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ABSTRACT

The khapra beetle, Trogoderma granarium Everts, 1898, is a significant pest of stored
commodities worldwide. Insecticides are heavily relied upon to manage T. granarium.
However, the long-term usage of insecticides has led to the development of resistance to
insecticides, reducing their effectiveness against T. granarium. This study investigated
variations in susceptibility to pirimiphos-methyl, alpha-cypermethrin and spinetoram
in a laboratory and seven field strains of T. granarium, using dose-mortality bioassays.
Metabolic resistance mechanisms were investigated through synergism studies using
piperonyl butoxide (PBO) and S,S,S-tributyl phosphorotrithioate (DEF). Susceptibility
of the laboratory strain was the highest to all insecticides compared to the field
strains. For field strains, the LDs values ranged from 25.9 to 49.6 mg/kg grain for
pirimiphos-methyl, 15.0 to 40.5 mg/kg grain for alpha-cypermethrin, and 2.2 to
6.0 mg/kg grain for spinetoram. Compared to the laboratory strain, field strains of
T. granarium exhibited significant resistance ratios ranging from: 19.9 to 38.1 fold
against pirimiphos-methyl, 12.3 to 45.0 fold against alpha-cypermethrin, and 7.3
to 20.0 against spinetoram. In synergism bioassays, there was a significant effect of
enzyme inhibitors on enhancing suceptibility to pirimiphos-methyl only in field strains,
suggesting P450 monooxygenase and esterases may contribute to pirimiphos-methyl
resistance. In conclusion, variable susceptibility to insecticides was observed across
different strains of T. granarium. Reduced susceptibility to insecticides in field strains
compared to the laboratory strain poses challenges for effective control of T. granarium.

Subjects Agricultural Science, Ecology, Entomology, Zoology
Keywords Stored pest management, Insecticide resistance, Khapra beetle

INTRODUCTION

The khapra beetle, Trogoderma granarium Everts, 1898, is a highly destructive pest of stored
commodities globally. This species is recognized as both an alien invasive species and a
quarantine pest in numerous countries (Gupta et al., 2011; Yadav et al., 2022; Athanassiou,
2023). The infestation and damages caused by T. granarium have been reported from the
USA, Australia, Canada, Europe (e.g., Greece, Spain and Cyprus), Africa (e.g., Algeria,
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Libya, Burkina Faso, Morocco, Egypt, Zimbabwe, Sudan, Mauritania, Niger, Senegal and
Mali) and Asia (e.g., Afghanistan, Bangladesh, Iran, Saudi Arabia, Myanmar, South Korea,
China, Yemen, Sri Lanka, India, Syria, Lebanon, Iraq, Russia, Israel and Pakistan) (French
& Venette, 2005; Ahmedani et al., 2007; Honey et al., 2017; Athanassiou, Phillips ¢ Wakil,
2019; Athanassiou, 2023; Qin et al., 2023). Trogoderma granarium is primary feeder that
causes a huge economic loss to stored commodities by reducing their weight and nutritional
quality, mainly by depleting carbohydrate and protein content (French ¢» Venette, 2005;
Tripathi, 2018; Kavallieratos, Karagianni ¢ Papanikolaou, 2019; Hassuba et al., 2024). As a
result, infested stored commodities face a reduction in their market value (Tushar et al.,
2023).

Trogoderma granarium is also a major insect pest of stored commodities in Pakistan
(Honey et al., 2017; Amjad et al., 2022). Insecticides from different classes are heavily relied
on to manage T. granarium in Pakistan (Ahmedani et al., 2007; Fiaz et al., 2018; Anwar,
Ranjha & Javed, 2020). Insecticides from organophosphate (e.g., pirimiphos-methyl) and
pyrethroid (e.g., alpha-cypermethrin) classes are recommended to control stored insect
pests, including T. granarium (Ali, 2018; Khan, Haider ¢» Khan, 2022). In addition, the
regional farmers have reportedly used some non-registered products (e.g., spinosyns) for
the management of stored insects, due to their effectiveness against other agricultural pests
(Khan et al., 2018; Khan et al., 2023). However, the long-term usage of insecticides often
results in reduced susceptibility in insect pests due to the development of resistance to
insecticides (Belinato ¢ Martins, 2016; Khan, 2020b; Gong et al., 2023). Several researchers
have reported the development of resistance to insecticide in storage pests worldwide
(Dyte, 1974; Zettler, 1982; Chaudhry, 1997; Bogamuwa, Weerakoon ¢ Karunaratne, 2002;
Boyer, Zhang & Lempériere, 2012; Kang, Pittendrigh & Onstad, 2013; Nayak, Daglish ¢
Phillips, 2015; Collins & Schlipalius, 2018; Attia et al., 2020). Recent reports of resistance
to pirimiphos-methyl, permethrin and deltamethrin in a few field strains of T. granarium
from Pakistan (Feroz et al., 2020; Khan, 2021) are alarming, which necessitates the need to
monitor resistance to commonly used insecticides in other geographically isolated strains
of T. granarium.

Behavioral, penetration, altered target site, and/or metabolic mechanism are typically
responsible for reduced susceptibility to insecticides in insect pests (Siddiqui et al., 2023).
However, metabolic mechanisms have been found to be the most frequent and challenging
resistance mechanism (Karaagag, 2012; Nauen et al., 2019). The evidence of synergized
susceptibility to insecticides when used in binary combinations with enzyme inhibitors,
such as piperonyl butoxide (PBO) and S,S,S-tributyl phosphorotrithioate (DEF), provides
a quick way to assess the presence of metabolic mechanism of resistance in resistant
insect species (Ribeiro et al., 2003; Espinosa et al., 2005; Limoee et al., 2007; Paksa, Ladoni
& Nasirian, 20125 Yao et al., 2019; Khan, 2020a). Moreover, susceptibility to a particular
insecticide also varies with geographical origin of insect species, and also among strains of
a specific species collected from different localities (Ribeiro et al., 2003; Wiebe et al., 2017;
Agrafioti, Athanassiou & Nayak, 2019; Yao et al., 2019; Anwar, Ranjha & Javed, 2020; Attia
et al., 2020; Khan, 2020a; Khan, 2021; Solis-Santoyo et al., 2021; Baliota et al., 2022; Khan,
Haider & Khan, 2022; Machuca-Mesa, Turchen ¢ Guedes, 2024).
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The recent occurrence of insecticide control failures in Punjab, Pakistan, demands
the urgent monitoring of variations in susceptibility to insecticides across different field
strains of T. granarium. Hence, the present study was planned to assess variations in
susceptibility to pirimiphos-methyl, alpha-cypermethrin and spinetoram in different strains
of T. granarium. These strains were collected from different areas of Punjab, Pakistan. We
were also interested in investigating the potential role of metabolic mechanisms in reduced
susceptibility to insecticides.

MATERIALS AND METHODS

Trogoderma granarium strains

A laboratory and seven field strains of T. granarium were used in bioassays. The laboratory
strain, which had been collected from stored wheat grains in Lahore (31.5204°N, 74.3587°E)
in 2013 and maintained without chemical exposure, acted as the reference strain. Field
strains were collected from rice-storage facilities in different cities of Punjab during June to
August, 2023: Lahore (31.5204°N, 74.3587°E), Mandi Bahauddin (32.5742°N, 73.4828°E),
Rajanpur (29.1044°N, 70.3301°E), Rahim Yar Khan (28.4212°N, 70.2989°E), Narowal
(32.1014°N, 74.8800°E), Hafizabad (32.0712°N, 73.6895°E) and Gujranwala (32.1877°N,
74.1945°E). Field strains were coded hereafter as LHR-TG, MBD-TG, RPR-TG, RYK-TG,
NWL-TG, HBD-TG and GRW-TG, respectively. All the strains were reared on clean rice
grains, Oryza sativa L. (var. Basmati-370), at 30 °C, 65% relative humidity, under dark
conditions. The strains were reared in the laboratory for at least two generations prior to
bioassays.

Chemicals

Three technical-grade insecticides: spinetoram (a spinosyn; purity>97%), alpha-
cypermethrin (a pyrethroid; purity>98%) and pirimiphos-methyl (an organophosphate;
purity>99%), two enzyme inhibitors: S,S,S-tributyl phosphorotrithioate (DEF;
purity>97%) and piperonyl butoxide (PBO; purity = 98%), and acetone (purity =
99.5%) (Chem Service Inc, West Chester, PA, USA) were used in bioassays.

Grain treatment and dose-mortality bioassays

Grain treatment and dose-mortality bioassays of insecticides were performed on all strains
of T. granarium, following established protocols (Kavallieratos et al., 2017a; Khan, Haider
¢ Khan, 2022) with minor modifications. Insecticides were dissolved in acetone to prepare
solutions of varying concentrations. Six concentrations of each insecticide, resulting in
mortalities between 0% and 100% (Robertson et al., 2017) were used in bioassays. The
range of concentrations of pirimiphos-methyl and alpha-cypermethrin was 0.25-8 mg
kg~! and 04-128 mg kg™! for the Lab-TG strain and field strains, respectively. Spinetoram
was bioassayed at 0.1—3.2 mg kg~! and 0.4-12.8 mg kg~! for the Lab-TG strain and field
strains, respectively. For the grain treatment, one kg clean rice grains (var. Basmati-370)
were sprayed with one ml insecticide solution of a specific concentration via AG4-air brush.
The grains were rotated manually in a glass jar for 10 min to ensure uniform distribution of
the insecticide solution. Grains in the control group were treated with acetone alone. After
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the grain treatment, 20 g of treated grains were taken in a glass vial (40 ml) and introduced
20 adults (<24 h old) of T. granarium. The vials were placed in an incubator set at 30 °C
and 65% relative humidity. Mortality data were recorded seven days post-exposure, with
adults deemed dead if they did not move when touched with a fine camel-hair brush.
All bioassays were repeated three times by preparing fresh insecticide solutions and grain
treatment. The entire procedure of bioassays was followed for the Lab-TG and field strains
separately.

Synergism bioassays

Synergism bioassays were performed according to the protocols established by Ribeiro et
al. (2003) and Khan (2020c). A solution of either PBO or DEF was prepared in acetone
(1 mg ml~!). One ml solution of PBO or DEF was applied on the inner-surfaces of a
glass vial (20 ml) and left to dry by rotation. After drying, adult beetles were exposed to
PBO- or DEF-coated vials for two hours, followed by exposure to varying concentrations
of pirimiphos-methyl, alpha-cypermethrin or spinetoram as previously described (dose-
mortality bioassays).

Data analyses

Mortality data from each strain of T. granarium in the insecticidal bioassays were used to
calculate lethal dose (LD5p and LDgg) values, along with their 95% confidence intervals
(CIs), using the natural log probit model via PoloPlus software (LeOra-Software, 2005).
Mortality corrections were not performed because control group mortality was <3.5%.
Any two LDsy or LDgy values were considered significantly different if their respective
95% CI values did not overlap (Litchfield ¢» Wilcoxon, 1949). Resistance ratios (RRs) were
calculated by dividing the LD values of field strains by the corresponding LD value of
Lab-TG reference strain. Resistance was categorized as follows: RR <5 (low resistance),
RR 5-10 (moderate resistance), and RR >10 (high resistance) (Khan, 2020a). Ratio tests
were conducted to compare the LDsy and LDgg values of field strains with those of the
Lab-TG reference strain. Differences were considered significant if the 95% CI of the ratio
did not include one (Robertson et al., 2017). The same criterion was applied to determine
the significance of LD values for pirimiphos-methyl, alpha-cypermethrin, and spinetoram,
with or without PBO or DEEF, in the synergism bioassays (Khan & Akram, 2019; Khan,
2020¢).

RESULTS

Susceptibility of different strains of Trogoderma granarium to
insecticides

The dose-mortality bioassay results of all insecticides are detailed in Table 1. The Lab-TG
strain demonstrated the greatest susceptibility to all tested insecticides. It showed the highest
susceptibility towards spinetoram followed by alpha-cypermethrin and pirimiphos-methyl.
At the LDs level, alpha-cypermethrin and pirimiphos-methyl were statistically similar, as
indicated by overlapping 95% Cls. In the case of pirimiphos-methyl, the LD5y and LDgy
values of field strains ranged from 25.9 to 49.6 mg/kg grain and 570.1 to 2,110.2 mg/kg
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grain, respectively. At the LDs level, the NWL-TG and MBD-TG strains showed the highest
susceptibility to pirimiphos-methyl followed by LHR-TG, RPR-TG, RYK-TG, HBD-TG
and GRW-TG strains. For alpha-cypermethrin, the LDsy and LDgg values of field strains
ranged from 15.0 to 40.5 mg/kg grain and 244.2 to 1,046.9 mg/kg grain, respectively.
The RPR-TG was the most susceptible strain than the rest of the field strains with the
LDs5p and LDgg values 15.0 and 244.2 mg/kg grain, respectively. In the case of spinetoram,
the field strains exhibited the highest susceptibility compared to pirimiphos-methyl and
alpha-cypermethrin. The values of spinetoram in field strains were estimated from 2.2
to 6.0 mg/kg and 30.5 to 151.0 mg/kg grain at the LDsy and LDyy level, respectively.
The HBD-TG strain was the least susceptible strain to spinetoram among all field strains
(Table 1). In all the cases, the control mortality was less than 4%.

The ratio tests for all insecticides at both LDsy and LDyy levels showed significant
differences between the Lab-TG and field strains, based on the criterion 95% CI of the ratio
did not include 1 (Table 1). Compared to the Lab-TG strain, field strains of T. granarium
showed significant resistance, with RR values ranging from: 19.9 to 38.1 fold (at the LDs
level) and 43.6 to 162.3 fold (at the LDgg level against pirimiphos-methyl; 16.7 to 40.7 fold
(at the LDsg level) and 12.3 to 95.2 fold (at the LDy level) against alpha-cypermethrin;
7.3 t0 20.0 fold (at the LDs level) and 5.9 to 29.0 (at the LDgy level) against spinetoram
(Table 1).

Synergism bioassays of insecticides with PBO or DEF

In the Lab-TG strain, neither PBO nor DEF synergized susceptibility to pirimiphos-methyl,
alpha-cypermethrin, or spinetoram (Tables 2—4). A significant effect of PBO and DEF on
pirimiphos-methyl susceptibility was observed across all field strains of T. granarium. For
example, in the case of bioassays of pirimiphos-methyl along with PBO, susceptibility to
pirimiphos-methyl at LD5; and LDyg levels was enhanced by: 1.6 and 2.1 fold, respectively,
for the LHR-TG strain; 1.5 and 2.2 fold, respectively, for the MBD-TG strain; 1.8 and 2.8
fold, respectively, for the RPR-TG strain; 2.2 and 2.5 fold, respectively, for the RYK-TG
strain; 1.8 and 2.8 fold, respectively, for the NWL-TG strain; 2.7 and 2.6 fold, respectively,
for the HBD-TG strain; 3.5 and 14.8 fold, respectively, for the GRW-TG strain. Similarly,
susceptibility to pirimiphos-methyl at LD5y and LDgg levels was enhanced by: 1.8 and 3.1
fold, respectively, for the LHR-TG strain; 1.7 and 3.6 fold, respectively, for the MBD-TG
strain; 1.7 and 1.6 fold, respectively, for the RPR-TG strain; 2.3 and 4.2 fold, respectively, for
the RYK-TG strain; 2.2 and 4.2 fold, respectively, for the NWL-TG strain; 2.6 and 2.0 fold,
respectively, for the HBD-TG strain; 2.5 and 9.6 fold, respectively, for the GRW-TG strain.
In addition, the synergism ratios (SR), in most of the cases, were significant in bioassays
of pirimiphos-methyl along with PBO or DEF (Table 2). However, the susceptibility to
alpha-cypermethrin (Table 3) and spinetoram (Table 4) remained statistically unchanged
with the addition of either PBO or DEF in all field strains. In all the cases, the control
mortality was less than 4%.
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Table 1 Susceptibility of laboratory and field strains of Trogoderma granarium to pirimiphosmethyl, alpha-cypermethrin and spinetoram.

Insecticide Strain LDs, LDy Fit of probit line LD;, LDy,
(95% CI) (95% CI) ratio ratio
(mg/kg) (mg/kg) (95% CI)’ (95% CI)’
Intercept Slope x2 P
(SE) (df =4)
Pirimiphos-methyl ~ Lab-TG 1.3 (1.1-1.5) 13.0 (8.4-19.3) —02(0.1)  23(02) 1.0 09 1 1
LHR-TG 32.0 (23.2-45.5) 570.1 (266.0-2,276.0) —2.8(0.3) 1.9 (0.2) 5.7 0.2 24.6 (19.5-32.7) 43.6 (20.1-96.6)
MBD-TG 26.8 (21.4-31.6) 998.2 (514.5-1,674.6) —2.1(0.2) 1.5 (0.1) 1.0 0.9 20.6 (15.9-28.1) 76.8 (29.6-201.0)
RPR-TG  39.6 (32.8-49.7)  915.6 (507.9-2,162.7) —27(03)  17(02) 05 0.9  30.5(23.8-41.2)  70.4 (29.3-170.4)
RYK-TG 44.2 (35.6-56.8) 1,236.9 (643.3-3,259.2) —2.6(0.4) 1.6 (0.3) 2.2 0.7 34.0 (26.2-46.6) 95.1 (37.0-246.5)
NWL-TG 259 (20.8-32.3)  972.3 (502.0-2,599.0) —21(02) 15(02) 09 09 19.9(13.3-25.7)  74.8 (52.5-90.3)
HBD-TG 45.0 (36.9-56.2) 851.6 (488.6-1,902.7) —3.0(0.3) 1.8 (0.2) 3.2 0.5 34.6 (27.1-46.6) 65.5 (28.2-153.1)
GRW-TG  49.6 (38.9-66.4)  2,110.2 (952.7-7,200.7)  —2.4(0.2)  15(0.1) 2.4 0.6  38.1(28.5-53.7)  162.3 (53.7-494.8)
Alpha-cypermethrin Lab-TG 0.9 (0.8-1.1) 11.0 (7.1-20.9) 0.1(0.1) 2.2(0.2) 1.7 0.8 1 1
LHR-TG  36.6 (29.6-46.4)  1,046.9 (553.9-2,674.7) —2.5(02) 1.6(0.3) 32 0.5  40.7(30.0-53.3)  95.2 (37.3-242.4)
MBD-TG 29.2 (24.3-35.2) 447.4 (282.3-854.6) —2.9(0.3) 2.0 (0.2) 0.8 0.9 32.4 (24.7-41.2) 40.7 (19.0-86.9)
RPR-TG  15.0 (12.4-18.1)  244.2 (157.8-451.7) ~23(02) 19(02) 25 0.6 16.7(12.7-21.3) 222 (10.6-46.5)
RYK-TG 40.5 (32.8-51.2) 1,015.3 (549.8-2,490.4) —2.7(0.3) 1.7 (0.4) 3.3 0.5 45.0 (33.3-58.9) 92.3 (37.1-229.3)
NWL-TG 28.7 (24.0-34.6) 424.9 (270.3-799.3) —2.9(0.3) 2.0 (0.3) 3.3 0.5 31.9 (24.3-40.5) 38.6 (18.2-82.0)
HBD-TG  27.6(23.1-33.2)  406.7 (259.9-760.3) —29(02) 20(02) 03 0.9  30.7(23.4-38.9)  37.0 (17.5-78.13)
GRW-TG 27.0 (21.6-37.1) 949.4 (495.4-2,489.7) —2.2(0.2) 1.5 (0.1) 1.1 0.9 30.0 (22.1-39.4) 86.3 (33.3-223.3)
Spinetoram Lab-TG 0.3 (0.2-0.4) 5.2 (2.6-18.7) 09(0.1) 1.9(02) 46 03 1 1
LHR-TG 3.6 (2.7-4.6) 63.8 (30.6-229.2) —1.0 (0.1) 1.9 (0.3) 4.8 0.3 12.0 (8.8-15.5) 12.3 (5.2-29.3)
MBD-TG 2.3 (1.7-3.2) 52.7 (24.9-196.3) —0.6(0.1) 17(02) 48 03 7.7 (5.7-10.0) 10.1 (4.3-24.6)
RPR-TG 2.2 (1.9-2.7) 34.6 (22.2-64.1) —0.7 (0.1) 2.0 (0.4) 2.1 0.7 7.3 (5.5-9.4) 6.7 (3.0-15.0)
RYK-TG 2.2 (1.7-2.8) 138.5 (63.1-468.9) —0.4(0.1)  13(0.1) 1.0 09  7.3(5.1-9.8) 26.6 (8.5-84.9)
NWL-TG 3.2 (2.2-5.0) 30.5 (14.2-165.7) —1.2(0.2) 2.4 (0.3) 8.5 0.1 10.7 (8.0-13.4) 5.9 (2.8-12.6)
HBD-TG 6.0 (4.8-7.9) 151.0 (76.4-422.8) ~13(02) 17(02) 23 0.6 20.0(142-26.8)  29.0 (10.4-82.5)
GRW-TG 3.1(2.1-4.7) 42.0 (18.9-222.8) —1.0 (0.1) 2.1(0.2) 7.1 0.1 10.3 (7.7-13.2) 8.1(3.7-18.1)
Notes.

*significant difference between LDsj or LDy values of field- and Lab-TG strains based on 95% CI of the ratio did not include one.
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Table 2 Effectiveness of pretreatment with either PBO or DEF 2 h before application of pirimiphos-methyl to laboratory and field strains of Trogoderma granarium.

Insecticide Strain LDsy (95% CI) LDy (95% CI) Fit of probit line Synergism Synergism

(mg/kg) (mg/kg) ratio atLDs, ratio at LDy

(95% CI) (95% CI)
Intercept  Slope x2 P
(SE) (df =4)

Pirimiphos-methyl+PBO Lab-TG 1.2 (1.0-1.5) 11.6 (7.7-21.0) —0.2 (0.1) 2.4(0.2) 2.4 0.7 1.1 (0.8-1.3) 1.1 (0.5-2.0)
Pirimiphos-methyl+DEF  Lab-TG 1.2 (0.9-1.7) 9.5 (5.1-33.4) —03(0.1) 2.6(03) 44 04 1.1(0.8-12)  1.4(0.7-2.3)
Pirimiphos-methyl+PBO LHR-TG 19.7 (16.4-23.2) 274.3 (166.1-580.7) —2.6 (0.3) 2.0 (0.2) 0.7 0.9 1.6 (1.2-2.1) 2.1(0.9-4.9)
Pirimiphos-methyl+DEF ~ LHR-TG ~ 17.5 (12.8-24.4)  181.4 (92.5-693.1) ~2.8(02) 23(03) 3.7 04 1.8(1.4-2.4)  3.1(1.4-6.8)
Pirimiphos-methyl+PBO MBD-TG 17.4 (13.9-20.4) 454.9 (234.2-1,307.1) —2.0(0.3) 1.6 (0.2) 0.4 0.9 1.5 (1.1-2.1) 2.2 (1.2-4.9)
Pirimiphos-methyl+DEF ~ MBD-TG  15.9 (11.3-22.3) 2752 (123.8—1,393.0) —2.3(04) 1.9(0.3) 3.1 05 1.7(12-23) 3.6 (1.3-10.3)
Pirimiphos-methyl+PBO RPR-TG 21.8 (15.7-32.1) 323.7 (142.7-1,774.5) —2.7 (0.3) 2.0 (0.4) 3.4 0.5 1.8 (1.4-2.4) 2.8 (1.1-7.4)
Pirimiphos-methyl+DEF ~ RPR-TG  23.6 (19.0-30.1)  577.7 (289.8-1,730.9)  —2.3(02) 1.7(0.2) 2.1 07 17(12-23) 1.6 (0.5-4.8)
Pirimiphos-methyl+PBO  RYK-TG 19.8 (15.9-25.0) 497.2 (253.8-1,448.4) —2.2(0.3) 1.7 (0.2) 2.1 0.7 2.2(1.6-3.1) 2.5(1.3-7.9)
Pirimiphos-methyl+DEF RYK-TG 19.3 (16.0-23.6) 291.4 (173.6-634.5) —2.5(0.3) 2.0 (0.2) 2.4 0.7 2.3 (1.7-3.1) 4.2 (1.5-11.7)
Pirimiphos-methyl+PBO ~ NWL-TG  14.8 (11.9-18.3)  341.2 (185.5-886.3) ~19(03) 1.7(02) 1.3 09 1.8(1.32.4) 2.8(1.4-8.6)
Pirimiphos-methyl+DEF NWL-TG 11.9 (7.2-18.3) 229.8 (90.0-2.508.6) —2.0(0.3) 1.8 (0.3) 4.7 0.3 2.2 (1.6-2.9) 4.2 (1.5-12.0)
Pirimiphos-methyl+PBO ~ HBD-TG  16.4 (13.3-20.2)  328.3 (184.0-801.5) —22(02) 1.8(04) 23 07 27(20-37)  2.6(1.1-6.9)
Pirimiphos-methyl+DEF HBD-TG 17.6 (14.2-22.0) 423.1 (222.9-1.161.5) —2.1(0.3) 1.7 (0.2) 1.0 0.9 2.6 (1.9-3.5) 2.0 (0.7-5.7)
Pirimiphos-methyl+PBO  GRW-TG  14.1 (9.9-19.9)  142.9 (72.3-598.0) —27(03) 23(02) 43 04 35(2.6-4.8)  14.8 (4.9-44.2)
Pirimiphos-methyl+DEF GRW-TG  20.1 (14.2-30.0) 219.3 (102.0-1.179.5) —2.9(0.3) 2.2(0.2) 4.5 04 25(1.8-34) 9.6 (3.1-29.4)

Notes.

*synergism ratio calculated by dividing LDsq or LDgg of pirimiphos-methyl alone with the LDsq or LDgg of pirimiphos-methyl + PBO or DEF.
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Table 3 Effectiveness of pretreatment with either PBO or DEF 2 h before application of alphacypermethrin to laboratory and field strains of Trogoderma granarium.

Insecticide Strain LDs, LDy Fit of probit line Synergism Synergism
(95% CI) (95% CI) ratio” ratio”
(mg/kg) (mg/kg) at LD;, at LDy
(95% CI) (95% CI)
Intercept Slope x2 P
(SE) (df =4)

Alpha-cypermethrin +PBO  Lab-TG 1.1 (0.7-1.3) 10.2 (6.1-24.3) —0.1(0.1) 23(0.2) 5.0 0.3 0.8(0.7-1.1) 1.1 (0.5-1.9)
Alpha-cypermethrin +DEF  Lab-TG 0.9 (0.6-1.2) 8.2 (5.0-18.0) 0.1(0.1) 24(02) 46 03  1.0(0.8-1.3) 1.3 (0.7-2.4)
Alpha-cypermethrin +PBO  LHR-TG 35.2 (27.3-47.0) 2,307 (969.4-8,998.1) —1.9(0.2) 1.3(0.1) 1.6 0.8 1.0(0.7-1.5) 0.5(0.1-1.7)
Alpha-cypermethrin +DEF ~ LHR-TG ~ 36.0 (29.3-45.1)  900.1 (495.5-2,152.9) —26(03) 17(02) 05 09 1.0(0.7-1.3)  1.2(0.4-3.3)
Alpha-cypermethrin +PBO  MBD-TG  28.9 (24.0-35.1)  493.6 (305.2-970.4) —2.7(0.3) 1.9(0.2) 32 0.5 1.0(0.5-1.5) 0.9 (0.4-4.0)
Alpha-cypermethrin +DEF ~ MBD-TG ~ 30.4 (23.5-39.9)  326.9 (185.7-832.2) —33(0.3) 23(03) 47 03  1.0(0.7-12)  1.4(0.6-2.8)
Alpha-cypermethrin +PBO  RPR-TG 164 (13.9-19.4)  176.7 (122.1-294.0) —27(03)  23(0.1) 0.6 09  09(0.7-1.5)  1.4(0.7-2.7)
Alpha-cypermethrin +DEF RPR-TG 153 (10.6-21.3)  221.3(111.8-795.4) —2.4(0.3) 2.0 (0.2) 6.7 0.2 1.0 (0.8-1.3) 1.1 (0.5-2.3)
Alpha-cypermethrin +PBO ~ RYK-TG 421 (31.4-60.3)  5,116.4 (1,698.8-31,969.0) —1.8(0.2)  1.1(0.1) 2.1 07 1.0(0.6-1.4) 0.2 (0.0-1.0)
Alpha-cypermethrin +DEF RYK-TG 30.0 (21.6-43.1) 762.6 (326.6-3,590.0) —2.4(0.3) 1.7 (0.2) 5.0 0.3 1.4 (0.9-1.8) 1.3 (0.5-3.7)
Alpha-cypermethrin +PBO  NWL-TG  22.6 (18.8-27.2)  349.8 (224.1-651.1) —27(02) 2.0(04) 3.6 05 1.3(09-1.6) 1.2 (0.6-2.6)
Alpha-cypermethrin +DEF ~ NWL-TG  25.7 (15.5-44.8)  469.2 (169.4-6,144.2) —2.6(0.2) 1.8(0.2) 84 0.1 1.1 (0.8-1.5) 0.9 (0.4-2.0)
Alpha-cypermethrin +PBO ~ HBD-TG 247 (17.3-35.8)  471.6 (211.0-2,183.0) —25(02) 1.8(0.1) 6.5 02 1.1(0.8-1.4) 0.87 (0.3-1.9)
Alpha-cypermethrin +DEF HBD-TG 22.9(13.1-41.4)  431.6 (149.3-7,719.5) —2.5(0.2) 1.8 (0.2) 8.7 0.1 1.2 (0.6-1.6) 0.9 (0.4-2.1)
Alpha-cypermethrin +PBO  GRW-TG  23.1 (19.0-27.9)  432.0 (266.7-854.1) —25(03) 1.8(02) 22 0.7 1.2(0.9-1.6) 2.2 (0.8-5.8)
Alpha-cypermethrin +DEF ~ GRW-TG  22.4 (18.1-27.7)  629.8 (354.0-1,454.7) —2.2(0.2) 1.6 (0.1) 3.6 0.5 1.2(0.8-1.6) 1.5 (0.5-4.3)

Notes.
*synergism ratio calculated by dividing LDsy or LDgg of alpha-cypermethrin alone with the LDsy or LDgg of alpha-cypermethrin + PBO or DEF.
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Table 4 Effectiveness of pretreatment with either PBO or DEF 2 h before application of spinetoram to laboratory and field strains of Trogoderma granarium.

*synergism ratio calculated by dividing LDsy or LDgg of spinetoram alone with the LDsq or LDy of spinetoram + PBO or DEF.

Insecticide Strain LDs, LDy Fit of probit line Synergism Synergism
(95% CI) (95% CI) ratio’ ratio’
(mg/kg) (mg/kg) at LDs, at LDgy
(95% CI) (95% CI)
Intercept Slope (SE) x2 P
(df =4)
Spinetoram+PBO Lab-TG 0.3 (0.3-0.4) 3.7 (2.4-6.7) 1.1 (0.1) 2.2(0.2) 1.4 0.9 1.0 (0.7-1.2) 1.4 (0.6-2.7)
Spinetoram+DEF Lab-TG 0.3(0.1-0.4) 6.0 (3.5-13.9) 0.9 (0.1) 1.8 (0.3) 1.7 0.9 1.0(0.7-1.2) 0.9 (0.3-1.8)
Spinetoram+PBO LHR-TG 2.1(1.4-3.4) 65.8 (21.7-875.9) —0.5(0.1) 1.6 (0.2) 3.2 0.5 1.7 (0.8-2.3) 1.0 (0.3-3.0)
Spinetoram+DEF LHR-TG 3.4 (2.6-4.8) 117.1 (48.8-514.6) —0.8(0.1) 1.5 (0.2) 0.8 0.9 1L1(0.7-1.5)  0.5(0.2-1.9)
Spinetoram+PBO MBD-TG 2.0 (1.6-2.6) 51.9 (26.4-152.1) —0.5(0.1) 1.7 (0.2) 2.9 0.6 1.2 (0.9-1.6) 1.0 (0.4-2.9)
Spinetoram+DEF MBD-TG 1.8 (0.9-4.1)  43.8(11.2-110.3) —0.4(0.1) 1.7 (0.3) 8.6 0.1 1.3 (0.8-1.8) 1.2 (0.4-3.3)
Spinetoram+PBO RPR-TG 2.3 (1.8-3.0) 80.5 (36.0-306.0) —0.5(0.1) 1.5 (0.2) 0.1 1.0 1.0 (0.7-1.3) 0.4 (0.1-1.4)
Spinetoram+DEF RPR-TG 1.8 (1.0-3.3)  22.0(8.0-653.2) —~0.5(0.1) 2.2(0.2) 8.8 0.1 1.2 (0.9-1.6) 1.6 (0.7-3.4)
Spinetoram+PBO  RYK-TG 1.8 (1.4-2.3)  64.7 (29.8-232.7) —0.4(0.1) 1.5 (0.2) 0.2 1.0 12(0.7-1.8)  2.1(0.5-8.5)
Spinetoram+DEF RYK-TG 1.7 (1.4-2.1) 39.0 (21.1-102.0) —0.4 (0.1) 1.7 (0.2) 0.1 1.0 1.3 (0.9-1.7) 2.2 (0.8-12.2)
Spinetoram+PBO  NWL-TG 2.7 (2.2-3.6)  68.7 (33.3-218.8) 0.7 (0.1) 1.7 (0.2) 2.5 0.6 12(0.8-1.6) 0.4 (0.2-1.2)
Spinetoram+DEF NWL-TG 2.6 (2.1-3.7) 132.7 (51.0-698.3) —0.6 (0.1) 1.4 (0.2) 2.0 0.7 1.2 (0.6-1.7) 0.2 (0.1-0.9)
Spinetoram+PBO  HBD-TG 3.4 (2.6-5.0) 108.9 (46.5-455.6) —~0.8(0.1) 1.5 (0.3) 0.3 1.0 1.8 (0.8-2.6) 1.4 (0.4-5.5)
Spinetoram+DEF HBD-TG 3.4(2.9-4.2) 34.1 (20.8-72.5) —1.3(0.1) 2.3(0.3) 2.6 0.6 1.8 (0.6-2.4) 4.4 (0.9-10.4)
Spinetoram+PBO ~ GRW-TG 2.7 (2.3-3.4)  34.4(20.5-75.1) ~0.9(0.1) 2.1(0.2) 2.6 0.6 1.1 (0.9-1.5) 1.2 (0.5-2.8)
Spinetoram+DEF GRW-TG 2.8 (1.8-5.1) 39.1 (14.2-614.1) —0.8 (0.2) 2.0 (0.2) 5.6 0.2 1.1 (0.9-1.4) 1.1 (0.4-2.5)
Notes.
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DISCUSSION

For the effective management of stored insect pests, it is crucial to determine susceptibility to
insecticides in different laboratory and field strains of a particular pest species (Boyer, Zhang
& Lempériere, 2012; Yao et al., 2019). This study investigated the variation in susceptibility
to pirimiphos-methyl, alpha-cypermethrin and spinetoram among different field strains of
T. granarium. The results of the present study revealed differential susceptibility to all the
insecticides in different field strains of T. granarium. Among all the strains of T. granarium,
the Lab-TG was the most susceptible one to all the insecticides tested. Overall, field strains
exhibited the lowest susceptibility to pirimiphos-methyl and alpha-cypermethrin. In
contrast, spinetoram was the most toxic insecticide to all field strains and the laboratory
strain of T. granarium than pirimiphos-methyl and alpha-cypermethrin. Compared to
the Lab-TG strain, field strains exhibited 19.9 to 162.3 fold resistance against pirimiphos-
methyl, 12.3 to 95.2 fold resistance against alpha-cypermethrin, and 5.9 to 29.0 resistance
against spinetoram.

Organophosphate and pyrethroid insecticides have been in practice to manage stored
insect pests in Pakistan for the past four decades (Ali, 2018). Hence, this could be the most
probable reason for developing high levels of resistance to pirimiphos-methyl and alpha-
cypermethrin in field strains of T. granarium in Pakistan. The use of spinetoram against
stored insect pests has not yet been recommended by the pest management authorities
in Pakistan. However, spinetoram and another spinosyn (spinosad) are recommended
against several insect pests of field crops in Pakistan (Ali, 2018). It is assumed that the
most probable reasons for showing resistance against spinetoram in T. granarium could
be due to unintentional exposure to spinetoram at field levels and/or due to the cross-
resistance phenomenon (Sparks et al., 2012; Khan, 2020c). Ribeiro et al. (2003) reported
that resistance in stored insect species to commonly used insecticides in storage conditions
can lead to cross-resistance to insecticides not currently in use. In addition, from the
widespread application of organophosphate, pyrethroid, and fumigant insecticides in
Pakistan for controlling storage pests may contribute to resistance and cross-resistance to
other insecticides. However, it should be confirmed in further studies by selecting resistant
strains of T. granarium under controlled conditions and conduct analyses of mode of
resistance, genetics, and inheritance pattern.

Variations in susceptibility to insecticides is a spatio-temporal phenomenon i.e., it
changes with space and time (Chen et al., 2022; Liao et al., 2024). The findings of the
present work revealed differential susceptibility to insecticides in different laboratory
and field strains of T. granarium collected from various localities. These findings align
with previous studies showing variable insecticide susceptibility among strains of a
particular insect species with different geographical origins. For instance, Attia et al.
(2020) reported variable susceptibility to cypermethrin, malathion and pirimiphos-methyl
in laboratory and Alexandria strains of Tribolium castaneum (Herbst) and Sitophilus oryzae
(Linnaeus). The LCs( values of cypermethrin, malathion and pirimiphos-methyl were
14.3, 1.9 and 0.6 mg/ml, respectively, for the susceptible strain as compared to 32.5, 51.0
and 171.9 mg/ml, respectively, for the Alexandria strain of T. castaneum. Similarly, the
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LCs values of cypermethrin, malathion and pirimiphos-methyl were 0.2, 0.3 and 0.1
mg/ml, respectively, for the susceptible strain as compared to 32.5, 51.0 and 171.9 mg/ml,
respectively, for the Alexandria strain of S. oryzae. There was a significant difference in
susceptibility to spinosad and deltamethrin in different field strains of Rhyzopertha dominica
(Fabricius) from Taiwan (Chen ¢ Chen, 2013). Variable susceptibility to indoxacarb
insecticide has been reported in different Pakistani-field strains of R. dominica, S. oryzae,
T. castaneum, Oryzaephilus surinamensis (L.) and S. zeamais (Motschulsky) (Khan, 2020c).
Susceptibility to deltamethrin varied significantly among different laboratory and field
strains of T. granarium (Feroz et al., 2020). Khan (2021) reported variable susceptibility
to pirimiphos-methyl, permethrin, and spinosad in geographically distinct strains of T.
granarium from Pakistan, which differed from those studied in the present work. There
could be different reasons for the variable susceptibility response of different strains of a
particular insect species. For instance, geographically distinct strains often exhibit unique
histories of biotic and abiotic stresses, varying degree of pesticide exposure, and biological
differences. These factors, coupled with variations in their ability to detoxify or metabolize
insecticides, can result in differential responses to the same insecticide (Baliota et al., 2022;
Chen et al., 2022; Khan, 2023; Liao et al., 2024).

Pirimiphos-methyl, alpha-cypermethrin, and spinetoram have been reported as
potential candidates for managing various stored insect pests. For example, Huang
& Subramanyam (2005) reported effectiveness of pirimiphos-methyl for controlling
T. castaneum, R. dominica, Plodia interpunctella (Hiibner) and Cryptolestes ferrugineus
(Stephens). Rumbos et al. (2018) evaluated capsule suspension and emulsifiable concentrate
formulations of pirimiphos-methyl against R. dominica, S. granarius and T. confusum.
In that study pirimphos-methyl was the most effective insecticide against S. granarius
compared to the other tested species. Kavallieratos et al. (2017b) evaluated pirimiphos-
methyl, alpha-cypermethrin, or chlorfenapyr-treated polypropylene bags for the control
of R. dominica, S. oryzae and Prostephanus truncatus (Horn), and reported satisfactory
control of all tested species. In another study, alpha-cypermethrin was proved effective
in controlling Tenebrio molitor Linnaeus (Athanassiou et al., 2015). Spinetoram is also a
potential insecticide for controlling stored insect pests (Vassilakos ¢~ Athanassiou, 2023).
For instance, Vassilakos et al. (2012) evaluated spinetoram against R. dominica, S. oryzae,
P. truncatus, O. surinamensis, T. confusum and S. granarius, and found variable efficacy
against the target species. In that study, R. dominica and P. truncatus were more susceptible
species than the rest of the species tested. However, studies also revealed that continuous
use of insecticides may develop resistance in insect pests with the passage of time (Collins ¢
Schlipalius, 2018; Attia et al., 2020; Nayak et al., 2020; Khan, Haider & Khan, 2022; Zubair
et al., 2022). Varying levels of resistance to pirimiphos-methyl, alpha-cypermethrin and
spinetoram in T. granarium have been recorded in the present work. Resistance to
pirimiphos-methyl and alpha-cypermethrin in T. granarium was expected due to the
long history of organophosphate and pyrethroid insecticides usage in Pakistan for the
management of stored insect pests (Ali, 2018). Although spinetoram is not yet registered
for the management of stored insect pests in Pakistan, low levels of resistance to it may
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result from cross-resistance. Ribeiro et al. (2003) also found cross-resistance to insecticides
in field strains of S. zeamais.

There are four major mechanisms responsible for the development of insecticide
resistance in insect pests: behavioral, penetration, altered target site and metabolic
(Siddiqui et al., 2023). Of these, metabolic mechanism is the is the most common resistance
mechanism and often presents the greatest challenge (Karaagag, 2012; Nauen et al., 2019).
Insecticides tested in the present study exhibit different modes of action within insect
bodies. For example, pirimiphos-methyl is a synaptic insecticide that acts by inhibiting
acetylcholinesterase; alpha-cypermethrin is an axonic poison that causes opening of the
sodium channels for an extended period; whereas, spinetoram acts by disrupting the
GABA-gated chloride channels and the nicotinic acetylcholine receptors in insects (Sparks
¢ Nauen, 2015; Sparks et al., 2021). The evidence of synergized susceptibility to insecticides
when used in binary combinations with enzyme inhibitors, such as PBO and DEF, provides
a quick way to assess the presence of metabolic mechanism of resistance in resistant
insect species (Ribeiro et al., 2003; Espinosa et al., 2005; Limoee et al., 2007; Paksa, Ladoni &
Nasirian, 20125 Yao et al., 2019; Khan, 2020a). In the present study, synergism bioassays of
pirimiphos-methyl, alpha-cypermethrin or spinetoram in the presence of either PBO or
DEF revealed that resistance to pirimiphos-methyl in T. granarium could be attributed due
to the metabolic mechanism of resistance. Susceptibility to pirimiphos-methyl significantly
increased in the presence of PBO or DEF compared to pirimiphos-methyl alone. However,
susceptibility to alpha-cypermethrin and spinetoram did not change significantly in
the presence of enzyme inhibitors, which suggest the probability of mechanism(s) of
resistance other than the metabolic mechanism. For example, the synergists PBO and
DEF did not suppress the resistance of T. granarium to alpha-cypermethrin. Thus, an
altered target-site or knockdown resistance (kdr) mechanism was probably involved in
resistance to alpha-cypermethrin. Synergized susceptibility to pirimiphos-methyl and
non-synergized susceptibility to another pyrethroid and spinosyn (i.e., permethrin and
spinosad, respectively) have also been reported in some other strains of T. granarium
(Khan, 2021). However, some studies have also reported an antagonistic effect of PBO on
the susceptibility to pirimiphos-methyl in various insect species (Guedes et al., 1997; Syme
et al., 2022). Further in vitro studies could provide an insight into the mechanism(s) of
insecticide resistance in T. granarium.

CONCLUSION

In conclusion, the findings of the present study exhibited differential susceptibility

and resistance to pirimiphos-methyl, alpha-cypermethrin, and spinetoram in different
laboratory and field strains of T. granarium. Field strains exhibited relatively higher levels
of resistance to pirimiphos-methyl and alpha-cypermethrin compared to spinetoram.
Cautious use of insecticides along with integration of non-chemical measures to manage T.
granarium could delay the development of resistance to insecticide. The high susceptibility
of laboratory and field strains of T. granarium to spinetoram provides a window to

use this product in rotation with others as an option in the integrated management
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program. However, effective management of insecticide resistance in T. granarium requires
understanding the genetic basis, mode of inheritance, and resistance mechanisms, which
should be addressed in future studies.
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