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ABSTRACT

COVID-19 (coronavirus disease 2019), caused by SARS-CoV-2 (severe acute respira-
tory syndrome coronavirus 2), stands as one of the most severe pandemics the world has
ever faced in recent times. SARS-CoV-2 infection exhibits a wide range of symptoms,
varying from severe manifestations to mild cases and even asymptomatic carriers.
This diversity stems from a multitude of factors, including genetic predisposition,
viral variants, and immune status. During SARS-CoV-2 infection, the immune system
engages pattern recognition receptors, setting off a series of intricate signalling cascades.
These cascades culminate in the activation of innate immune responses, including
induction of type I and type III interferons. The emerging variants of SARS-CoV-2 pose
challenges to the innate immune system defense. Therefore, investigating the innate
immune response is crucial for effectively combating SARS-CoV-2 and its variants.
The cyclic guanosine monophosphate-adenosine monophoshate synthase-stimulator
of interferon genes (cGAS-STING) pathway, a critical innate immune mechanism,
represents a promising target for intervention at multiple stages to reduce the severity
and progression of SARS-CoV-2 infection. This review explores innate immunity in
SARS-CoV-2 infection and other immune responses critical for SARS-CoV-2 defence.
As part of the therapeutic approach, we extend our review to highlight monoclonal
antibodies (mAbs) as emerging and effective therapeutics for controlling SARS-CoV-2
by targeting different stages of the innate immune system. A diverse range of mAbs
has been explored to address specific targets within the innate immune pathways. A
deep understanding of innate immunity and targeted monoclonal therapeutics will
be instrumental in combating viruses and their variants, laying the foundation for
enhanced treatment and therapeutic strategies.
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INTRODUCTION

SARS-CoV-2 is a member of the a/f3-Corona family, characterized by its enclosed, spherical
structure. It possesses a non-segmented, positive single-stranded RNA (ssRNA) genome
of approximately 30 kilobase pairs (kbp) shielded by the helical capsid made by the
nucleocapsid (N) protein and enclosed by an envelope protein (E). The structure of the
SARS-CoV-2 protein contains envelope (E) and membrane (M) proteins that help in virus
assembly, and spike (S) protein allows the virus to enter the hosts. Among these E, M, and S
proteins, the S protein size is too large (180-200 kDa) and appears like a crown (Lan ef al.,
2020) (Fig. 1A). Among seven viruses (SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-229E,
HCoV-NL63, HCoV-0OC43, HCoV-HKU1) associated with typical respiratory infections,
four (HCoV-229E, HCoV-NL63, HCoV-0OC43, HCoV-HKU1) cause harmless seasonal
infections, while the remaining three SARS-CoV, MERS-CoV, and the recently identified
SARS-CoV-2 pose a higher risk of lethality. SARS-CoV emerged in China in November
2002 and infected nearly 8,100 individuals, with a mortality rate of 9.6%, resulting in
774 deaths. MERS-CoV, transmitted from camels to humans, appeared a decade later,
spreading globally over six years, infecting 2,143 individuals, and resulting in 750 deaths
with a mortality of 34.9% (Marschalek, 2023).

In 2019, the SARS-CoV-2 emerged and rapidly spread across the globe. The total
confirmed cases of SARS-CoV-2 have surged to a staggering 777.35 million, underscoring
the extensive reach of the virus (https:/covid19.who.int/). Since the beginning of the
COVID-19 pandemic, several new variants of concern have emerged, including Alpha
(B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529). These
variants are associated with increased transmissibility and virulence. Currently, the World
Health Organization (WHO) is tracking various SARS-CoV-2 variants, which include a
variant of interest (VOI): JN.1, and variants under monitoring (VUMs): JN.1.18, KP.2,
KP.3, KP.3.1.1, LB.1, and XEC. The COVID-19 pandemic and emerging SARS-CoV-2
variants highlight the immense challenges and emphasize the urgent need for ongoing
global efforts to mitigate its impact and prevent further losses (Zeyaullah et al., 2021).
Many promising strategies demonstrating significant effort in the fight against SARS-CoV-
2 are being investigated although challenges remain (Khan et al., 2024; Khan et al., 2021b;
Khan et al., 2022; Sharma et al., 2023; Zeyaullah et al., 2023; Zhou et al., 2021). However,
SARS-CoV-2 has developed several ways to avoid or circumvent immune mechanisms,
allowing it to infect and spread throughout the host successfully (Foxman, 2024; Zaidi ¢
Singh, 2024).

The innate immune response plays a crucial role in defending against SARS-CoV-2. Its
primary functions include limiting viral entry, blocking viral translation and replication,
and preventing the release of new infectious virions. Additionally, it facilitates the
identification and elimination of infected cells while accelerating the development of
an adaptive immune response (Hoffimann, Schneider ¢ Rice, 2015; Sievers et al., 2024).
However, in severe COVID-19 cases, an overactive immune response can lead to excessive
inflammation, significantly impacting disease progression. A key component of this
inflammatory response is the interferon cascade, which plays a critical role in SARS-CoV-2
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Figure 1 SARS-CoV-2 structure, viral host interaction and virion formation in the host cells. (A) The
SARS-CoV-2 structure, and maturation involve the formation of new membranous structures known as
“replication organelles” near the cell nucleus. These structures are surrounded by double membranes and
are believed to originate from the endoplasmic reticulum (ER). (continued on next page...)
Full-size Gl DOI: 10.7717/peerj.19462/fig-1
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Figure 1 (...continued)

These organelles serve as a location for viral replication complexes, isolating them from the cells innate
immune response. The process of virus assembly starts with the synthesis of viral proteins and genomic
RNA at the replication site. These components are then transported, through an unknown mechanism, to
the ER-Golgi intermediate compartment (ERGIC), where assembly and budding of new viruses occur. (B)
The SARS-CoV-2 spike (S) protein is a crucial component of the virus responsible for binding to human
cells and facilitating infection. It consists of various subdomains with distinct functions. One of the essen-
tial parts of the S protein is the receptor-binding domain (RBD), responsible for recognizing and binding
to the human cell receptor ACE2 (Angiotensin-Converting Enzyme 2). The RBD has three distinct anti-
genic sites (AS-1, AS-2, and AS-3), which are regions that can trigger an immune response. RBD can be
one of the targets for the monoclonal antibodies as depicted above (Figure created on biorender.com).

infection (Merad ¢» Martin, 2020). In some individuals, cytokine release syndrome (CRS)
occurs, characterized by an overwhelming cytokine surge that leads to acute respiratory
distress syndrome (ARDS) and secondary hemophagocytic lymphobhistiocytosis (sHLH)
(Moore & June, 2020; Quan et al., 2020). To counterbalance this excessive inflammation,
the innate immune system employs endogenous feedback mechanisms, utilizing cytokines
such as IL-4, IL-10, IL-11, and IL-13 to promote an anti-inflammatory state.

The impact of COVID-19 varies significantly among patient populations, with
immunocompromised individuals (cancer patients, organ transplant recipients, individuals
with HIV, autoimmune diseases, or immunosuppressive therapy) facing a heightened risk.
Among solid organ transplant recipients, lung transplant recipients exhibit the highest
fatality rate (Hall et al., 2022). Immunocompromised individuals are at higher risk for
severe COVID-19 complications, with mortality rates increasing by 5 to 6% compared to
the normal population (Liang ef al., 2020; Wu ¢ McGoogan, 2020).

Understanding the innate immune response and the pathways that can trigger SARS-
CoV-2 viral infections is crucial for precise and targeted therapeutic approaches. The
type-I interferon (IFN-1) system plays a critical role in the innate immune response.
Dysfunctional early IFN-1 signaling is a key feature of severe COVID-19 and is linked
to reduced viral clearance (Hadjadj et al., 2020). A diminished or absent IFN-a response
often precedes clinical worsening and the need for intensive care, marking the most
severe or critical cases that require invasive ventilation. These cases show significantly
lower expression of six interferon-stimulated genes (ISGs), which define the IFN-1
signature, compared to mild to moderate cases with elevated IFN-a levels (Fraser et
al., 2023; Zhang et al., 2021a). During the replication and transcription of the coronavirus
genome, double-stranded RNA (dsRNA) is produced (Kindler, Thiel & Weber, 2016),
which can be identified by RIG-I-like receptors (RLRs) such as retinoic acid-inducible
gene I (RIG-I) and/or melanoma differentiation-associated protein 5 (MDA5) in the
cytoplasm(Li, Liu ¢ Zhang, 2010; Roth-Cross, Bender ¢ Weiss, 2008). Alternatively, toll-
like receptors (TLRs) in endosomes can also recognize dsRNA (Totura et al., 2015). The
two-caspase activation and recruitment domains (CARDs) of RIG-I and MDAS5 can
interact with the mitochondrial antiviral signaling protein (MAVS)(Seth et al., 2005). A
study highlights the interaction between SARS-CoV-2 and the host’s innate immune
system, revealing how viral proteins play a role in evading immune defences (Lei et al.,
2020). Patients with weakened immune systems, such as those with rheumatological
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conditions or lung transplants, often experience severe COVID-19 symptoms and
prolonged hospital stays (Gianfrancesco et al., 2020; Heldman et al., 2021). Individuals
with hematologic malignancies, face a heightened risk of SARS-CoV-2-related morbidity
and mortality. This is due to immune deficiencies that hinder the prevention, treatment,
and elimination of the virus (DeWolf et al., 2022). Data from previous studies suggests
that some medications often used to manage immune-mediated inflammatory conditions,
such as cytokine inhibitors, could help reduce the severity of COVID-19 (Fagni et al.,
2021; Heimfarth et al., 2020). However, treatments like glucocorticoids and those targeting
B-cells may negatively impact COVID-19 outcomes (Bruscoli et al., 2022; Fagni et al.,
2021). Treatment options include neutralizing mAbs such as regdanvimab, teleseminar,
and imdevimab, which specifically target the spike protein of SARS-CoV-2 to inhibit viral
replication and reduce disease severity (Miguez-Rey ef al., 2022). Among the other factors
that manage the progression and severity of SARS-CoV-2 is vitamin D. The Bsml b allele
and bb genotype have been linked to an increased likelihood of hospitalization due to
SARS-CoV-2 infection, potentially due to the association of the b allele with reduced
vitamin D levels (Aci et al., 2024). The insertion/deletion polymorphism of the endothelial
growth factor (VEGF) gene, specifically the DD genotype and D allele, has been associated
with vitamin D levels in patients with COVID-19 (Yigit et al., 2023). To manage SARS-
CoV-2 infection, immunomodulatory therapies, such as corticosteroids and monoclonal
antibodies, play a crucial role, especially in severe cases where immune dysregulation drives
disease progression. Corticosteroids (e.g., dexamethasone, prednisolone) are particularly
beneficial in cases involving hyperinflammation and cytokine storm, helping to reduce
excessive immune activation and improve patient outcomes. As research continues,
optimizing immunomodulatory interventions for different patient populations, especially
those who are immuno-compromised, remains a critical area of focus.

The antibody-based interventions have paved the way for advancements in technology
and production methods, ultimately creating more potent and promising therapeutic
approaches in the form of mAbs as an important tool for pandemic preparedness. The
target audience for this review will be scientists/clinicians/health workers and those
interested to know more about the native immune response in SARS-CoV-2 infection
and exploring potential treatments that target the viral proteins involved in these immune
responses.

SEARCH METHODOLOGY

In this review, we searched the literature on PubMed, Google Scholar, ScienceDirect, Google
search engine, and Scopus by using the following terms COVID-19 immunity, SARS-CoV-2
immunity, innate immunity/COVID-19, innate immune response to SARS-CoV-2, SARS-
CoV-2 protein/immune target, therapeutic strategy/SARS-CoV-2, monoclonal antibody
in COVID-19 and COVID-19 therapeutic antibody. We also included reports from the
Centers for Disease Control and Prevention (CDC), and the World Health Organization
(WHO). The search terms were strategically broadened to ensure the inclusion of all
relevant studies. Two authors independently screened the literature for reproducibility.
Non-COVID-19 and non-English language studies were used as exclusion criteria.
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RECEPTOR-LIGAND INTERACTIONS IN SARS-COV-2
INFECTION

SARS-CoV-2 are detected through their pathogen-associated molecular patterns (PAMPS),
when bound to host cell pattern recognition receptors (PRRs) and elicit innate immune
responses against them (Badia, Garcia-Vidal ¢» Ballana, 2022; Takeuchi & Akira, 2010).
PAMPs in viruses primarily include viral nucleic acids, such as ssSRNA, dsRNA,
unmethylated CpG DNA and viral proteins, which are recognized by the host immune
system to trigger an innate immune response. The interaction between PAMPs and
PRRs activates the innate immune responses in the form of upregulation of complement
proteins, secretion of antimicrobial agents, cytokine signalling, activation, and recruitment
of phagocytic cells like, macrophages and natural killer (NK) cells (Tosi ¢ Immunology,
2005).

The S protein of SARS-CoV-2 interacts with ACE2, a critical regulator of the renin-
angiotensin system, as a cellular entry receptor for the invasion of virus into human cells.
The S1 protein consists of two domains: an N-terminal domain (NTD) and a receptor-
binding domain (RBD). The RBD interacts with the peptidase domain of ACE2 using a
receptor-binding motif (RBM), while the exact function of the NTD remains unclear, it
might be responsible for recognizing specific sugar structures during initial attachment.
This recognition could aid the transition of the S protein from perfusion to post-fusion
conformation. Antibodies binding to specific epitopes on the NTD have been proven to
hinder SARS-CoV-2 infection (Fig. 1B) (Jackson et al., 2022). SARS-CoV-2 activates the
innate immune responses through PAMPs (like viral RNAs and oxidized phospholipids)
and the infection was restricted to entry gates of the human body (Danladi ¢ Sabir,
2021; Mihaescu et al., 2021). Cells containing NLRP3 (NOD-like receptor family pyrin
domain-containing 3) inflammasome like macrophages, epithelial cells and endothelial
cells are activated by SARS-CoV-2 through a NOD-like receptor family, helping in caspase-1
activation. Caspase-1 activation leads to the cleavage of proinflammatory cytokine IL-1
into its physiologically active IL-13 and IL-18. Additionally, TLR-3, -7, -8, and -9 receptors
respond to viral RNA and trigger the NF-xB pathway that activate the pro-inflammatory
cytokine cascade (Khan et al., 2021a; Lee, Channappanavar & Kanneganti, 2020). When
SARS-CoV-2 enters the body, it binds to the ACE2 receptor, triggering conformational
changes in the S1 subunit (Jackson et al., 2022). This is followed by the cleavage of S2 by
cellular proteases such as TMPRSS2 or cathepsin L (Trougakos et al., 2021). This chain
of events is detected by various host pattern recognition receptors (PRRs) (Diamond ¢
Kanneganti, 2022). The TLR family, RIG-I-like receptors (RLRs), and nucleotide-binding
oligomerization domain (NOD)-like receptors (NLRs) are the three main families of PRRs
(Kanneganti, 2020). Activation of these receptors through aberrant signalling pathways
leads to over-activation of inflammatory cytokines and chemokines. The diversity among
the PRRs in the form of extracellular receptors like TLR and dectins, which detect the
extracellular PAMPs, and intracellular receptors including RIG-1-like receptors (RLRs),
NOD-like receptors (NLRs), AIM2-like receptors (ALRs), which recognize the intracellular
PAMPs (Dawoodi, Rizvi & Zaidi, 2024). PAMPs can simultaneously bind to multiple
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receptors and other signalling pathways to drive extended cellular events including cell
death (Franz & Kagan, 2017; Kagan ¢» Barton, 2015). A deeper understanding of the
pathophysiological mechanisms involved in innate immunity is crucial for developing
effective preventive and therapeutic strategies against COVID-19. The main families of
PRRs are summarized below.

TLRs and SARS-CoV-2

TLRs serve as the primary defence mechanism for the innate immune system, protecting
the host from pathogens. There are ten TLR family members, half of which are in the cell
membrane, and the other half are found in endosomes. The X-chromosome harbours
tandem duplicated genes known as TLR7 and TLRS8. These genes are found on the
membrane of the endosome and capable of identifying synthetic oligoribonucleotides
such imidazoquinolinone, imiquimod, and R-848, as well as ssRNA. As a result, they
had a part in the identification of the SARS-CoV-2 genome (De Groot ¢ Bontrop, 2020).
Whole-genome sequencing analyses of SARS-CoV, MERS-CoV, and SARS-CoV-2 have
indicated a potentially heightened involvement of TLR7 in the pathogenic mechanisms
of SARS-CoV-2, relative to SARS-CoV and MERS-CoV. This heightened involvement is
suggested to arise from the greater abundance of single-stranded RNA motifs within SARS-
CoV-2, facilitating increased binding affinity to TLR7 (Van der Made et al., 2020). The
ssRNA virus, SARS-CoV-2, has been associated with at least six TLRs in viral recognition,
namely TLR2, TLR3, TLR4, TLR7, TLRS, and TLR9. TLR2 and TLR4 can identify viral
structural and non-structural proteins outside the cell (Tyrkalska et al., 2023). Human
macrophages have been shown to engage TLR4 signalling in response to the SARS-CoV-2
spike protein S1 subunit, which causes pro-inflammatory reactions (Shirato ¢ Kizaki,
2021). Inflammatory cytokines are produced by TLR2 upon sensing the SARS-CoV-2
envelope protein (Zheng et al., 2021). TLR3 recognizes double-stranded RNA during viral
replication. Following macrophage engulfment of SARS-CoV-2, TLR7/TLRS identifies the
genomic RNAs released from the virions, activating subsequent signalling cascades. During
pulmonary SARS-CoV-2 infection, TLR7 primarily regulates innate immunity by triggering
NF-kB transduction and causing the release of pro-inflammatory cytokines (Bortolotti et
al., 2021; Planes et al., 2022). However, research on TLR9’s role in SARS-CoV-2 infection
is still limited. When SARS-CoV-2 infects endothelium cells, mitochondrial dysfunction
raises mitochondrial DNA (mtDNA) levels and activates TLR9 (Costa et al., 2022). TLR4
may play a major role in the pathophysiology of SARS-CoV-2 by causing abnormal
inflammation (Aboudounya ¢ Heads, 2021; Sohn et al., 2020). TLRs present promising
targets for controlling infection during the early stages of the disease and for developing
vaccines against SARS-CoV-2 (Khanmohammadi ¢ Rezaei, 2021). Agonists targeting TLRs
may induce a robust immune response in COVID-19 (Florindo et al., 2020).

RLRs and SARS-CoV-2

RLRs comprise three related proteins viz. RIG-I, (or DDX58), MDAS5, and laboratory
of genetics and physiology 2 (LGP2). During SARS-CoV-2 infection, RIG-I and MDA5
primarily recognize and inhibit viral replication by identifying viral intermediate dsRNA.

Nazir et al. (2025), PeerJ, DOI 10.7717/peerj.19462 7/51


https://peerj.com
http://dx.doi.org/10.7717/peerj.19462

Peer

Activated RLRs typically interact with mitochondrial antiviral signalling protein (MAVS)
to regulate the IFN I and III pathways (Yin et al., 2021). The activity of downstream
ISGs, including LY6E, AXIN2, CH25H, EPST1I, GBP5, IFIH1, IFITM2, and IFITM3, has
been shown to inhibit SARS-CoV-2 replication and entry (Martin-Sancho et al., 2021).
SARS-CoV-2 can interfere with the RLR signaling pathway in two ways: either through
deubiquitination-dependent or deubiquitination-independent mechanisms, utilizing

its papain-like protease to hinder the immune response (Ran et al., 2022). It is worth
mentioning that children exhibit higher basal expression of RIG-1 and MDAS5 in their
upper airway epithelial cells, which leads to a more robust and rapid antiviral response to
SARS-CoV-2 compared to adults (Loske et al., 2022). Children with SARS-CoV-2 infection
tend to experience less severe disease compared to adults, due to a stronger innate immune
response in the upper airway (Mick et al., 2022).

NLRs and SARS-CoV-2

Four primary NLR types exist: AIM2, NLRP1, NLRC4, and NLRP3. Elevated NLRC4 in
zebrafish has been shown to modulate the transcription of type I IFNs and interferon-
stimulated genes (ISGs) by promoting the antiviral response and regulating the MDA5-
MAVS and TRAF3-MAVS complexes (Wu et al., 2020). However, in the event that blood
monocytes get infected, cytokine production and pyroptosis should result from the
activation of NLRP3 and AIM2 (Junqueira et al., 2021). More systemic cardiovascular
disease consequences are frequently associated with highly expressed NLRP1 in case of
SARS-CoV-2 than with MERS-CoV or SARS-CoV (Jha et al., 2021).

Among these, NLRP3 is the most well-researched inflammasome, which has four parts:
an LRR, a NACHT domain that binds nucleotides, a PYD and a CARD that recruits
caspases. The NLRP3 inflammasome can be activated by a number of SARS-CoV PAMPs
that are produced from ORF3a, ORF8D, E protein, and viral RNA (Zhao, Di & Xu, 2021).
NLRP3 inflammasome assembly can also be triggered in human hematopoietic stem cells
(HSCs) and very small embryonic-like stem cells (VSELs) by ACE2’s interaction with S
and N proteins of SARS-CoV-2. During SARS-CoV-2 infection, vimentin, DEAD-box
helicase 3X (DDX3X), and macrophage migration inhibitory factor (MIF) are important
factors that activate NLRP3 formation (Harris ¢ Borg, 2022). Orally administering the
NLRP3 inhibitor to SARS-CoV-2 infected hACE-K18 mice model resulted in much lower
microglial inflammasome activation and a greater survival rate when compared to the
untreated groups (Lei et al., 2022). Consequently, it is thought to be possible to use drugs
to block the NLRP3 pathway and reduce cytokine release in patients (Lei ef al., 2022).

APOPTOTIC CELL-DEATH AND SIGNALING DURING
SARS-COV-2 INFECTION

Apoptosis-dependent host cell death is an essential intrinsic antimicrobial process that
limits pathogen multiplication and propagation. Inflammatory reactions initiated by
SARS-CoV-2 cause apoptosis, which kills host cells (Yuki, Fujiogi ¢ Koutsogiannaki, 2020).
Apoptosis is believed to be involved in the pathophysiology of COVID-19 because of severe
cell injury and tissue destruction of lung, kidney, liver, pancreas, neurological as well as
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immunological system. It triggers the process aimed at further halting the infection, but
excessive activation may lead to lung damage. The process of apoptosis can be initiated with
both intrinsic and extrinsic apoptotic mechanisms. The death-inducing signaling complex
(DISC), which contains Fas, Fas-associating protein with a novel death domain (FADD),
and procaspase-8, is formed when extracellular ligands, such as Fas ligand (FasL), trigger cell
surface death receptors (like Fas) and then activate them and activate caspase-8 (Kaufmann,
Strasser ¢ Jost, 2012). After that, it starts to activate caspase-3, which ultimately starts with
an extrinsic apoptotic pathway. The intrinsic process (mitochondrial pathway) triggered by
outside factors such DNA damage or cellular stress. Bak/Bax (BCL2 antagonist killer/BCL2
associated X protein) is activated in response to external stimuli, leading to the release of
cytochrome C from mitochondria and the activation of caspase 9. Cell death of SARS-CoV-2
infected lung epithelial cells occur because of caspase 3 activation, which is initiated by
activated caspase 9 (Yuan et al., 2023). Figure 2 illustrates the molecular mechanisms by
which SARS-CoV-2 induces apoptosis in lung epithelial cells, leading to pulmonary injury.
This process leads to the demise of infected cells, triggering an inflammatory response.
A study reported a combination of in vitro, in vivo, and ex vivo models to validate the
induction of apoptosis by SARS-CoV-2 and utilized MERS-CoV as a model to investigate
the underlying mechanism responsible for virus-induced apoptosis (Chu et al., 2021).
They discovered that the MERS-CoV infection’s proapoptotic mediators were tightly
controlled by PERK (protein kinase R-like endoplasmic reticulum kinase) signalling. The
displacement of PERK from the ER chaperon GRP78 (78 KDa glucose-regulated protein)
led to its activation.

ER chaperon GRP78 plays a pivotal role in numerous cellular processes, such as
guiding the translocation of newly synthesized polypeptides across the ER membrane,
facilitating protein folding and assembly, directing misfolded proteins for ER-associated
degradation (ERAD), regulating calcium homeostasis, and acting as a sensor for ER stress.
The multifaceted functions of GRP78 underscore its significance in orchestrating diverse
cellular activities within the ER (Wang et al., 2009). Additionally, it was found that the
PERK signalling converged with the intrinsic or mitochondrial apoptotic pathway. The
pathogenesis of both MERS-CoV and SARS-CoV-2 was caused by the inhibition of PERK
signalling and the intrinsic apoptotic pathway. Lung damage by the SARS-CoV-2 infection
was lessened by PERK signalling modification (Zhou et al., 2020). Studies have shown that
SARS-CoV-2 proteins play a significant role in apoptosis induction in several ways (Yuan
et al., 2023). It has been established that SARS-CoV-2 ORF3a functions as a viroporin,
capable of forming an ion channel on the cell membrane. This disrupts intracellular
homeostasis, which plays a role in apoptosis, and facilitates virus release. By cleaving and
activating caspase-8 for the extrinsic route and cross-talking to the intrinsic pathway via
truncated BH3-interacting domain (tBID), which results in the release of cytochrome c and
activation of caspase-9, a different study shown that SARS-CoV-2 ORF3a may efficiently
trigger apoptosis (Yuan et al.,, 2023). In addition, it has been shown that SARS-CoV-2
ORF7b causes TNF-dependent apoptosis in HEK293T cells and Vero E6 cells (Yang et al.,
2021). Further investigation revealed that the intrinsic and extrinsic routes caused apoptosis
in a variety of cell types, including T cells, vascular endothelial cells (ECs), macrophages,
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and alveolar type 1 and 2 cells (AT1s and AT2s) in the infected non-human primate
lung. The results above are consistent with other research on the SARS-CoV-2-induced
apoptosis in respiratory epithelial cells and ECs. In the animal model of SARS-CoV-2
infection, a significant portion of the renal tubular epithelial cells also undergo apoptosis,
which results in acute kidney injury (AKI). Another immunological characteristic related
to the severity of the SARS-CoV-2 infection is the decreased proportion of dendritic
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cells (DCs) in COVID-19 patients. DCs and monocyte-derived macrophages (MDMs)
were found to harm mitochondria and caspase-3 activation-dependent apoptosis, which
could be stopped by anti-IEN therapy (Li et al., 2022). Therefore, a possible treatment
for SARS-CoV-2 infection involves blocking TNF- and its receptor. These data not only
show how important apoptosis is in the pathogenesis of SARS-CoV-2 but also suggest a
treatment strategy that focuses on apoptosis.

ACTIVATION AND THE SECRETION OF CYTOKINES IN
SARS-COV-2 INFECTION

Cytokine markers consist of a group of polypeptides signaling molecules capable of
initiating and controlling numerous cellular biological processes through the activation of
cell surface receptors. Recent research has demonstrated that SARS-CoV-2 is linked with the
activation of innate immunity. Based on their biological effects, the cytokine superfamily
can be categorized into several main families, including interleukins (ILs), interferons
(IFNs), tumor necrosis factors (TNFs), chemokines, and transforming growth factor
(TGEF-B). Cytokines can further be classified into pro-inflammatory or anti-inflammatory
subclasses. Interleukins such as IL-1, IL-4, IL-6, IL-7, IL-10, IL-12, IL-17, and IL-18 have
been demonstrated to play a significant role in the body’s inflammatory response during
SARS-CoV-2 infection (Hasanvand, 2022) and its main source are active macrophages
and monocytes (Turner et al., 2014). Some important ILs in SARS-CoV-2 infections are
described here.

Interleukin-1

Interleukin-1 has been shown to play a major role in inflammatory response in the body
against infection (Siu et al., 2019). Epithelial injury caused by SARSCoV-2 infection results
in the secretion of IL-1a, which attracts neutrophils and monocytes towards the site of
infection, and IL-1f generation in monocytes/macrophages (Van de Veerdonk ¢ Netea,
2020). IL-1P forms part of the cytokine storm produced by coronavirus infections in body
because of uncontrolled immune responses (Copaescu et al., 2020). In contrary to patients
with mild COVID-19 infection, patients with severe/critical COVID-19 disease exhibited
significantly greater levels of inflammatory cytokines in their bronchial alveolar lavage
fluid (BALFs), particularly IL-8, IL-6, and IL-1f (Liao et al., 2020). One of the recognized
IL-1-blocking drugs is anakinra, which functions similarly to IL-1Ra by preventing IL-1
as a result, it can stop the auto-inflammatory pathways. (Behzadi et al., 2022; Van de
Veerdonk ¢» Netea, 2020). Anakinra belongs to a class of drugs known as interleukin-1
(IL-1) receptor antagonists to treat and prevent cytokine storms thus used to relief in
certain inflammatory conditions. Anakinra could offer greater benefits during the initial
phases of the ailment, before elevated cytokine levels emerge, potentially thwarting the
advancement to critical illness and the need for mechanical ventilation (Khani et al.,
2022). However, in other studies it could not provide notable improvement (Dakhrmns

et al., 2023; Elmekaty et al., 2023). Further research on IL-1 inhibitor agents to mitigate
the inflammatory consequences initiated by SARS-CoV-2 infection may be a promising
approach to control innate immune response (Mardi et al., 2021).
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Interleukin-4

Multiple investigations involving SARS-CoV-2 patients have identified increased IL-4
levels, contributing to the cytokine storm linked to severe respiratory symptoms (1,
Huang & Yin, 2021; Liu et al., 2020). The activation and release of IL-4, leading to the
stimulation of the IL-4 receptor, which inhibits the secretion of various inflammatory
cytokines such as TNF-a, IL-1, and PGE2. IL-4 is secreted from various immune cells,
including T helper type 2 (Th2) cells. These interleukins cause Th2 cells to respond by
blocking the Th1 immune response pathway. It was discovered that there is an increased
production of Thl cells in situations of overactive immunity responses and autoimmune
diseases. Th2 cells were observed to be more prevalent in COVID-19 patients receiving
high-intensity treatment (Montazersaheb et al., 2022). Findings and data gathered during
the COVID-19 pandemic reveal a notable increase in Th2, Th1/Th17 cells, and antibody
production in COVID-19 patients. Additionally, it has been demonstrated that Th2 cells
can activate interleukin 4, which then triggers apoptosis by activating the STAT signalling
pathway (Renu et al., 2020).

Interleukin-6

In SARS-CoV-2 infection, there is noted elevation in the secretion or production of IL-6
and IL-8 in patients, coupled with a reduction in CD4+ and CD8+T cells (Rabaan et al.,
2021; Zheng et al., 2020). A research conducted by Ruan et al. indicates that levels of IL-6
and ferritin were elevated in patients who succumbed to SARS-CoV-2 compared to those
who recovered (Ruan et al., 2020). Research indicates that individuals with hypertension,
elevated levels of IL-6, and SARS-CoV-2 infection are at a significantly increased risk of
developing severe respiratory failure (Zhang et al., 2020a). One of the most promising
approaches in managing cytokine storms in SARS-CoV-2 patients could involve the
inhibition of the IL-6 receptor using tocilizumab, aiming to avert severe complications
from the virus (Pelaia et al., 2021). Utilizing IL-6 receptor blockers stands out as one

of the highly recommended treatments for SARS-CoV-2, offering a promising avenue
for intervention (Hasanvand, 2022). Abnormalities in innate lymphoid cells have been
detected in patients with SARS-CoV-2 infection (Kumar et al., 2021a), this could be linked
to disorders in the IL-7 signalling pathway and its receptor (Sheikh ¢» Abraham, 2019).
There is a suggestion that IL-7 might have potential applications as a vaccine adjuvant
hence augmenting immune responses to vaccines particularly those targeting SARS-CoV-2
or other emerging pathogens (Bekele, Sui ¢ Berzofsky, 2021).

Interleukin-10

Studies has indicated a substantial increase in serum interleukin-10 (IL-10) levels during
the cytokine storm observed in patients with COVID-19 infection (Huang et al., 2020).
Increased serum interleukin-10 levels in COVID-19 patients may serve as both an anti-
inflammatory mechanism and an immunosuppressive biomarker (Islam et al., 2021).
Studies have shown that recombinant IL-10 can be utilized to exhibit anti-fibrotic activity
and modulate immune-regulating functions in patients with COVID-19 (Lu et al., 2021Db).
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Interleukin-17

Recent reports suggest that IL-17 plays a role in the hyperinflammatory state seen in
COVID-19 . The increased expression of IL-17A during the cytokine storm is attributed to
T helper 17 cells and is primarily linked to ARDS. Consequently, there has been a proposal
for the potential therapeutic application of IL-17 inhibitors in COVID-19 (Maione et al.,
2021).

Interleukin-18

IL-18 is a proinflammatory cytokine that appears to play a role in the cytokine storm and
hyperinflammation associated with severe COVID-19 cases. Interleukin (IL)-18 serves as

a pivotal cytokine in macrophage activation syndrome. Elevated levels of IL-18 have been
observed in COVID-19 patients, suggesting it could be a potential therapeutic target (Satis
etal., 2021).

Tumour necrosis factor

Studies have shown that during SARS-CoV-2 infection, tumour necrosis factor (TNF)R1
expression is increased (McElvaney et al., 2020) and increased serum TNF-a levels in these
patients are associated with increased disease severity (Chen et al., 2020a; Leija-Martinez et
al., 2020). Studies have demonstrated that during SARS-CoV-2 infection, the expression
of STNFRI1 is elevated in COVID-19 patients (McElvaney et al., 2020) Conversely, research
indicates that serum TNF-a levels are increased in these patients and are correlated with
high disease severity (Qin et al., 2020) .

Transforming growth factor

Complications resulting from transforming growth factor (TGF-f3) secretion in individuals
with SARS-CoV-2 infection may include the initiation of interstitial lung alterations,
increased pulmonary secretions, sputum production, dry cough, bronchial asthma, and
ultimately, disruption of regular breathing patterns (Costela-Ruiz et al., 2020). In cases of
SARS-CoV-2 infection, examination of TGF-f levels indicates an increase in serum levels
of this cytokine among patients, consequently resulting in the suppression of immune
system activity in those who are infected (Ferreira-Gomes et al., 2021).

Secretion of interferon

Interferons (IFNs) are signalling proteins that play a crucial role in the immune
response to viral infections and other immune challenges. They have several important
functions in the immune system: antiviral defence, immune modulation, inflammation
regulation, enhancing antigen presentation, immune surveillance, Immunostimulatory
and immunomodulatory therapies (Danladi ¢ Sabir, 2021; Mihaescu et al., 2023). IEN-y
stands as a pivotal cytokine released by both NK cells and T lymphocytes, holding a
crucial position in enhancing the body immune response. In the context of cytokine
storms associated with SARS-CoV-2 infection, anomalies in IFN-vy levels become evident,
accompanied by an overexpression of genes associated with COVID-19 (Gadotti et al.,
2020). Hub genes identified in the disease-gene interaction network play a critical role in
regulating the immune response during COVID-19 infection. Hub genes exhibited a close
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association with the activation of CD4 memory T cells, regulatory T cells, and activated
NK cells and genes BIRC5, DNAJC4, DTL, LILRB2, and NDC80 were identified as having
robust diagnostic properties as well (Zhou et al., 2023).

Chemokines in SARS-CoV-2 infection

A family of small cytokines called chemokines plays a critical role in mediating proper
immune responses. Chemokines play a significant role in recruiting phagocytes to the
site of infection, and they have important functions in both diagnostics and therapeutics,
like in COVID-19 patients, the chemokines CXCL1, CXCL3, CXCL6, CXCL15, CXCL16,
and CXCL17 have been associated with the recruitment of macrophages (Schultze ¢
Aschenbrenner, 2021). These chemokines play an important role in the immune response
to SARS-CoV-2. Understanding the role of chemokines in macrophage recruitment is
important in COVID-19 research and treatment.

CCL2/MCP-1

The chemokine (C-C motif) ligand 2 (CCL2/ also known as monocyte chemoattractant
protein 1 (MCP1) and its cognate receptor (CCR2) are unregulated in COVID-19 patients
(Bagheri et al., 2024) and is linked to predict the severity of disease. CCL2 is secreted
during the early phase of infection and is significantly increased further during late stages
of fatal cases than severe and/or mild COVID-19 patients (Xu et al., 2020). CCL2 involved
in the recruitment of monocytes and macrophages to sites of infection and plays a vital
role in immune response to viral challenges (Bagheri-Hosseinabadi et al., 2024). In the
lungs, CCL2 is mainly produced by alveolar macrophages, T cells and endothelial cells and
CCR2 is mainly expressed on monocytes and T cells (Henrot et al., 2019). Increased levels
of CCL2 in bronchoalveolar lavage fluid (BALF) are associated with initiating a cytokine
storm and promoting the accumulation of CD163+ myeloid cells in the airways and further
alveolar damage in the lungs of patients with SARS-CoV-2 (Ranjbar et al., 2022). Moreover,
increased CCL2 levels were reported to be correlated with the development of respiratory
failure (Jontvedt Jorgensen et al., 2020) and acute kidney injury in critically ill COVID-19
patients (Biilow Anderberg et al., 2021).

CCL3

Similar to CCL2, CCL3 plays a vital role in the recruitment and activation of monocytes
and macrophages, including T cells to sites of infection and It involved in immune
response and the regulation of antiviral defense (T7ifilo et al., 2003). Abers et al. (2021)
rreported that increased serum CCL3 level was directly associated with the mortality rate
of patients with COVID-19. A study demonstrated that higher serum concentrations of
CCL2/MCP-1, CCL3/MIP-1a, and CCL5/RANTES was observed in COVID-19 patients
and these cytokines play an important role in causing inflammatory complication (Hu,
Huang & Yin, 2021).

CCL5
CCLS5 is a chemotactic cytokine that activates immune cells in the peripheral immune
system during acute viral infection (Crawford et al., 2011; Maghazachi, Al-Aoukaty &
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Schall, 1996). Researchers reported that increased expression of CCL5 helps to eliminate
SARS-CoV-2 infection and prevent the severity of disease (Zhao et al., 2020). However,
other studies reported that higher levels of CCL5 are associated with liver and kidney
injuries (Chen et al., 2020b; Yu et al., 2016) and a study also observed an elevated CCL5
levels in SARS-CoV-2 infected patients with liver and kidney injuries compared to healthy
controls or mildly and moderately (Patterson et al., 2020).

cGAS-STING SIGNALING PATHWAY

The cGAS-STING signaling pathway is a critical component of the innate immune response
that helps, detect and defend against viral infections and DNA pathogens (Ahn ¢ Barber,
2019).The innate immune system is the body’s initial defence against invading pathogens
(Akira, Uematsu & Takeuchi, 2006). It identifies specific patterns found in pathogens or
damaged cells using PPRs, which include TLRs, Nod-like receptors (NLRs), RIG-I-like
receptors (RLRs), and the DNA sensor cyclic guanosine monophosphate (GMP)-adenosine
monophosphate (AMP) synthase (cGAS)-stimulator of interferon genes (STING) signaling
pathway. Among these receptors, the cGAS-STING pathway, plays a significant role in
the innate immune response to viral infections. Multiple lines of evidence have suggested
that the cytoplasmic DNA sensor cGAS-STING not only recognizes dsDNA viruses but
also plays a crucial role in RNA virus infection, either by directly recognizing virus
characteristics or by detecting cellular DNA released from mitochondria or nuclei in
response to cellular stress (Li et al., 2021) (Fig. 3). STING has been linked to SARS-CoV-2
infection by triggering the type I IFN response (Chattopadhyay ¢ Hu, 20205 Messaoud-
Nacer et al., 2022; Ramanjulu et al., 2018). Although type I IFNs are quickly induced to
stop the spread of the virus, a sustained rise in type I IFN levels during the late stages of
the infection is linked to aberrant inflammation and a poor clinical outcome (Liu et al.,
2021). The cGAS-STING pathway is demonstrated to be a major regulator of aberrant
type I IEN responses in COVID-19 (Humphries et al., 2021). Application of a STING
inhibitor reduced STING activation, lowering the severe lung inflammation brought on by
SARS-CoV-2 and improving the course of the disease (Chattopadhyay ¢» Hu, 2020; Liu et
al., 2021). In SARS-CoV-2 infected people and mice, activation of cGAS-STING results in
a rise in inflammation and pathogenesis (Liu et al., 2021). STING inhibitors can limit this
response, according to Neufeldt et al. (2022) discovery that SARS-CoV-2 infection activates
the cGAS-STING route, which causes the production of proinflammatory cytokines
mediated by the nuclear factor B (NF-B) pathway (Li et al., 2021). Both Neufeldt et al.
(2022) observation of STING colocalization with SARS-CoV-2 N protein in infected
cells and Rui et al. (2021) observation of interactions between STING and ORF3a suggest
viral proteins have a direct role in modifying the cGAS-STING pathway (Li et al., 2021;
Liu et al., 2022). According to data from an earlier investigation, STING activation is a
potential therapeutic strategy to manage SARS-CoV-2 (Li et al., 2021) (Table 1). Recent
research has demonstrated that STING agonists influence the type I IFN response, which
in turn affects SARS-CoV-2 infection (Chattopadhyay ¢ Hu, 2020; Li et al., 2021) and
utilization of cGAS-STING pathway agonists holds a promise for a vaccine adjuvants (Tian
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etal., 2024). Li et al. (2021) performed high-throughput screening to find antiviral innate
immune agonists to prevent SARS-CoV-2 infection, and they discovered endogenous
STING agonists, cyclic dinucleotides (CDNs), as antiviral drugs against SARS-CoV-2.
Strong small molecule STING agonists, including diABZI, have been exploited because of
limited potency of CDNs and poor drug quality (Liu et al., 2021; Messaoud-Nacer et al.,
2022; Ramanjulu et al., 2018). Li et al. (2021) studied the small chemical STING agonist
diABZI and observed that it can successfully prevent SARS-CoV-2 infection of several
strains by activating IFN signalling. Notably, diABZI can inhibit viral replication in live
mice and primary human bronchial epithelial cells. Consequently, this STING agonist may
be applied as a novel treatment approach to combat COVID-19. Like this, Humphries et al.
(2021) reported a diamidobenzimidazole drug diABZI-4, which stimulates STING and is
particularly effective in limiting SARS-CoV-2 replication in cells and mice. When diABZI-4
was administered intravenously, STING was activated quickly, which helped to temporarily
increase the production of proinflammatory cytokines and activate lung lymphocytes and
inhibit viral replication (Humphries et al., 2021). There are a number of new cGAS-STING
activators, including colloidal manganese salt, CF501, mucoadhesive nanoparticles, and
IAPA (indirect-acting pan-antiviral) agents, which offer fresh perspectives on anti-SARS-
CoV-2 therapy (Jearanaiwitayakul et al., 2022; Kleandrova, Scotti ¢ Speck-Planche, 2021;
Liu et al., 2022; Zhang et al., 2021b). The stability of STING agonists has improved with the
development of the biocompatible peptide, protein, and bio membrane platforms (Zheng ¢
Wi, 2022). Few adjuvants have been approved for use in humans thus far, and the only one
that is often used is one that contains aluminum (Clapp et al., 2011). Nevertheless, it has
been demonstrated that the nanoparticle manganese (nanoMn) adjuvant, also known as
STING agonists, promotes antigen presentation, virus-specific memory T-cell generation,
and host-adaptive immunity, making it the ideal adjuvant for protein-based COVID-19
subunit vaccines (Wu et al., 2021) (Table 2). The nanoMn adjuvant, according to Zhang
et al. (2022) is the most efficient at boosting the immunogenicity or immune responses
of SARS-CoV-2 protein-based subunit vaccines. Additionally, the use of a new STING
agonist, CDGSF, in combination with the SARS-CoV-2 S protein as an adjuvant result
in extraordinarily high antibody titres and a potent T-cell response, outperforming the
drawbacks of adjuvants that contain aluminum (Wu et al., 2021). NanoSTING, used as an
adjuvant for intranasal vaccination with S protein trimeric or monomeric form, evoked
potent serum neutralizing antibodies and T-cell responses (Berthelot ¢ Lioté, 2020). Strong
stimulatory effects on antibody responses in the respiratory tract were seen when the S
protein and cGAMP were administered (Berthelot ¢ Lioté, 2020; Chauveau et al., 2021).
According to the data, STING agonists significantly increased the S protein
immunogenicity (Zhang et al., 2021b). These results highlighted the STING agonist
adjuvant potential in the SARS-CoV-2 vaccination. STING agonists, which instantly
enhance IFNs signalling, can quickly and transiently activate STING (Humphries et al.,
20215 Liet al., 2021). Nevertheless, it is important to prevent the progression of the
illness brought on by excessive inflammation when using STING vaccination adjuvants
that induce long-lasting humoral and cellular immune responses (Liu et al., 2022). As a
result, inhibiting STING activation reduces inflammatory responses and pathogenesis,
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Figure 3 The cGAS-STING signaling pathway in immune responses to SARS-CoV-2 and DNA. SARS-
CoV-2 or endosome-encapsulated DNA, activates cyclic GMP-AMP synthase (cGAS), leading to the pro-
duction of cyclic GMP-AMP (cGAMP). cGAMP binds to the stimulator of interferon genes (STING), trig-
gering a signaling cascade. STING activation recruits and stimulates transcription factors, including IRF3,
NE-xB, and IRF7, resulting in the production of type I interferons (IFNs) and pro-inflammatory cytokines
such as IL-6 and TNF. This pathway is essential in mounting an innate immune response to viral infec-
tions and cytosolic DNA. The figure illustrates STING agonists, including diABZI diacylbenzimidazole),
diABZI-4, CF501, mucoadhesive nanoparticles, SIAPA (stimulator of interferon genes-activating poly-
meric agents), and Mn Jelly (manganese jelly), which enhance antiviral immunity by activating the cGAS-
STING pathway.

Full-size Gl DOI: 10.7717/peerj.19462/fig-3

indicating that STING may be exploited as a therapeutic target to prevent SARS-CoV-2-
related severe illness symptoms. Incorporating STING activation into antibody therapy
for managing SARS-CoV-2 involves designing STING agonist antibodies to enhance
type I interferon response within infected cells, strengthening immunity against the
virus. Neutralizing antibodies could block viral components that hinder the STING
pathway, indirectly promoting STING activation. Combination therapies combining
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Table 1 Potential therapeutic strategies for targeting STING in SARS-CoV-2 infection.

S. No. Name Therapeutic strategy Description References

1.

diABZI

diABZI-4

CF501

Mucoadhesive
nanoparticles

STING agonist

STING agonist

STING agonist

STING agonist

Suppresses SARS-CoV-2
infection

Stimulates STING and is
highly effective in inhibiting
SARS-CoV-2 replication
Vaccine to resist the SARS-
CoV-2 and its variants

The intranasal delivery system
loaded with cGAMP potently

Lietal. (2021)

Humphries et al. (2021)

Liu et al. (2022)

Jearanaiwitayakul et al. (2022)

boost the immunogenicity of
the spike based vaccine in the
respiratory tract

5. IAPA agents Boosts the immune

system through STING,

while blocking essential
inflammation-related proteins

such as caspase-1 and TNF-a

STING agonist Kleandrova, Scotti & Speck-Planche (2021)

6. Mn Jelly (Mn J) STING agonist Mn ] made to serve not only
as an immune enhancer but
also as a delivery system to
activate humoral and cellular

immune response

Zhang et al. (2021d)

Table 2 Potential vaccine adjuvants targeting stimulator of interferon genes (STING) in SARS-CoV-2 infection.

S. No. Name Therapeutic strategy Description References

1 NanoSTING Vaccine adjuvant NanoSTING as the adjuvant for intranasal vaccination of S Lietal (2021)
protein trimeric or monomeric form

2 cGMP-ternary Vaccine adjuvant A novel ternary adjuvant system with alum/STING agonist Liu et al. (2022)

adjuvant 3,3’-cGAMP/poly(I:C)

3 NanoMn Vaccine adjuvant Enhances cellular uptake and sustained release of Mn** in a Sun et al. (2021)
pH-sensitive manner, thereby enhancing IFN response

4 CDG'F Vaccine adjuvant CDG?F as an adjuvant immunisation with SARS-CoV-2 S Wu et al. (2021)

protein

STING-targeting antibodies with antiviral drugs or mAbs could provide a comprehensive.
Engineered antibodies might also bolster broader immune responses, such as T cell
activation, while others could finely modulate STING-triggered inflammation to prevent
excessive reactions. Conjugating antibodies with STING agonists or immune modulators
allow targeted delivery to infected cells, enhancing efficacy and minimizing side effects.
Personalized antibody therapies, adjusted to individual immune profiles, offer potential
for optimized treatment outcomes.
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SARS-COV-2 PROTEINS AND THEIR INNATE IMMUNE
TARGETS

SARS-CoV-2 proteins show varying degrees of target tropism and have diverse functions.
The role of each SARS-CoV-2 protein in innate immune response was mentioned in
details in Table 3 (Minkoff ¢ tenOever, 2023). SARS-CoV-2 proteins nsp-6 and nsp-13
bind TANK binding kinase-1 (TBK-1), leading to inhibition of IRF-3 phosphorylation
and subsequent reduction in IFN-beta production. Nuclear translocation of IRF-3 is also
abrogated by binding of ORF-6 to importin karyopherin alpha-2 (Lei et al., 2020; Schreiber,
2020) eventually leading to downregulation of type-1 IFN secretion. The abrogation of
IRF-3 nuclear translocation and downregulation of type-1 IFN expression can also be
from the antagonistic nature of viral proteins ORF3b or due to M protein-dependent
ubiquitin-mediated degradation of TBK1 (Konno et al., 2020; Sui et al., 2021). NF-kB and
IFN-beta pathway activation is inhibited by ORF6, ORF8, and N proteins of SARS-CoV-2.
Moreover, ORF6, ORF8, and nsp-1 abandon the ISRE-driven transcription of ISGs (Li et
al., 2020). Researchers identified interactions between ISGs and TLR3 agonists, including
poly I:C and imiquimod. This discovery suggests a potential for drug repurposing in the
realm of COVID-19, proposing TLR3 agonists as promising candidates for therapeutic
exploration. ISGs, such as IFIT and IFITM, ISG15, IFIH1, MXI1, IRF7, OAS 1-3, and
STAT1 are recognized for enhancing IEN signaling, thereby contributing to antiviral
activity, emerge as potential candidates for drug targets in COVID-19 treatment (Prasad et
al., 2020). Some other proteins involved in the downregulation of type-1 IFN expression
are ORF-96, nsp13, nsp-1, and M proteins, and the target of these viral proteins are
RIG-1/MDA-5/MAVS signaling cascade (Jiang et al., 2020; Ricci et al., 2021).

The phosphorylation of STAT-1 and STAT-3 is inhibited by SARS-CoV-2 viral proteins
including nsp-6, nsp-13, ORF-39, and ORF-7b, so these proteins have an antagonistic
impact on the type-1 IFN signaling pathway (Li et al., 2020). In addition, the prevention of
STAT phosphorylation and their nuclear translocation is suppressed by other SARS-CoV2
proteins like N, ORF-6, and M proteins (Fig. 4) (Ricci et al., 2021; Schultze ¢ Aschenbrenner,
2021). A study shows that patients with inborn errors in TLR-3 and IRF-3 dependent type-1
IFN immune response presented with severe SARS-CoV-2 infection, concluding the vital
role of type-1 IFN in combating the viral infection (Zhang et al., 2020b). In another study,
3.5% of patients with autosomal recessive deficiencies in IRF-7 and IFNAR1 genes and
autosomal dominant deficiencies in genes encoding TLR-3, unc-93 homolog B1, TLR
adaptor molecule 1, TBK1, IRF-3, IRF-7, IFNAR1, and IFNAR?2 showed severe COVID-19
pneumonia (Gao et al., 2020). The role of type-1 IFN is demonstrated by a study where the
anti- typel IFN autoantibodies have been observed in severe COVID-19 infections (Bastard
et al., 2020). The nonstructural protein 16 (nsp16) derived from SARS-CoV-2 diminishes
the splicing of overall mRNA and hinders the identification of viral RNA by intracellular
helicase receptors. Additionally, nsp-1 disrupts mRNA translation by attaching to 18s
ribosomal RNA within the mRNA entry channel, while both NSP-8 and NSP-9 impede
protein trafficking to the cell membrane. These three distinct mechanisms collectively exert
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Table 3 SARS-CoV-2 proteins as innate immune targets.

SARS-CoV-2 proteins,
(amino acid length)

Role in innate immunity

References

Structural proteins
Spike (S), (1273 aa)

Membrane (M) (222 aa)

Nucleocapsid (N) (419 aa)

Non-structural proteins
Nspl (180 aa)

Nsp3 (PLpro) (1945 aa)

Enhances the proteasomal degradation of
IRF3 and disrupts host sensor recognition,
block IFN signalling by blocking the
interaction between STAT1 and JAK1,
activates NF-kB via promoting the
phosphorylation of p65 and IxBo

Blocks host sensor recognition, Inhibits
MAVS activation by disrupting its capacity
to form essential large aggregates for the
recruitment of signalling adaptors, decreases
TBK1 expression through ubiquitin-
mediated degradation, obstructs nuclear
transport by binding to KPNA6 importin,
thereby preventing its interaction with IRF3.

Mask inflammatory RNA, achieves this

by binding to and destabilizing dsRNA,
Possesses inherent RNA-binding properties
due to its involvement in virion assembly,
blocks host sensor recognition achieved by
preventing the formation of stress granules
through binding and sequestering the G3BP1
nucleating protein, hinders the interaction
between RIG-I and TRIM25 by binding to
the DExD/H box RNA helicase domain of
RIG-I, inhibits the polyubiquitination and
aggregation of MAVS, potentially through
liquid-liquid phase separation (LLPS).

Inhibits host sensor recognition by
preventing IRF3 phosphorylation, Suppresses
IFN signaling pathways by reduces TYK2 and
STAT?2 levels, impairs nuclear transport by
interacting with the mRNA export receptor
heterodimer NXF1-NXT1, halts translation
processes, facilitates the degradation of
cellular mRNA that lacks the 5 viral leader
sequence, obstructs mRNA entry into the
ribosome by binding to specific domains
within the C terminus

Masks inflammatory RNA that essential
for the creation of ER-associated DMVs,
prevents detection by host sensors, cleaves
IRF3 thereby disrupting its function,
compromises the functionality of host
proteins, macrodomain-X interacts

with amino acid chains, hydrolyzing the
ADP-ribose bond, PLpro domain
deubiquitinates and deISGylates host
signaling protein substrates.

Freitas, Crum & Parvatiyar
(2021), Olajide et al. (2022),
Zhang et al. (2021d)

Fu et al. (2021), Sui et al.
(2021), Zhang et al. (2021d)

Caruso et al. (2021), Chen

et al. (2020c), Cubuk et al.
(2021), Gori Savellini et al.
(2021), Lu et al. (2021a),
Wang et al. (2021a), Zheng et
al. (2022)

Banerjee et al. (2020), Finkel
et al. (2021); Kumar et al.
(2021b), Lapointe et al. (2021),
Schubert et al. (2020), Thoms
et al. (2020), Yuan et al.
(2020), Zhang et al. (2021e)

Alhammad et al. (2021), Frick
etal. (2020), Klemm et al.
(2020), Liu et al. (2021a),
Michalska et al. (2020), Mous-
taqil et al. (2021), Ricciardi et
al. (2022), Shin et al. (2020)

(continued on next page)
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Table 3 (continued)

SARS-CoV-2 proteins,
(amino acid length)

Role in innate immunity

References

Nsp4 (500 aa)

Nsp5 (3CLpro) (306 aa)

Nsp6 (290 aa)

Nsp8 (198 aa)

Nsp9 (198 aa)

Nspl0 (139 aa)

Nsp12 (RdRp) (932 aa)

Nsp13 (helicase) (596 aa)

Diminishes the presence of inflammatory
RNA that essential for the creation of
endoplasmic reticulum-associated
double-membrane vesicles (ER-associated
DMVs)

Blocks host sensor recognition, hampers

the assembly of stress granules, cleave the
N-terminal domain of RIG-I and

hindering its interaction with MAVS,
encourages the ubiquitination and
subsequent degradation of MAVS, cleaves
IRF3 thus impeding its function, blocks the
nuclear translocation of IRF3, prevents the
phosphorylation and activation of NF-kB by
cleaving TAB1 and NEMO

Minimizes or blocks inflammatory RNA

by attaches DM Vs to the ER, hinders host
sensor recognition by binding to TBK1,
preventing its activation through
phosphorylation, Impedes IFN signaling
pathways, suppresses the phosphorylation of
STAT1 and STAT2

Halts translation process via attaches to the
7SL RNA scaffold element within the SRP
complex

Disrupts nuclear transport via reduced
expression of Nup62 on the nuclear envelope,
halts translation, associates with the 7SL
RNA scaffold element of the SRP complex,
obstructing its capacity to bind SRP19, which
is crucial for the correct folding and assembly
of SRP

Reduces or conceals inflammatory RNA,
functions as a co-factor alongside Nsp14
and Nsp16 in viral capping, disrupts the
translation process, amplifies Nsp14-
mediated translational inhibition

Minimizes inflammatory RNA, serves as

a guanylyl transferase in the process of

viral mRNA capping, blocks host sensor
recognition, hinders the nuclear translocation
of IRF3

Diminishes inflammatory RNA, exhibits

5" RNA triphosphatase activity during

viral mRNA capping, disrupts host sensor
recognition via binding to TBK1

and inhibiting its activation through
phosphorylation blocks IFN signalling,
leading to a decrease in endogenous IFNAR1
levels, prevent phosphorylation of STAT1
and STAT2.

Ricciardi et al. (2022)

Chen et al. (2022), Fung et

al. (2021), Liu et al. (2021b),
Moustagil et al. (2021), Zhang
etal. (2021c), Zheng et al.
(2022)

Ricciardi et al. (2022), Xia et
al. (2020)

Banerjee et al. (2020)

Banerjee et al. (2020), Gordon
etal. (2020)

Hsu et al. (2021), Krafcikova et
al. (2020), Silva et al. (2021),
Wilamowski et al. (2021),
Yang et al. (2021)

Walker et al. (2021), Wang et
al. (2021b), Yan et al. (2021)

Fung et al. (2022), Hayn et al.
(2021), Vazquez et al. (2021),
Walker et al. (2021), Xia et al.
(2020)

(continued on next page)
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Table 3 (continued)

SARS-CoV-2 proteins,
(amino acid length)

Role in innate immunity

References

Nspl4 (Exon) (527 aa)

Nspl5 (346 aa)

Nspl6 (298 aa)

ORF3a (275 aa)
ORF3b/3d (154 aa)

ORF6 (61 aa)

ORF7a 121 aa)

ORF7b (44 aa)

ORFS8 (121 aa)

Minimizes inflammatory RNA, performs
N7-methyltransferase activity as part of vi-
ral mRNA capping, block IEN signalling, di-
rects [FNARI1 towards lysosomal degradation,
activates NF-kB, leading to enhanced nuclear
translocation of p65 and the upregulation of
pro-inflammatory chemokines such as IL-6
and IL-8

Mask inflammatory RNA, utilizes
endoribonuclease activity to cleave 5'-
polyuridines from the negative strand of
viral RNAs thus decreasing the accumulation
of viral PAMPs, blocks nuclear transport,
engages with the host’s nuclear transport
machinery specifically interacting with
nuclear transport factor 2.

Minimizes inflammatory RNA, demonstrates
2'-O-methyltransferase activity as part of
viral mRNA capping, halts translation via
attaches to the mRNA recognition domains
found in snRNA Ul and U2 subunits of the
spliceosome.

Blocks IFN signalling via preventing
phosphorylation of STAT1

Blocks recognition by host sensors via
preventing nuclear translocation of IRF3

Blocks nuclear transport by binding to
karyopherin-02 (KPNA2) importin, attaches
to the Nup98-Rael complex and preventing
their interaction with the nuclear pore
complex (NPC), facilitates the nuclear
accumulation of host mRNAs and mRNA
transporters

Blocks host sensor recognition by lowers
TBK1 expression, blocks IFN signalling by
preventing the phosphorylation of STAT1
and STAT2.

Prevents host sensor recognition, disrupts
RIG-I and MDAS5 signalling through a
MAVS-dependent mechanism, blocks IFN
signalling by inhibiting the phosphorylation
of STAT1 and STAT2.

Induces NF-xB activation, acts as a

viral mimic of IL-17A, prompting the
heterodimerization of the human IL-17
receptor and subsequent activation of NF-xB
downstream pathways.

Hayn et al. (2021), Hsu et al.
(2021)

Frazier et al. (2021), Gordon et
al. (2020)

Wilamowski et al. (2021),
Banerjee et al. (2020)

Xia et al. (2020)
Olajide et al. (2022)

Addetia et al. (2021), Gor-

don et al. (2020), Gori Savel-
lini et al. (2022), Kato et al.
(2021), Kawai & Akira (2009),
Kimura et al. (2021), Miorin et
al. (2020), Xia et al. (2020)

Kouwaki et al. (2021), Xia et
al. (2020)

Kouwaki et al. (2021),
Shemesh et al. (2021), Xia et
al. (2020)

Wu et al. (2022)

(continued on next page)
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Table 3 (continued)

SARS-CoV-2 proteins,
(amino acid length)

Role in innate immunity References

ORF9D (97 aa)

Blocks host sensor recognition, hinders the Brandherm et al. (2021), Gao
interaction between RIG-I and MAVS, etal. (2021), Han et al. (2021),
attaches to TOM?70, disrupting the Jiang et al. (2020); Kouwaki et
TOM70/HSP90 interaction, interfering al. (2021)

with TBK1/IRF3 signalling, blocks TBK1

phosphorylation by preventing the

interaction between TBK1 and TRIF.

Infected cell (KB ORF6 \spis

> @
( ey @ ORF3a
RIGT o L aYa
MDAS @ o @ N )
L INFNAR1| || |INFAR2
oy MAvs  NSP8 (Tvi2 (sak1)
NSP9 :
ORF9b | STATD)

= Protein | (STAT1)
7| TOMM70 trafficking

) - |Nnsp1— GTAT (STAT2)

NSP13
, Uninfected
Translation cell
IRF9

ey ke (T ; we
IKKa llﬁﬁ - l (o STAT1/STAT2)

- — ORF6 ——
(p65) (p50 (IRF7) (IRES)

l l L ISG
Type ‘
TNF " IRF9
IRF7 [ IRF3 / s
p65) ps0 F r1 L1 B STAT1 (STAT2
Splicing
-~ < e S

S S
Inflammatory response

Antiviral State
Response to Viruses

Figure 4 Depiction of the innate immune signalling pathway, focusing on RIG-I/MDA-5/MAVS and
their inhibition by SARS-CoV-2 proteins. The pathway begins with the recognition of viral double-
stranded RNA (dsRNA) by RIG-I-like receptors, including RIG-I and MDA-5, triggering a cascade of
immune responses. Activation of MAVS (mitochondrial antiviral signalling protein) leads to downstream
signalling involving MyD88, IRAK1/4, and NAP1, resulting in the activation of transcription factors
such as IRF3, IRF7, IRF9, and NF-xB subunits (p50/65). This activation promotes the production of
interferons (via IFNAR1 signalling) and interferon-stimulated genes (ISGs), critical for antiviral responses.
The figure also highlights SARS-CoV-2 protein inhibitors, including non-structural proteins (NSPs) and
open reading frames (ORFs), which interfere with various signalling components, such as MAVS and
IRF pathways, to suppress immune activation. Additionally, key molecules like angiotensin-converting
enzyme 2 (ACE2), neuropilin 1 (NRP1), and receptor-interacting serine/threonine kinase 1 (IkB) kinases
(IKKa/p/y/e) are illustrated, emphasizing their roles in the pathway.

Full-size Gl DOI: 10.7717/peer;j.19462/fig-4

detrimental effects on the production of type-1 interferon by the infected cells (Banerjee et
al., 2020).

Addressing deficiencies in immune genes through therapeutic antibodies offers potential

for patients with autosomal recessive or dominant deficiencies in vital genes like IRF-7,
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IFNARI1, TLR-3. The identification of IFIT1, IFITM1, IRF7, ISG15, MX1, and OAS2 as
pivotal components suggested their viability as potential drug targets for COVID-19 (Prasad
et al., 2020). Similarly, targeting anti-type 1 IFN autoantibodies via antibody therapy can
restore natural defenses, aiding controlling severe COVID-19. Counteracting inhibitory
viral proteins (nsp16, nsp-1, NSP-8, NSP-9) through antibody design could restore
effective type-1 IFN production by impeding their interaction with cellular components
(Beyer ¢ Forero, 2022). Engineering antibodies to enhance type-1 IFN production by
targeting specific cellular factors presents a strategy for boosting antiviral immunity. Given
the complexities, combining antibodies targeting distinct aspects of immune response,
viral inhibition, and IFN production could offer a comprehensive treatment approach.
Moreover, personalized antibody therapies tailored to individual genetic, immunological
variations, and viral interactions could optimize specificity and efficacy in managing severe
cases.

MONOCLONAL ANTIBODIES AND INNATE IMMUNE
TARGETS

Monoclonal antibodies (mAbs) have shown promising results for the effective management
of COVID-19. These laboratory-engineered antibodies are designed to mimic the natural
immune system response to infections. In the early COVID-19 pandemic, IgG mAbs
directed against the spike protein of SARS-CoV-2, as single or in the form of mAb cocktails
garnered substantial attention as a effective therapeutic solution for COVID-19 (Focosi et
al., 2022). The Coronavirus Antibody Database (CoV-Ab Dab), managed by the University
of Oxford, is a comprehensive repository containing 12,916 antibodies and nanobodies
(as of the latest update on February 8, 2024) specifically designed to target SARS-CoV,
MERS-CoV, and SARS-CoV-2 (Raybould et al., 2021). mAbs have also emerged as a
promising class of therapeutics for targeting the innate immune response. These antibodies
were developed with the goal of reducing the aberrant immune response observed in severe
COVID-19 cases and target innate immune system components. These mAbs can block key
pro-inflammatory cytokines such as IL-6 and TNF-a and several others, thereby weakening
the cytokine storm associated with disease severity (Abbasifard & Khorramdelazad, 2020).
Additionally, some mAbs directly target viral components, preventing the virus from
evading innate immune detection and mounting a robust response (Znaidia et al., 2022).
Several mAbs that may act upon the innate immune response are highlighted in Table 4. A
recent study by Sele et al. (2024) highlight the pivotal role of SARS-CoV-2 non-structural
protein 10 (nsp10) in enhancing the enzymatic activities of nsp14 and nsp16, crucial
for the virus evasion of innate immunity. The research emphasizes the importance of
the C-terminal region of nsp10 in its interaction with nsp14, highlighting the necessity
of both N- and C-termini for optimal binding. Targeting these sites with mAbs could
offer a promising strategy for combating SARS-CoV-2. The research and development
of mAbs for COVID-19 should continue to evolve and explore as novel therapeutics. A
deeper understanding of mAbs for fine-tuning the innate immune response can lead to the
development of tailored therapeutics against SARS-CoV-2 and future variants.
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Table 4 Monoclonal antibodies as therapeutic agents against SARS-CoV-2, their targets, and outcomes.

S.No Monoclonal antibody Target Outcomes References
1. Tocilizumab, sarilumab Antagonist to the IL-6 re- Reduce the cytokine storm Salama et al. (2021); Scias-
ceptor cia et al. (2020)
2. Acalabrutinib, Ibrutinib, Bruton’s tyrosine kinase Under clinical trial Roschewski et al. (2020)
Acalabrutinib (BTK) inhibitor- impact on
the signalling of TLRs, IL-
1R, CD19, BCR, CXCR4,
and Fcy-R1
3. Anakinra, Gevokizumab, Recombinant form antago- Minimizes hospitalization Cavalli et al. (2020), Free-
Canakinumab nist of the IL-1 receptor and death rate man & Swartz (2020), Ger-
anurimi et al. (2019), Huet
et al. (2020), Zheng et al.
(2019)
4. Infliximab, adalimumab, Anti-TNF-alpha antibody Reduce the cytokine storm Keewan, Beg & Naser
certolizumab pegol (2021), Valizadeh et al.
(2020)
5. Lenzilumab, Gimsilumab, Anti-GM-CSF monoclonal Reduce the cytokine storm Bonaventura et al. (2020)
Namilumab antibody
6. Sargramostim, Meptazinol GM-CSF Partial opioid ag- Reduce the cytokine storm Bonaventura et al. (2020),
onist Lazarus & Gale (2021), Mi-
haescu et al. (2021)
7. MSC-derived exosomes MSC-based therapy Recruiting (under trail) Golchin, Seyedjafari ¢
(MSC-Exo0) Ardeshirylajimi (2020), Mi-
haescu et al. (2021)
8. Baricitinib Inhibitor of Janus kinase Modulate the immune re- Jorgensen et al. (2020), Kalil
(JAK) sponse and reduce inflam- etal. (2021)
mation
9. Emapalumab Targets interferon-gamma Reduce the cytokine storm Cure, Kucuk & Cure (2021)
(IFN-gamma)
10. Clazakizumab Targets IL-6 Reduce the cytokine storm Lonze et al. (2022), Vaidya
et al. (2020)
11. Itolizumab Targets CD6 T-cell activation, modu- Diaz et al. (2020), Saavedra
lates the immune response etal. (2020)
and reduces inflammation
12. Leronlimab (PRO160) Target C-C chemokine re- Reduce the cytokine storm Agresti et al. (2021)
ceptor type 5 (CCR5).
13. Anifrolumab Targets the type I inter- Modulating the immune De Luca et al. (2020),
feron receptor response and in managing Pourhoseingholi, Shojaee &
cytokine storm Ashtari (2020)
14. Mavrilimumab Targets granulocyte- Anti-inflammatory effects, De Luca et al. (2020),
macrophage colony- reduce the cytokine storm Pourhoseingholi, Shojaee &
stimulating factor receptor Ashtari (2020)
alpha (GM-CSFRa)
15. Camrelizumab Targets programmed cell Immunomodulatory effects Amin]Jafari & Ghasemi

death protein 1 (PD-1)

(2020), Zhang et al. (2020c)

Challenges of mAbs as therapeutics
SARS-CoV-2 undergoes rapid evolution and introduces certain mutations to its genome

that may diminish the efficacy of antibody binding. Booster doses or novel formulations

may be necessary in such cases. Production of monoclonal antibodies is a complex
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process that requires costly biotechnological facilities thus elevated costs and reducing
accessibility, particularly in low- and middle-income countries. Therapeutic antibodies
exhibit optimal efficacy when administered at the initial stages of infection. In severe
cases, hyperinflammatory responses such as cytokine storm may reduce its effectiveness.
Most antibody therapies require intravenous injections within a healthcare facility, thereby
constraining swift implementation of mAbs therapeutics. mAbs storage and transportation
require strict cold-chain conditions, which introduce logistical challenges. mAbs treatment
may pose risk of antibody-dependent enhancement (ADE) in rare instances and may
facilitate viral infection instead of neutralizing it. Additionally, obtaining regulatory
approval for novel antibodies requires significant time and resources. Researchers now a
days are developing broad-spectrum antibodies, combination therapies, and long-acting
monoclonal antibodies to improve efficacy and accessibility in response to the challenges
posed.

CONCLUSION AND PROSPECTS

The innate immune response is the host first line of defense for viral infection including
SARS-CoV-2. A comprehensive study of this response in SARS-CoV-2 is crucial for
developing effective strategies against SARS-CoV-2 variants. This knowledge will aid
scientists and innovators in designing novel antibodies, enhancing preparedness for future
outbreaks. Utilizing mAbs to rectify innate immune responses and counteract inhibitory
viral proteins like nsp16, nsp-1, nsp-8, and nsp-9 offers innovative strategies to bolster
anti-SARS-CoV-2 immunity and can be neutralized via the strategic design of antibodies
that disrupt their interactions. Targeting anti-type 1 interferon (IFN) autoantibodies in
severe cases allows for the restoration of the body natural defences, providing a tailored
approach to control viral replication. The strategic design of antibodies not only neutralizes
the inhibitory impact of viral proteins but also opens avenues for engineering antibodies
capable of enhancing type-1 IFN production. This dual functionality contributes to a robust
antiviral defence’s mechanism. Considering the intricacies involved, a comprehensive
strategy involving combination therapies, tailored to individual profiles, emerges as

a promising frontier for treatment precision. Additionally, rectifying immune gene
deficiencies such as IRF-7, IFNARI, and TLR-3 can be accomplished by employing
therapeutic antibodies as substitutes. Moreover, the integration of these approaches with
the unique recognition capability of RIG-1, triggering interferon production in response
to specific viral RNA structures, holds considerable promise for advancing targeted and
efficient antibody-based therapies against COVID-19 disease. Understanding innate
immune response and targeted therapy in the form of mAbs will be instrumental in
addressing future outbreaks.
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