the superiority of HD-6mAPred, we presented a performance
comparison between HD-6mAPred and the latest methods 6mA-StackingCV, as well as
the currently best methods i6mA-Caps by bar charts. The results are illustrated in Fig. 4.
Opverall, our method achieved the best performance in almost all evaluation metrics. These
results not only demonstrate the excellent predictive capabilities of HD-6mAPred, but also
evidence its strong generalization ability across different species.

In addtion, to estimate the performance of the model on imbalanced datasets, we
randomly extracted 10% of the positive samples from each species while keeping the
number of negative samples unchanged, constructing imbalanced datasets with a ratio of
1:10 for the three species, and then tested the performance of our model on these datasets
through 5-fold cross-validation. And we obtained some intresting results. For example, for
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Table 4 Comparison results with existing methods.

Species methods ACC MCC SN SP
Rosaceae Meta-i6mA* 0.953 0.905 0.954 0.951
i6mA-Fuse_FV* 0.943 0.887 0.924 0.962
i6mA-Fuse_RC* 0.893 0.786 0.890 0.895
i6bmA-stack_FV* 0.928 0.856 0.928 0.927
i6bmA-stack_RC* 0.899 0.798 0.920 0.877
i6mA-Pred* 0.840 0.684 0.897 0.782
iDNA6mA-Rice* 0.878 0.764 0.951 0.805
MM-6mAPred* 0.873 0.758 0.961 0.785
6mA-Finder* 0.846 0.701 0.928 0.764
6mA-vote* 0.955 0.909 0.955 0.954
6mA-StackingCV* 0.960 0.920 0.959 0.961
ibmA-Caps* 0.967 0.938 0.966 0.968
CNN6mA 0.959 0.920 0.955 0.965
HD-6mAPred 0.996 0.993 0.995 0.998
Rice Meta-i6bmA* 0.880 0.768 0.957 0.802
i6mA-Fuse_FV* 0.890 0.781 0.921 0.859
i6mA-Fuse_RC* 0.775 0.571 0.907 0.644
i6bmA-stack_FV* 0.876 0.756 0.938 0.815
i6mA-stack_RC* 0.813 0.640 0.915 0.712
i6mA-Pred* 0.791 0.592 0.878 0.705
iDNA6mA-Rice* 0.755 0.561 0.960 0.547
MM-6mAPred* 0.834 0.689 0.958 0.710
6mA-Finder* 0.809 0.636 0.928 0.690
6mA-vote® 0.882 0.774 0.961 0.803
6mA-StackingCV* 0.845 0.710 0.963 0.726
i6mA-Caps* 0.940 0.880 0.951 0.929
CNN6mA 0.812 0.995 0.962 0.661
HD-6mAPred 0.952 0.905 0.955 0.949
Arabidopsis Meta-i6mA* 0.787 0.600 0.636 0.936
i6mA-Fuse_FV* 0.749 0.542 0.545 0.949
i6mA-Fuse_RC* 0.757 0.534 0.615 0.897
i6bmA-stack_FV* 0.770 0.570 0.604 0.933
i6bmA-stack_RC* 0.751 0.514 0.634 0.865
i6mA-Pred* 0.730 0.462 0.679 0.780
iDNA6mA-Rice* 0.734 0.473 0.655 0.812
MM-6mAPred* 0.765 0.531 0.784 0.747
6mA-Finder* 0.724 0.448 0.741 0.706
6mA-vote* 0.798 0.617 0.666 0.929
6mA-StackingCV* 0.782 0.576 0.677 0.866
i6mA-Caps™ 0.868 0.740 0.822 0.915
CNN6mA 0.763 0.532 0.686 0.839
HD-6mAPred 0.937 0.875 0.927 0.948
Note:

The asterisk (*) indicats that the results were from the i6mA-Caps (Rehman et al., 2022) or 6mA-StackingCV (Huang, Huang ¢ Luo, 2023). Values in bold and underlined
indicate the best and the second best results for each metric, respectively.
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Figure 4 Performance comparison between HD-6mAPred and the latest method 6mA-StackingCV, as well as the currently best method i6mA-
Caps in the three independent test datasets. (A) Performance of different methods on the Rosaceae dataset; (B) performance of different methods
on the Rice dataset; (C) performance of different methods on the Arabidopsis dataset. Full-size k&l DOT: 10.7717/peerj.19463/fig-4

Rosaceae, ACC, MCC, SN, SP and AUC were 0.983, 0.966, 0.984, 0.982, and 0.997,
respectively; for rice, the corresponding values were 0.954, 0.908, 0.958, 0.949, and 0.986,
respectively. For Arabidopsis, the corresponding values were 0.928, 0.856, 0.915, 0.940, and
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0.672, respectively. These results further demonstrate the robust generalization ability of
the HD-6mAPred model.

DISCUSSION

Feature extraction and the choice of learning algorithms are two key factors in successfully
predicting 6maA sites. In this study, we presented a hybrid deep learning approach, named
HD-6mAPred, for predicting 6mA sites. The method integrates four different DNA
sequence encoding schemes, including one-hot encoding, EIIP, NCP and ENAC,as well as
three advanced deep learning models: BIGRU, CNN, and attention mechanism. We
employed a hold-out search strategy to identify the optimal sequence encoding ways under
the CNN and BiGRU frameworks. Following this, DNA sequences were converted into
feature matrices based on their corresponding encoding strategies and input into the
respective deep learning algorithms. The outputs from the BiGRU and CNN models were
assigned importance weights by an attention mechanism before being processed through a
fully connected layer. The proposed HD-6mAPred method not only considers the
chemical properties and nucleotide composition of DNA sequences during encoding, but
also accounts for long-distance dependencies within sequences, local sequence features,
and the relative importance of different feature information, effectively improving the
prediction performance for DNA 6mA sites identification.

As a result, HD-6mAPred reached the most excellent performance in all three plant
species including Rosaceae, rice and Arabidopsis, and outperformed the existing methods.
In the Rosaceae dataset, HD-6mAPred outperformed the latest 6mA prediction method,
6mA-StackingCV (Huang, Huang ¢» Luo, 2023), with improvements of 3.6% in ACC, 7.3%
in MCC, 3.6% in SN, and 3.7% in SP. On the Rice dataset, HD-6mAPred exceeded 6mA-
StackingCV (Huang, Huang ¢ Luo, 2023) by 10.7% in ACC, 19.5% in MCC, and 22.3% in
SP; the SN value is slightly less than 0.8%. For Arabidopsis, HD-6mAPred outperformed
6mA-StackingCV (Huang, Huang ¢ Luo, 2023), yielding substantial improvements of
15.5% in ACC, 29.9% in MCC, 25% in SN, and 8.2% in SP. The feature selection approach
of HD-6mAPred is inspired by 6mA-stacckingCV (Huang, Huang ¢ Luo, 2023), however,
the key difference lies in HD-6mAPred optimizing the combinations of encoding methods
through deep learning algorithms, whereas 6mA-StackingCV (Huang, Huang ¢ Luo,
2023) relies on traditional ML methods. In existing methods, although 6mA-StackingCV
(Huang, Huang & Luo, 2023) reached the best performance in the Rosaceae, it is
outperformed by other methods in certain metrics across species, such as 6mA-vote (Teng
et al., 2022) and i6mA-Fuse-FV (Hasan et al., 2020) in rice, as well as 6mA-vote and
Meta-i6mA (Hasan et al., 2021) in the Arabidopsis. In fact, except for our HD-6mAPred,
all existing methods could not reach the optimal results in all three species, suggesting that
the HD-6mAPred is the most robust compared to other methods. Notably, the
performance of HD-6mAPred on the Arabidopsis is slightly lower relative to the Rosaceae
and rice, potentially due to the inherent sequence structure of Arabidopsis. Future studies
will focus on further enhancing HD-6mAPred to enable more accurate site prediction
across a broader range of species.
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CONCLUSIONS

We presented a hybrid model, HD-6mAPred, for predicting 6mA sites in DNA,
demonstrating superior performance compared to existing methods for Rosaceae, rice and
Arabidopsis. The construction of HD-6mAPred involved the application of a hold-out
feature search strategy, combined with BIGRU, CNN, and an attention mechanism.
Theoretically, the hold-out feature search strategy ensures optimal feature encoding is
selected, while BiGRU effectively processes sequential characteristics and CNN captures
significant local features. Additionally, the attention mechanism allows for the extraction
of relevant information based on its importance. Theoretical foundations and comparative
analyses validated the excellent performance of HD-6mAPred, illustrating its superiority
across the three plant species. In the future, we aim to extend our model to a wider variety
of species, further enhancing its performance in 6maA site prediction.
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