Efficacy of high-frequency sonic irrigation on removing debris from root canal isthmus: an in vitro study based on simulated root canals (#108216)

1

First submission

Guidance from your Editor

Please submit by 16 Jan 2025 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files materials page.

from the 5 Figure file(s)

3 Table file(s)

1 Raw data file(s)

3 Other file(s)

For assistance email peer.review@peerj.com

Structure and Criteria

2

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor

	ou can also annotate this PDF and upload it as w When ready submit online.	part of	your	
Use t	torial Criteria hese criteria points to structure your review. T ance page.	he full	detailed editorial cr	iteria is on your
BASI	C REPORTING	EXPE	RIMENTAL DESIGN	ı
O	Clear, unambiguous, professional within Scope of language used		EnglishOriginal pri throughout.the jou	•
O	Intro & background to show defined, relevant Literature well referenced how the Structure conforms to Peerl standard	s, rese	context.Research (& relevant.& mear arch fills an identific	ningful. It is stated
	discipline norm, or improved for clarity. es are relevant, high quality, wellhigh technica Raw data supplied (see Peerl policy).	_	rous investigation p iical standard. information replicate.	to labelled & described. Methods
VALI &	DITY OF THE FINDINGS			described with sufficient detail
•	Impact and novelty is not stated, linked to Meaningful replication tion & limited to rationale & benefit to literature. All underlying data have been provided;	ence	essed. Conclusions ouraged whereorigi early supporting resi	
contr	they are robust, statistically sound, & olled.			

The best reviewers use these techniques

Standout reviewing tips

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript improved in the following ways: AA,

Improved in the following ways: AA BB, CC

I commend the authors for their extensive data set, compiled over

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue

2. The next most important item

3. ..

4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should he

many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Eûcacy of high-frequency sonic irrigation on removing debris from root canal isthmus: an in vitro study based on simulated root canals

Chunhui Liu Equal first author, 1, Qiang Li Equal first author, 2, Xiao-Ying Zou Corresp., 3, Lin Yue Corresp. 4

- 1 First Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Bei, Beijing, China
- Department of Oral Emergency, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China Center of Stomatology, Peking University Hospital, Beijing, China, Beijing, China
- ⁴ Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology o, Beijing, China Corresponding Authors: Xiao-Ying Zou, Lin Yue Email address: zouxiaoying1125@163.com, kqlinyue@bjmu.edu.cn

Background. Infection control is important in root canal treatment. Eûective cleaning and shaping are challenging due to complex anatomy, particularly in the isthmus4narrow connections between canals that can harbor bacteria. Conventional needle irrigation (CNI) is inadequate in this region, prompting the use of passive ultrasonic irrigation (PUI) and high-frequency acoustic instruments like EDDY. This study evaluates the cleaning eûects of four irrigation protocols using 3D-printed isthmus models. Methods. Sixty digital root canal models with isthmuses in the crown, middle, and apical thirds were designed using Ansys 19.0 and 3D printer (20 specimens per isthmus location). Specimens were prepared to 30#, 0.04 without irrigation. Debris accumulation in the isthmus was photographed and analyzed using Image J to calculate the initial debris area (S1). Specimens were then irrigated using CNI, low-frequency sonic irrigation (EndoActivator, EA,Dentsply, Charlotte, NC, USA), PUI, or highfrequency sonic irrigation (EDDY), followed by re-imaging to calculate remaining debris area (S2). Debris reduction percentage was determined using the formula: $(S1-S2)/S1 \times 100\%$. **Results.** Debris reduction varied with isthmus position. In the crown third, EDDY achieved the highest debris reduction (86.18±2.25%), followed by PUI, EA, and CNI, with significant differences among groups (P<0.05). The same trend was observed in the middle third, with EDDY

4

6

showing the highest eûcacy (73.96±6.75%). In the apical third, debris reduction was lower overall, with no signiûcant diûerence between EDDY and PUI, but both outperformed EA and CNI. **Discussion.** Our results showed that EDDY demonstrated superior debris removal in the crown and middle thirds, but all irrigation protocols showed limited eûcacy in the apical third.

- Efficacy of high-frequency sonic irrigation on
- removing debris from root canal isthmus: an in vitro
- 3 study based on simulated root canals
- 5 Chun-Hui LIU¹ÿ, Qiang LI²ÿ, Xiao-Ying ZOU³, Lin YUE⁴
- 7 First Clinical Division, Peking University School and Hospital of Stomatology & National
- 8 Center of Stomatology & National Clinical Research Center for Oral Diseases & National
- 9 Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key
- 10 Laboratory of Digital Stomatology & Research Center of Engineering and Technology for
- 11 Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, 12 Beijing, China
- 13 ² Department of Oral Emergency, Peking University School and Hospital of Stomatology &
- 14 National Center of Stomatology & National Clinical Research Center for Oral Diseases &
- 15 National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing
- Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for
 Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental
 Materials, 18 Beijing, China
- 19 ³ Center of Stomatology, Peking University Hospital, Beijing, China
- 20 ⁴ Department of Cariology and Endodontology, Peking University School and Hospital
- 21 of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral
- 22 Diseases & National Engineering Laboratory for Digital and Material Technology of
- 23 Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of
- 24 Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key
- 25 Laboratory for Dental Materials, Beijing, China
- 27 ÿThese two authors contributed equally to this study.
- 28 Corresponding Author:
- 29 Xiao-Ying ZOU³
- 30 Beijing, China
- 31 E-mail address: zouxiaoying1125@163.com
- 32 Lin YUE⁴

26

Beijing, China.

Manuscript to be reviewed

34	F-mail address: kqlinyue@bjmu.edu.cn
35	
36	
37	
38	Abstract
39	Background. Infection control is important in root canal treatment. Effective cleaning and
40	shaping are challenging due to complex anatomy, particularly in the isthmus narrow
41	connections between canals that can harbor bacteria. Conventional needle irrigation (CNI) is
42	inadequate in this region, prompting the use of passive ultrasonic irrigation (PUI) and high43
	frequency acoustic instruments like EDDY. This study evaluates the cleaning effects of four 44
	irrigation protocols using 3D-printed isthmus models.
45	Methods. Sixty digital root canal models with isthmuses in the crown, middle, and apical thirds
46	were designed using Ansys 19.0 and 3D printer (20 specimens per isthmus location). Specimens
47	were prepared to 30#, 0.04 without irrigation. Debris accumulation in the isthmus was
48	photographed and analyzed using Image J to calculate the initial debris area (S1). Specimens
49	were then irrigated using CNI, low-frequency sonic irrigation (EndoActivator, EA, Dentsply,
50	Charlotte, NC, USA), PUI, or high-frequency sonic irrigation (EDDY), followed by re-imaging
51	to calculate remaining debris area (S2). Debris reduction percentage was determined using the 52
	formula: (S1-S2)/S1 100%.
53	Results. Debris reduction varied with isthmus position. In the crown third, EDDY achieved the
54	highest debris reduction (86.18-2.25%), followed by PUI, EA, and CNI, with significant
55	differences among groups (P<0.05). The same trend was observed in the middle third, with
56	EDDY showing the highest efficacy (73.96–6.75%). In the apical third, debris reduction was 57
	lower overall, with no significant difference between EDDY and PUI, but both outperformed
	EA
58	and CNI.
59	Discussion Our results showed that FDDY demonstrated superior debris removal in the crown

Z komentarzem [us1]: The introduction does not state the null hypothesis.

Introduction

61

63

65

66 67

68

69

70

71

62

Infection control is an essential goal of root canal treatment in order to prevent or cure apical periodontitis caused by a polymicrobial infection of the root canal (Ricucci et al., 2018). During the infection control procedure, chemo-mechanical cleaning and shaping of the root canal system plays an important role in thoroughly eliminating the infection. Due to the complex anatomy of the root canal system and diversity of root canal infection, the current method of debris removal in complex anatomical structures is inadequate. The isthmus is a common complex anatomical structure in the root canal system of maxillary premolars and first mandibular molars, a narrow banded communication between two root canals (Vertucci, 2005), and usually contains dental pulp tissue (Weller et al., 1995), which can be found in molars using Micro-CT with a percentage up to 75.4% (Yin et al., 2021). Bacteria can infiltrate the isthmus and form a biofilm

and middle thirds, but all irrigation protocols showed limited efficacy in the apical third.

PeerJ reviewing PDF | (2024:10:108216:0:1:NEW 15 Dec 2024)

113

Manuscript to be reviewed

(Villalta-Briones et al., 2021). However, the narrow width and irregular shape of the isthmus 73 74 prevent direct contact with files (Kim et al., 2016). Moreover, the substantial debris caused by 75 mechanical preparation may accumulate in the isthmus, shielding the underlying biofilm from exposure to irrigants (Paque et al., 2011). Furthermore, root canal filling is unable to fully 76 obturate the isthmic space (Yu et al., 2024). All these factors allow bacteria to survive and pose a 77 hidden risk that can potentially lead to the failure of root canal treatment in infected root canal 79 systems (Kim et al., 2016). Many root canal irrigation methods were applied in order to remove smear layer and dentine 80 debris that occur following instrumentation of the root canal (Baugh & Wallace, 2005). 81 Conventional syringe irrigation was one of the most widely-used irrigation methods. Because of 82 the vapor lock phenomenon in the apical third of a root canal (Blanken et al., 2009), it is difficult 83 to achieve ideal infection debridement in the apical region by conventional syringe irrigation 84 alone. The unsatisfactory irrigation efficacy of conventional syringe irrigation in root canal has 85 been reported by many studies (Chen et al., 2016, Rajamanickam et al., 2022, Vatanpour et al., 86 2022). Johnson et al. (2012) pointed out that the debridement efficacy of isthmus by 88 conventional syringe irrigation in the apical one third should be further strengthened. 89 Passive ultrasonic irrigation (PUI) has been recommended for its better irrigation efficacy 90 because of the ultrasonically activated files with high frequency between 25,000 Hz and 40,000 Hz (Plotino et al., 2007). PUI transfers energy through the vibration of the ultrasonic file in 91 92 liquid and utilizes significant acoustic streaming and cavitation effect to achieve debridement 93 (Gu et al., 2009). Malentacca et al. (2018) reported that PUI may help to remove the artificial pulp tissue from the isthmus of a transparent tooth model. However, none of the protocols of 95 94 different irrigation methods including PUI were able to completely remove all the debris in the isthmus (de Mattos de Araujo et al., 2022). 97 The sonically driven EndoActivator (EA) canal irrigation system (Dentsply, York, PA, USA) 98 uses disposable flexible polymer tips of different sizes. The activator tips can be operated at 2,000-10,000 cycles/min without damaging the root dentin. Compared with the uncurved file of 100 PUI, EA can enter the middle and lower segments of the root canal, breaking the apical vapor 101 lock. In shaped canals, some related results showed no statistically significant difference in canal 102 cleanliness between EA and PUI (Klyn et al., 2010). 103 The high frequency acoustic irrigation instrument EDDY tip was flexible, made of a smooth polymer, and oscillates at 6,000Hz by means of a sonic scaler. It was found that EDDY tips had 104 105 the ability to enter the middle and lower segments of the root canal, break the apical block, 106 effectively remove the dentin debris from the apical third of root canals, and adapt well to the initial shape of root canals (Zeng et al., 2018). After mechanical preparation, the high-frequency 107 108 acoustic irrigation instrument EDDY was used with a combination of irrigants to achieve 109 effective contact with the root canal wall, with the help of a large amplitude generated by 110 acoustic vibration that can promote the irrigation of the isthmus and other irregular areas of the 111 root canal system. Urban et al. (2017) demonstrated that high-frequency acoustic irrigation can 112 achieve root canal cleaning effects comparable to ultrasonic irrigation in single-rooted

mandibular premolars. Using scanning electron microscopy, it was found that the abilities of

Manuscript to be reviewed

- acoustic irrigation and ultrasonic irrigation of debris and smear layer removal in root canals were 114 similar, and were both superior to low frequency acoustic irrigation (EndoActivator) and 116 conventional needle irrigation. Linden et al. (2020) compared the volume changes of debris in the isthmus space in the mesial root canal system of extracted mandibular molars before and 117 after root canal irrigation using Micro-CT scanning. The results showed that the ability of EDDY 118 was not superior to that of conventional needle irrigation, but was weaker than that of ultrasonic 119 120 irrigation on debris removal in the isthmus space. This study appears to indicate that EDDY has 121 limitations in cleaning the isthmus. EDDY tips, with their greater taper, increase contact with root canal walls and may affect its free movement. However, EDDY may have greater efficiency than EndoActivator in removing dentin debris from the simulated isthmus (Plotino et al., 123 2023). 124 As a special and representative complex anatomical structure, the isthmus represents a considerable challenge for root canal disinfection. The thorough cleanliness of the isthmus could 125
- 126 significantly enhance the effectiveness of root canal disinfection. Ultrasonic irrigation and
- 127 acoustic irrigation may have relevant potential abilities in isthmus cleaning. However, an
- 128 assessment of the different ultrasonically activated devices and acoustic irrigation and their
- 129 cleaning abilities in the isthmus is still lacking. Therefore, the objective of this study was to
- 130 evaluate the cleaning effects of four different irrigation protocols (CNI, PUI, EA, and EDDY) on
- the isthmus. A new realistic 3D-printed isthmus model based on the Micro-CT parameters of the maxillary first premolars was applied for irrigation and images under microscope were taken to 133 compare the debris removal abilities.

134 135

Materials & Methods

136 Construction of isthmus models

- 137 A digital model was constructed using ANSYS 19.0 finite element analysis software (ANSYS,
- 138 Pittsburgh, PA, USA). The geometric shape of the main root canal model was a truncated cone
- with a height of 15 mm, and the apical foramen diameter was set at 0.15 mm (size 15#). The
- apical foramen was closed (Johnson et al., 2012) and the root canal taper was 0.02. The isthmus
 model parameters utilized in this study, specifically a height of 3 mm (Swimberghe et al.,
 2019;
- 142 Park et al., 2023) and a width of 0.15 mm (Swimberghe et al., 2019), were derived from isthmus
- models previously constructed in earlier studies. Isthmus models were designed at the coronal 144 1/3, middle 1/3, and apical 1/3 of the root, with their upper surfaces positioned at distances of 2 145 mm, 5 mm, and 8 mm from the root canal orifice plane, respectively.

146 Preparation of the root canal isthmus model

- 147 The 3D-printed model's main root canal was prepared to working length using the size 15#
- K148 file. Subsequently, mechanical preparation was carried out using M3-2017 rotary nickel-titanium
- instruments (YiRui, Changzhou, China) until it reached size 30#, taper 0.04. During the
- 150 preparation process, no root canal irrigation was performed to ensure the entry of as much debris
- 151 as possible into the isthmus area. Following mechanical preparation, a stereomicroscope

Z komentarzem [us2]: Trade name of the file and country?

PeerJ reviewing PDF | (2024:10:108216:0:1:NEW 15 Dec 2024)

Manuscript to be reviewed

- (Olympus, Tokyo, Japan) was used to photograph the distribution of debris in the isthmus space. 152 153 The microscope brightness was adjusted to the maximum value during photography, and the 154 objective distance from the surface of the root canal model was kept constantly at 4 cm. Using Image J software, the isthmus area was measured based on the isthmus parameters set in the 155 digital model. For example, in the model with the isthmus located at the coronal 1/3, horizontal 156 lines were drawn at 2 mm from the upper end of the model (model total length of 20 mm, 157 158 isthmus upper surface 2 mm from the upper end of the model) as the upper boundary of the 159 isthmus. Similarly, horizontal lines were drawn at 15 mm from the lower end of the model as the lower boundary of the isthmus. Vertical lines were drawn at the middle two quartile points of the 160 161 model's transverse axis, defining the left and right boundaries of the isthmus. The closed 162 rectangle formed by the intersection of these four lines represented the isthmus (Figure 1). Due to the potential impact of brightness settings on defining the debris area during 163 164 measurements, the study found that adjusting the color brightness threshold to 200 provided a clear and accurate display of debris areas within the isthmus under the stereomicroscope. Therefore, to ensure consistency in measurement conditions across all groups, the color 166 167 brightness threshold of all images was uniformly set to 200. The software's automatic selection 168 function was used to extract the debris containing parts within the isthmus and measure their 169 area, which was denoted as S1. 170 Grouping and irrigation
- 171 Sample size estimation was performed using PASS for Windows software (version 15.0; NCSS,
- 172 Kaysville, UT, USA) with a significance level set at 0.05 (3=0.05), power at 0.90, and the
- 173 number of irrigation groups set to 4, specifying equal sample sizes for each group. The minimum
- 174 sample size for each group was calculated to be five. Therefore, the sample size for experiments
- 175 at the same isthmus location was determined to be 20 and the total sample size of the three
- groups with different isthmus locations was 60. The 20 isthmus-models, labeled 1-20, were 177 randomly assigned to four irrigation groups (n=5). The root canals were filled with sterile water 178 and the following irrigation protocols were conducted:
- 179 d The conventional needle irrigation group (CNI, n=5): Using a 30-gauge side-vented irrigation
- 180 needle (Kontour, Switzerland), the needle tip was placed 2 mm short of the working length of the
- 181 root canal and irrigated with 1 mL of sterile water at a rate of 0.033 mL/s for 30 seconds,
- followed by a 30-second static period. This irrigation-static process was repeated twice, 183
 accumulating a total of 3 mL of sterile water irrigation for each root canal, and a total of 6 mL
 for each model with two root canals.
- 185 e Low-frequency sonic irrigation (Endo Activator, EA, n=5): The root canals and isthmus were
 - filled with sterile water, and a #25/.04 Endo Activator sonic working tip (Dentsply, Charlotte,
- 187 NC, USA) was used. The working tip was placed 2 mm short of the working length of the root 188 canal, set at 10,000 cycles/min, and sonically irrigated for 30 seconds, followed by a 30-second 189 static period. This sonic irrigation-static process was repeated twice for each root canal.
- $190 \quad \text{f \ The passive ultrasonic irrigation group (PUI, n=5): The root canals and is thmus were filled}$

Z komentarzem [us3]: Country?

Manuscript to be reviewed

- with sterile water, and a P5 ultrasonic dynamic system (Satelec, Viry-Ch tillon, France) with a
 #25/.02 ultrasonic working tip (Satelec, Viry-Ch tillon, France) was used. The ultrasonic tip was
 placed 2 mm short of the working length of the root canal, at the power setting of 7 out
 and ultrasonically irrigated for 30 seconds, followed by a 30-second static period.
 This ultrasonic 195 irrigation-static process was repeated twice for each root canal.
- 196 g High-frequency sonic irrigation (EDDY, n=5): The root canals and isthmus were filled with
 197 sterile water, and a #20/.04 EDDY sonic working tip (VDW, Munich, Germany) was used. The
 198 working tip was placed 2 mm short of the working length of the root canal and sonically irrigated 199 for 30 seconds, followed by a 30-second static period. This sonic irrigation-static process was 200 repeated twice for each root canal.
- 201 During the 30-second activation process in e-g, the syringe irrigation needle tip was placed
- 202 horizontally at the root canal orifice, providing continuous irrigation of 1 mL of sterile water per
- canal (0.033 mL/s). Each root canal received a cumulative irrigation of 3 mL of sterile water, and
 each model's two root canals received a total irrigation of 6 mL of sterile water. The
 same 205 protocol was followed for different isthmus locations.

206 Evaluation of isthmus cleaning and assessment criteria

- 207 After irrigation, each root canal was dried by three paper points, and the surface of the model
- 208 was allowed to air dry for a minimum of two hours. The dried root canal models were
- 209 photographed under a stereomicroscope. Image J software was then used to measure the area of
- 210 debris within the isthmus after irrigation, using the same method as described in section (2). The
- 211 area occupied by debris within the isthmus after irrigation was recorded as S2. The debris 212 removal rate within the isthmus was calculated as follows: Debris Removal Rate = (Initial 213 isthmus debris area S1 Debris area after irrigation S2) / Initial isthmus debris area S1.

214 Statistical analysis

- 215 Statistical analysis of experimental data was performed using SPSS 20.0 software (SPSS,
- 216 Chicago, IL, USA). The normality of the initial isthmus debris area and debris removal rate 217 results for each group was first tested. If the data followed a normal distribution, a one-way
- 218 analysis of variance (ANOVA) was conducted, followed by Games-Howell post hoc tests for
- 219 pairwise comparisons. If the data did not follow a normal distribution, the Kruskal-Wallis non-
- 220 parametric test was used for overall and pairwise comparisons. A significance level of P < 0.05221 was considered statistically significant.

222

223 Results

- 224 1. When the isthmus was located in the coronal 1/3, the EDDY system exhibited the most 225 optimal performance, followed by ultrasonic irrigation, EndoActivator, and irrigation needle in 226 descending order.
- 227 Representative images before and after irrigation for each group at the coronal 1/3 are shown in
- 228 Figure 2. The initial isthmus debris areas were relatively consistent among the groups, with the
- pre-irrigation debris area for the CNI group at 4.05–0.27 mm[†], EA group at 3.82–0.36 mm[†], PUI
- group at 3.73–0.32 mm[†], and EDDY group at 3.89–0.21 mm[†]. The pre-irrigation debris areas showed no statistically significant differences among the groups (F=1.022,

Z komentarzem [us4]: why the power setting 7 was chosen

Manuscript to be reviewed

	level for all groups.
233	The isthmus debris removal rates varied among the groups, with the CNI group exhibiting a
234	removal rate of only 8.36–2.04%, EA group at 17.62–3.05%, PUI reaching 54.07–3.33%, and
	EDDY group achieving the highest rate at 86.18–2.25%. The isthmus debris removal
	rates 236 showed statistically significant differences among the groups (F=862.106,
	P=0<0.05).
237	Specifically, when the isthmus was located in the coronal 1/3, the isthmus debris cleaning
238	efficiency was ranked as follows: EDDY > PUI> EndoActivator > CNI. The isthmus debris area
	before and after completion of root canal irrigation for each group is presented in Table
	1.
240	
241	2. When the isthmus was located in the middle 1/3, the EDDY system demonstrated the most
242	optimal performance, followed by PUI, EndoActivator, and CNI, in descending order.
243	Representative images before and after irrigation for each group in the middle 1/3 are shown in
244 245	Figure 3. The pre-irrigation isthmus debris areas were relatively consistent among the groups,
245 246	with the CNI group at 3.47–0.41 mm [†] , EndoActivator group at 3.05–0.35 mm [†] , PUI group at 3.27–0.59 mm [†] , and EDDY group at 3.14–0.11 mm [†] . There were no statistically significant 247
240	differences among the groups (F=1.030, P=0.406>0.05), suggesting that the initial isthmus
	debris 248 areas were at a similar baseline level for all groups.
249	After irrigation, there was a reduction in isthmus debris area for each group. The isthmus debris
250	removal rate was lower in the CNI group at 6.74–0.13%, EndoActivator group at 17.40–5.52%,
251	PUI group at 49.84–6.32%, and the EDDY group exhibited the highest removal rate at
252	73.96–6.75%. The isthmus debris removal rates showed statistically significant differences
253	among the groups (F=162.673, P=0<0.05). Specifically, when the isthmus was located in the
254	middle 1/3, the isthmus debris cleaning efficiency was ranked as follows: EDDY > PUI> 255
	EndoActivator >CNI. The isthmus debris area before and after completion of root canal 256
	irrigation for each group is presented in Table 2.
257	
258	3. When the isthmus was located in the apical 1/3, the cleaning efficacy of EDDY was
259	comparable to that of PUI, and both were superior to other irrigation methods.
260	In the apical 1/3, all groups exhibited relatively low debris before irrigation. The pre-irrigation
261	isthmus debris areas were similar among the groups, with the CNI group at 1.76–0.28 mm [†] ,
262	EndoActivator group at 1.77–0.43 mm [†] , PUI group at 1.83–0.41 mm [†] , and EDDY group at
263	2.16–0.35 mm [†] . The pre-irrigation debris areas showed no statistically significant differences
	among the groups (F=1.282, P=0.314>0.05), indicating that the initial isthmus debris
000	areas were 265 at a similar baseline level for all groups.
266	The debris removal rates for each group were as follows: CNI 3.72–0.76%, EndoActivator group
267	at 12.89–4.43%, PUI at 30.45–6.60%, and EDDY group at 31.78–5.74%. The isthmus debris
268 269	removal rates showed statistically significant differences among the groups (F=38.854, P=0<0.05). Further pairwise comparisons revealed no statistically significant difference in
209 270	cleaning efficiency between EDDY and PUI (P=0.744>0.05), while significant differences were
210	cleaning efficiency between EDD1 and 1 of (1 -0.74420.03), while significant differences were

P=0.409>0.05), 232 suggesting that the initial isthmus debris areas were at a similar baseline

Manuscript to be reviewed

- observed in pairwise comparisons between the other groups. Therefore, when the isthmus was
 located in the apical 1/3, the isthmus debris cleaning efficiency was equally EDDY = PUI > 273
 EndoActivator > CNI. The isthmus debris area before and after completion of root canal 274
 irrigation for each group is presented in Table 3.
- The overall comparison of the cleaning effects of different irrigation methods on isthmus debris
 is illustrated in Figure 5. It is evident that regardless of the isthmus location in the coronal 1/3,
 middle 1/3, or apical 1/3, the irrigation needle demonstrated poor cleaning efficiency for isthmus
 debris. While the EndoActivator showed some improvement in isthmus cleaning efficacy
 compared to the irrigation needle, its performance remained at a relatively low level. When the
 isthmus was in the coronal 1/3 or middle 1/3, the ultrasonic and EDDY groups exhibited better
 cleaning efficiency. However, when the isthmus was located in the apical 1/3, both the PUI and

EDDY groups showed a noticeable reduction in cleaning effectiveness.

282 283 284

285

286

287

288

Discussion

2007,

- This study investigated standardized, transparent tooth root models with isthmuses to compare the cleaning efficiency of four irrigation methods and explore how isthmus position affects cleaning efficiency. Our findings indicate that high-frequency sonic waves (EDDY) were most effective on removing debris within isthmus models, followed by PUI, whereas low-frequency sonic waves (EA) and CNI showed less favorable outcomes, with all methods exhibiting limited 290 efficacy in the apical region.
- Currently, there has been a substantial amount of research on cleaning dentin debris within isthmuses; however, many studies have focused on ex vivo teeth (Johnson et al., 2012, Villalta-Briones et al., 2021). Due to the lack of uniformity in isthmus morphology, position, and other parameters in ex vivo teeth (Estrela et al., 2015, Xu et al., 2020), it is challenging to evaluate the cleaning efficacy of different techniques under the same conditions. There is limited research on isthmuses with identical parameters, with only a few studies utilizing 3D printing to construct root canal models with standardized isthmuses as research subjects (van der Sluis et al.,
- Malentacca et al., 2018, Swimberghe et al., 2019). In this study, we employed digital modeling and 3D printing technology to design tooth root models with standardized isthmuses as research subjects and evaluate the cleaning efficacy of various irrigation techniques. Previous studies evaluating the cleaning efficacy of simulated isthmus models used indicators such as injecting hydrogel into the isthmus and assessing the efficiency of different irrigation methods in removing the hydrogel (Swimberghe et al., 2019, Robberecht et al., 2023); Malentacca et al.
- (2018) injected bovine pulp tissue into prepared isthmus models and used a stereomicroscope to
 observe the effectiveness of syringe irrigation, endovac, PUI, and ultrasonic negative pressure
 devices in clearing bovine pulp tissue from the isthmus, but the injected tissues may have had
 different distribution patterns compared with the debris accumulation procedure of the
 isthmus.
- 308 In order to closely simulate clinical conditions, we mechanically prepared the root canal models

Z komentarzem [us5]: Consider discussing the null hypotheses of the study to remind the reader of the study's purpose.

(Ahmad et al., 2009).

309

Manuscript to be reviewed

```
canal preparation was used as the evaluation indicator.
311
      In this study, the high-frequency sound wave system EDDY demonstrated the most effective
312
      cleaning of isthmuses. Except for the lack of statistically significant differences between EDDY
313
      and PUI in cleaning efficacy in the apical 1/3, EDDY outperformed other irrigation methods in
314
      all other conditions. This is consistent with the findings of Swimberghe et al. (2019). In that
      study, the hydrogel removal from an artificial isthmus model with EDDY was significantly 316
315
       greater than that with CNI and EA, but not significantly different from PUI. Robberecht et al.
317
       (2023) also showed that EDDY achieved significantly better results than syringe irrigation in
318
       isthmus cleaning. In their study, high-speed cameras recorded significant acoustic streaming 319
effects in the isthmus during EDDY irrigation, explaining its superior cleaning efficacy.
320
      Additionally, based on the principles of vibration, the intensity of acoustic streaming is directly
321
      proportional to the frequency and amplitude of the working tip's vibration. Given that high322
       frequency sound waves vibrate at a higher frequency than low-frequency ones, the resulting
323
      acoustic streaming effect was stronger. Compared to ultrasonics, high-frequency sound waves
324
      also have a larger vibration amplitude, facilitating better irrigation fluid penetration into the
325
      isthmus and achieving superior isthmus cleaning (van der Sluis et al., 2007). Otherwise, high-
326
      speed imaging (100,000 fps) observations of activated EDDY tips make three dimensional
327
      orbital movements, while ultrasonic files oscillate transversely in one plane (Swimberghe et al.,
328
      2019). In the narrow space, the horizontal vibration of the working tip will be significantly
329
      limited, so the amplitude of the ultrasonic working tip will be significantly reduced when it is
330
      constrained by the root canal wall (Donnermeyer et al., 2024). However, the acoustic working tip
      331
              can still produce longitudinal vibration with larger amplitude when constrained, and its
      332
              weakening degree is smaller than that of ultrasonic (Chu et al., 2023).
333
      There is limited research on the impact of isthmus parameters on cleaning efficacy. Robberecht
334
      et al. (2023) explored the influence of isthmus anatomical parameters by designing models with
335
      different width (0.4 mm, 0.15 mm) and length (2 mm, 4 mm) parameters, and demonstrated
336
      increased difficulty in cleaning longer and narrower isthmuses. Alsubait et al. (2021) compared
337
      different irrigation techniques in different positions within ex vivo teeth, and found no difference
338
      in cleaning efficacy between positions 3 mm and 5 mm from the apex. There was also no
339
      difference between EDDY and PUI at the same position, although both of which were superior to
      manual irrigation. To the best of our knowledge, no study has compared the effect of isthmus
340
341
      position on cleaning efficacy in simulated root canals. In this study, isthmuses with the same
342
      parameters were designed in the coronal 1/3, middle 1/3, and apical 1/3 of the root. The results
343
      showed that as the isthmus position approached the apex, the cleaning efficiency of all irrigation
344
      methods tended to decrease. This trend aligns with the conclusions of Klyn et al. (2010) from
345
      their ex vivo study. Ultrasonics and high-frequency sound waves (EDDY) exhibited significantly
346
      lower cleaning efficacy in the apical 1/3 compared to the coronal 1/3 and middle 1/3. This might
347
      be due to the narrower main canal in the apical segment, resulting in increased contact between
              the irrigating instrument and the canal walls, reducing the EDDY current effect
      generated by 349
                             mechanical vibration and subsequently diminishing cleaning efficacy
```

based on clinical operational steps. The removal rate of debris entering the isthmus during root

Manuscript to be reviewed

- Additionally, when the lateral movement of the sonic working tip is restricted, its vibration mode
 may shift to a purely longitudinal vibration, leading to a reduction in the driving force of
 irrigation fluid into the isthmus and potentially weakening isthmus cleaning efficacy (Walmsley
 et al., 1989). In addition, there was not as much initial accumulation of debris in the apical 1/3,
 and since the preparation file had the ability of debris extrusion, it may have led to low removal
 rates.
- Given that this study employed a simulated root canal system model, the resin debris generated
 did not include microbial or dentin debris components. Therefore, the cleaning efficacy of resin
 debris may not entirely represent the cleaning efficacy of pulp tissues and bacteria in the isthmus
- and root canal system. Furthermore, as the resin model's canal walls were relatively smooth, the
 attachment state of debris inside the canal may differ from the present state of infectious
 substances in a clinical scenario. Because of the limitation of water irrigation, the chemical
 action between irrigants and pulp tissues and bacteria were not involved in this study. An in vitro
 root canal model with isthmuses confirmed by Micro-CT and different commonly-used

365

366 Conclusion

Under the experimental conditions employed in the current study, high-frequency sonic waves
 (EDDY) can be considered a suitable method for cleaning the isthmus within root canals.
 However, the results indicate that the efficacy of EDDY diminishes in the apical isthmus.

irrigants 364 may be needed for further investigation.

Further 370 research is warranted to explore techniques that enhance the cleaning efficiency in the apical 371 third of the root canal system.

372 373 374

375

References

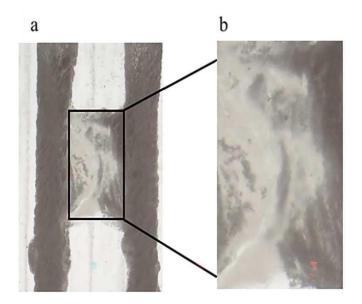
- Ahmad, M., T. R. Pitt Ford, L. A. Crum and A. J. Walton (2009). "Ultrasonic debridement of root canals: acoustic cavitation and its relevance. 1988." Int Endod J 42(5): 391-398.
- Alsubait, S., Y. Alshaibani, N. Alshehri, N. Alnuwaiser, T. Alajimi, N. Almaflehi and M. Alkahtany (2021). "Efficacy of Different Endodontic Irrigant Activation Techniques on Debris Removal from
- the Mesial Root Canal System of Mandibular Molars." <u>J Contemp Dent Pract</u> 22(3): 231-236.
 Baugh, D. and J. Wallace (2005). "The role of apical instrumentation in root canal treatment: a
- Baugh, D. and J. Wallace (2005). "The role of apical instrumentation in root canal treatment: a review of the literature." <u>J Endod</u> **31**(5): 333-340.
- Blanken, J., R. J. De Moor, M. Meire and R. Verdaasdonk (2009). "Laser induced explosive
 vapor and cavitation resulting in effective irrigation of the root canal. Part 1: a visualization 385 study." <u>Lasers Surg Med</u> 41(7): 514-519.
- 386 Chen, S., J. Liu, G. Dong, B. Peng, P. Yang, Z. Chen, F. Yang and D. Guo (2016). "Comparison 387 between ultrasonic irrigation and syringe irrigation in clinical and laboratory studies." <u>J Oral Sci</u> 388 **58**(3): 373-378.
- Chu, X., S. Feng, W. Zhou, S. Xu and X. Zeng (2023). "Cleaning efficacy of EDDY versus ultrasonically-activated irrigation in root canals: a systematic review and meta-analysis."

 <u>BMC</u> 391 <u>Oral Health</u> **23**(1): 155.

Z komentarzem [us6]: With up to date literature

Peerl reviewing PDF I (2024:10:108216:0:1:NEW 15 Dec 2024)

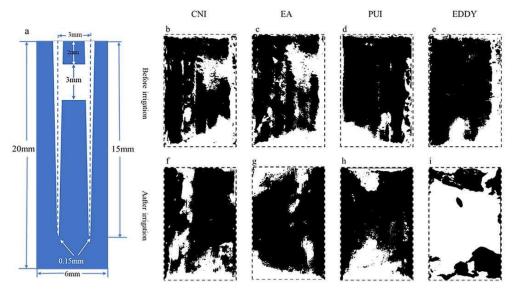
- de Mattos de Araujo, B. M., A. T. G. Cruz, L. Piasecki, M. Webber, E. Carneiro, V. P. D.
- Westphalen and U. X. da Silva Neto (2022). "Micro-CT evaluation of four final irrigation 394 protocols on hard-tissue debris removal from mesial roots of mandibular molars containing 395 isthmus." Clin Oral Investig 26(10): 6121-6128.
- 396 Donnermeyer, D., P. C. Dust, E. Schafer and S. Burklein (2024). "Comparative Analysis of
- 397 Irrigation Techniques for Cleaning Efficiency in Isthmus Structures." <u>J Endod</u> **50**(5): 644-650
- 398 e641.
- Estrela, C., L. E. Rabelo, J. B. de Souza, A. H. Alencar, C. R. Estrela, M. D. Sousa Neto and J.
 D. Pecora (2015). "Frequency of Root Canal Isthmi in Human Permanent Teeth
 Determined by 401 Cone-beam Computed Tomography." J Endod 41(9): 1535-1539.
- 402 Gu, L. S., J. R. Kim, J. Ling, K. K. Choi, D. H. Pashley and F. R. Tay (2009). "Review of
- 403 contemporary irrigant agitation techniques and devices." <u>J Endod</u> 35(6): 791-804.
- 404 Johnson, M., S. J. Sidow, S. W. Looney, K. Lindsey, L. N. Niu and F. R. Tay (2012). "Canal and
- 405 isthmus debridement efficacy using a sonic irrigation technique in a closed-canal system." \underline{J}
- 406 Endod **38**(9): 1265-1268.
- 407 Kim, S., H. Jung, S. Kim, S. J. Shin and E. Kim (2016). "The Influence of an Isthmus on the
- 408 Outcomes of Surgically Treated Molars: A Retrospective Study." J Endod 42(7): 1029-1034.
- 409 Klyn, S. L., T. C. Kirkpatrick and R. E. Rutledge (2010). "In vitro comparisons of debris removal 410 of the EndoActivator system, the F file, ultrasonic irrigation, and NaOCI irrigation alone after 411 hand-rotary instrumentation in human mandibular molars." <u>J Endod</u> 36(8): 1367-1371.
- 412 Linden, D., M. Boone, M. De Bruyne, R. De Moor, M. A. Versiani and M. Meire (2020).
- 413 "Adjunctive Steps for the Removal of Hard Tissue Debris from the Anatomic Complexities of the 414 Mesial Root Canal System of Mandibular Molars: A Micro-Computed Tomographic Study." J 415 Endod 46(10): 1508-1514.
- 416 Malentacca, A., U. Uccioli, F. Mannocci, B. Bhuva, D. Zangari, C. Pulella and C. Lajolo (2018).
- 417 "The comparative effectiveness and safety of three activated irrigation techniques in the isthmus 418 area using a transparent tooth model." Int Endod J **51 Suppl 1**: e35-e41.
- 419 Paque, F., C. Boessler and M. Zehnder (2011). "Accumulated hard tissue debris levels in mesial 420 roots of mandibular molars after sequential irrigation steps." Int Endod J **44**(2): 148-153.
- Park, E. H., R. Park, J. Seo, W. Kim, H. Y. Kim and W. J. Shon (2023). "Efficacy of a novel
- 422 remotely-generated ultrasonic root canal irrigation system for removing biofilm-mimicking
- 423 hydrogel from a simulated isthmus model." Int Endod J 56(6): 765-774.
- 424 Plotino, G., T. Ozyurek, M. Gundogar, G. Uslu, E. Pedulla, R. Careddu and V. Franco (2023). 425 "Efficacy of different irrigant activation devices in removing dentin debris from an artificial 426 isthmus connecting curved canals." <u>Aust Endod J **49 Suppl 1**</u>: 353-358.
- 427 Plotino, G., C. H. Pameijer, N. M. Grande and F. Somma (2007). "Ultrasonics in endodontics: a
- 428 review of the literature." <u>J Endod</u> **33**(2): 81-95.
- 429 Rajamanickam, K., K. V. Teja, S. Ramesh, A. S. AbuMelha, M. F. Alkahtany, K. H. Almadi, S. A.
- 430 Bahammam, K. Janani, S. Choudhari, J. Jose, K. C. Srivastava, D. Shrivastava and S. Patil
- 431 (2022). "Comparative Study Assessing the Canal Cleanliness Using Automated Device and 432 Conventional Syringe Needle for Root Canal Irrigation-An Ex-Vivo Study." <u>Materials (Basel)</u>
- 433 **15**(18)
- 434 Ricucci, D., S. Loghin, L. S. Goncalves, I. N. Rocas and J. F. Siqueira, Jr. (2018).
- 435 "Histobacteriologic Conditions of the Apical Root Canal System and Periapical Tissues in Teeth 436 Associated with Sinus Tracts." <u>J Endod</u> **44**(3): 405-413.
- 437 Robberecht, L., J. Delattre and M. Meire (2023). "Isthmus morphology influences debridement
- 438 efficacy of activated irrigation: A laboratory study involving biofilm mimicking hydrogel removal
- 439 and high-speed imaging." Int Endod J **56**(1): 118-127.

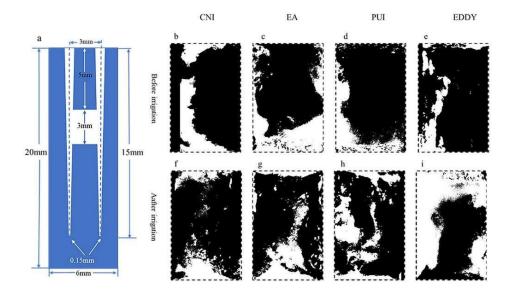

Z komentarzem [us7]: add page number

Manuscript to be reviewed

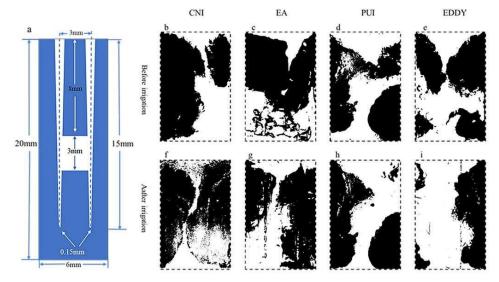
- Swimberghe, R. C. D., A. De Clercq, R. J. G. De Moor and M. A. Meire (2019). "Efficacy of
- 441 sonically, ultrasonically and laser-activated irrigation in removing a biofilm-mimicking hydrogel
- 442 from an isthmus model." Int Endod J 52(4): 515-523.
- 443 Urban, K., D. Donnermeyer, E. Schafer and S. Burklein (2017). "Canal cleanliness using
- different irrigation activation systems: a SEM evaluation." <u>Clin Oral Investig</u> 21(9): 2681-2687.
 van der Sluis, L. W., M. Versluis, M. K. Wu and P. R. Wesselink (2007). "Passive ultrasonic 446 irrigation of the root canal: a review of the literature." Int Endod J 40(6): 415-426.
- Vatanpour, M., S. Toursavadkouhi and S. Sajjad (2022). "Comparison of three irrigation 448 methods: SWEEPS, ultrasonic, and traditional irrigation, in smear layer and debris removal 449 abilities in the root canal, beyond the fractured instrument." Photodiagnosis Photodyn Ther 37: 450 102707.
- 451 Vertucci, F. (2005). "Root canal morphology and its relationship to endodontic procedures." 452 Endodontic topics 10: 3-29.
- 453 Villalta-Briones, N., P. Baca, M. Bravo, C. Solana, B. Aguado-Perez, M. Ruiz-Linares and M. T.
- 454 Arias-Moliz (2021). "A laboratory study of root canal and isthmus disinfection in extracted teeth 455 using various activation methods with a mixture of sodium hypochlorite and etidronic acid." Int 456 Endod J **54**(2): 268-278.
- 457 Walmsley, A. D., P. J. Lumley and W. R. Laird (1989). "Oscillatory pattern of sonically powered
- 458 endodontic files." Int Endod J 22(3): 125-132.
- Weller, R. N., S. P. Niemczyk and S. Kim (1995). "Incidence and position of the canal isthmus.
- 460 Part 1. Mesiobuccal root of the maxillary first molar." J Endod 21(7): 380-383.
- 461 Xu, S., J. Dao, Z. Liu, Z. Zhang, Y. Lu and X. Zeng (2020). "Cone-beam computed tomography 462 investigation of middle mesial canals and isthmuses in mandibular first molars in a Chinese 463 population." <u>BMC Oral Health</u> 20(1): 135.
- 464 Yin, X., J. W. W. Chang, Q. Wang, C. Zhang and X. Wang (2021). "Three-dimensional 465 morphologic classifications and analysis of canal isthmuses in permanent molars." <u>Surg Radiol</u> 466 <u>Anat</u> **43**(11): 1793-1799.
- 467 Yu, Y., C. Y. Yuan, X. Z. Yin and X. Y. Wang (2024). "Assessment of isthmus filling using two
- 468 obturation techniques performed by students with different levels of clinical experience." J Dent
- 469 <u>Sci</u> **19**(1): 169-176.
- 470 Zeng, C., J. Willison, M. M. Meghil, B. E. Bergeron, C. W. Cutler, F. R. Tay, L. Niu and J.
- Ma 471 (2018). "Antibacterial efficacy of an endodontic sonic-powered irrigation system: An in vitro 472 study." <u>J Dent</u> **75**: 105-112. 473

Schematic illustration of isthmus debris area measurement

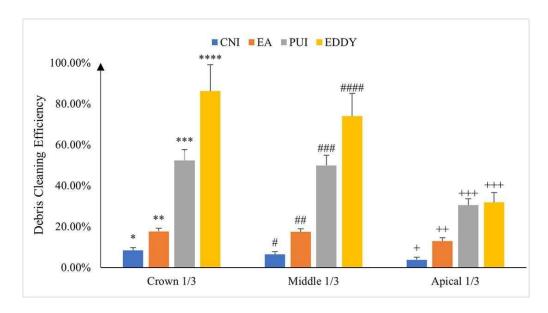

(a) The original image captured by the stereomicroscope. (b) The isthmus area selected based on the set parameters. (c) The image after adjusting the brightness parameters; the area of the black portion in (c) was measured as the debris area within the isthmus.


Representative diagrams of crown isthmus debris distribution before and after irrigation

(a) The vertical cross-sectional schematics and parameters of the digital model with coronal isthmus; (b)-(e) Illustration of the distribution of debris before irrigation for each group; (f)-(i) Depiction of the distribution of debris after irrigation. The black areas represent the proportion of debris.


Representative diagrams of middle isthmus debris distribution before and after irrigation

(a) The vertical cross-sectional schematics and parameters of the digital model with middle isthmus; (b)-(e) Illustration of the distribution of debris before irrigation for each group; (f)-(i) Depiction of the distribution of debris after irrigation. The black areas represent the proportion of debris.



Representative diagrams of apical isthmus debris distribution before and after irrigation

(a) The vertical cross-sectional schematics and parameters of the digital model with apical isthmus; (b)-(e) Illustration of the distribution of debris before irrigation for each group; (f)-(i) Depiction of the distribution of debris after irrigation. The black areas represent the proportion of debris.

Debris cleaning eûciency of various irrigation methods at diûerent isthmus positions

Table 1

Crown isthmus debris area before and after root canal irrigation

(on next page)

S1/mm2	S2/mm2	Debris removal rates %
(mean - SD)	(mean - SD)	0
4.05-0.27	3.71-0.30	8.36–2.04
3.82-0.36	3.15-0.36	17.62–3.05
3.73-0.32	1.72-0.21	54.07-3.33
3.89-0.21	0.53-0.06	86.18–2.25
	(mean - SD) 4.05-0.27 3.82-0.36 3.73-0.32	(mean - SD) (mean - SD) 4.05-0.27 3.71-0.30 3.82-0.36 3.15-0.36 3.73-0.32 1.72-0.21

Table 2

Middle isthmus debris area before and after root canal irrigation

(on next page)

Group	S1/mm2 (mean – SD)	S2/mm2 (mean – SD)	Debris removal rates %
CNI	3.47-0.41	3.24-0.38	6.74–0.13
EA	3.05-0.35	2.52-0.34	17.40–5.52
PUI	3.27-0.59	1.64-0.34	49.84–6.32
EDDY	3.14-0.11	0.82-0.20	73.96–6.75

Table 3

Apical isthmus debris area before and after root canal irrigation

(on next page)

Group	S1/mm2 (mean – SD)	S2/mm2 (mean – SD)	Debris removal rates %
CNI	1.76–0.28	1.70-0.26	3.72-0.76
EA	1.77-0.43	1.54-0.38	12.89-4.43
PUI	1.83-0.41	1.27-0.31	30.45-6.60
EDDY	2.16-0.35	1.47-0.24	31.78–5.74