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ABSTRACT

Structured RNAs have emerged as a major component of cellular regulatory systems,
but their mechanism of action is often poorly understood. Riboswitches are structured
RNAs that allosterically regulate gene expression through any of several different
mechanisms. In vitro approaches to characterizing this mechanism are costly, low-
throughput, and must be repeated for each individual riboswitch locus of interest.
Bioinformatic methods promise higher throughput; despite robust computational
identification of riboswitches, however, computational classification of the riboswitch
mechanism has so far been both model-bound, relying on identification of sequence
motifs known to be required for specific models of riboswitch activity, and empirically
untested, with predictions far outpacing biological validation. Here, we introduce
TaRTLEt (Transcriptionally-active Riboswitch Tracer Leveraging Edge deTection),
a new high-throughput tool that recovers in vivo patterns of riboswitch-mediated
transcription termination from paired-end RNA-seq data using edge detection meth-
ods. TaRTLEt successfully extracts transcription termination signals despite numerous
sources of biological and technical noise. We tested the effectiveness of TaRTLEt on
riboswitches identified from a wide range of sequenced bacterial taxa by utilizing pub-
licly available paired-end RNA-seq readsets, finding broad agreement with previously
published in vitro characterization results. In addition, we use TaRTLEt to infer the in
vivo regulatory mechanism of uncharacterized riboswitch loci from existing public data.
TaRTLEt is available on GitHub and can be applied to paired-end RNA-seq datasets
from isolates or complex communities.

Subjects Bioinformatics, Microbiology, Molecular Biology
Keywords Riboswitch, Transcriptomics, Edge-detection, Mechanism

INTRODUCTION

Riboswitches are highly conserved, widespread gene regulatory elements that exploit
RNA’s potential for complex structure to build ligand-responsive differential regulation
of gene expression directly into an mRNA. Encoded in the untranslated regions (UTRs)
of genes, riboswitches are highly specific aptamers for a wide variety of small-molecule
ligands. In the two decades since the discovery of the first riboswitch (Mironov et al.,
2002), we have learned that riboswitches are compact, specific, and responsive to transient
changes; that they often regulate critical organism functions; and that they operate via
diverse and complex modes (Mandal et al., 2003; Amadei et al., 2023; Sudarsan et al.,
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2005). Given these properties, riboswitches have been investigated for uses ranging from
synthetic sensors (Wachsmuth et al., 2013; Boussebayle et al., 2019), to logic elements in
complex gene expression systems (Hanson et al., 2003; Groher ¢ Suess, 2014), to potential
targets for antimicrobials and novel therapeutics (Blount ¢ Breaker, 2006; Ellinger et

al., 2023; Giarimoglou et al., 2022). Yet our understanding of natural riboswitch function
remains patchy, with high-confidence computational identification of candidate riboswitch
sequences and ligands (Nawrocki, 2014; Nawrocki ¢ Eddy, 2013a; Chang et al., 2009; Eddy
& Durbin, 1994; Yao et al., 2007; Stav et al., 2019) far outpacing our understanding of their
activity in vivo.

This gap is widened by the breadth of riboswitches’ regulatory repertoire. Biochemical
methods such as transcript fragment length and ribosome binding assays (Winkler et al.,
2003; Nou ¢» Kadner, 2000; Welz ¢ Breaker, 2007; Hollands et al., 2012) have identified
an overall pattern of riboswitch regulation: riboswitch-mediated allosteric regulation of
expression begins with selective binding of a ligand to the non-coding aptamer domain,
stabilizing the domain’s conformation (Gilbert et al., 2006) and altering the structure of
the expression platform. But this broad pattern includes riboswitches that affect any
of several different levels of gene expression. Most straightforwardly, riboswitch ligand
binding can sequester or expose conventional expression control logic elements like
intrinsic terminators/antiterminators (Mironov et al., 2002; Mandal ¢» Breaker, 2004) or
Rho-binding sites (Hollands et al., 2012) to alter mRNA production, or translation start
sites to alter protein synthesis (Breaker, 2018). However, riboswitch mechanisms can also
go beyond interaction with direct control architectures. Thiamine pyrophosphate (TPP)
riboswitches in the fungus Neurospora crassa alter gene expression by controlling mRNA
splicing (Cheah et al., 2007); the glmS riboswitch-ribozyme in Bacillus subtilis recruits
exonucleases for transcript degradation by catalyzing upstream mRNA cleavage (Collins et
al., 2007; Klein ¢ Ferré-D’Amaré, 2006); the Escherichia coli lysC riboswitch both sequesters
the Shine-Dalgarno (SD) sequence and exposes an RNase E binding site (Caron et al., 2012);
and a SAM riboswitch in Listeria monocytogenes is capable of acting in trans on a distal
target (Loh et al., 2009), among numerous other examples documented to date (Bédard,
Hien ¢ Lafontaine, 2020; Ariza-Mateos, Nuthanakanti ¢ Serganov, 2021).

To understand the role riboswitches play in a given microbe’s physiology, we need to
understand at what regulatory level each acts. Regulatory mechanisms have been established
for at least one member of the riboswitch families binding roughly a dozen ligands, so that
in principle we might expect to infer the mechanism used by other members of the same
families. But even in the small set of families with >2 biochemically characterized members,
we find cases where different members of a family act by different mechanisms (Barrick ¢
Breaker, 2007). Thus, robust identification of riboswitch ligands is insufficient to predict
regulatory mechanism even for comparatively well-studied riboswitch families, while for
many more families, no representative riboswitch has yet been characterized in vitro. In
silico methods seeking to fill this gap have largely relied on DNA-level signals, using the
computation of folding energies (Gong et al., 2017) coupled with the identification of
SD sequences, U-rich terminator motifs, or Rho-binding sites to determine states that
could alter transcription/translation efficiency (Barrick ¢ Breaker, 2007; Sun ¢ Rodionov,
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2014). While these analytical methods can produce a priori predictions about riboswitch
regulatory modes, they leave unexplored a more direct readout of the realized activity of
riboswitches within living cells: the distribution of fragments captured in RNA-seq data.

Here, we describe the new tool TaRTLEt (Transcriptionally-active Riboswitch Tracer
Leveraging Edge deTection), which applies high-throughput computational approaches to
RNA-seq data to determine which of the known riboswitches identified in a (meta)omic
dataset show evidence of regulating gene expression by altering transcription termination
efficiency. We hypothesized that different experimental conditions would, directly or
indirectly, evoke changes in riboswitch ligand concentrations that might alter riboswitch
regulatory state. Under this hypothesis, we predicted that, when the range of conditions
tested included both above- and below-threshold ligand concentrations, transcription-
attenuating riboswitches would produce a distinctive coverage pattern at riboswitch
loci in paired-end RNA-seq datasets; and, further, that this pattern could be robustly
identified using computational approaches developed for edge detection (Canny, 1986).
Importantly, this pattern should support distinguishing riboswitch-mediated transcription
termination from the broader set of changes in gene expression that could be evoked by
other transcriptional regulators (e.g., transcription factor proteins) acting at these loci. We
show that the occurrence of this pattern at riboswitch loci identified in publicly available
transcriptomic datasets is in good agreement with existing in vitro characterization of
riboswitch regulatory modes. By extracting information from the traces of riboswitch
activity that are left in the RNA pool of cells actively regulating gene expression, our
approach complements and extends earlier methods based on inference from DNA
sequence. Our high-throughput approach can identify signatures of riboswitch-mediated
transcription termination in existing or new (meta)transcriptomic data, greatly expanding
not only the set of riboswitch loci with data-driven predictions of regulatory mode but
also our understanding of the range of growth conditions under which each transcription-
terminating riboswitch is active.

MATERIALS & METHODS

Portions of this text were previously published as part of a preprint (https:/doi.org/10.1101/
2024.10.15.618519).

Theoretical framework
Predicted transcript pools for transcriptionally active riboswitches

Riboswitches are often associated with transcription start sites (TSS), allowing transcription
start site analysis to serve as a strategy for identifying novel riboswitches and regulatory
RNA (Rosinski-Chupin, Soutourina & Martin-Verstraete, 2014; Rosinski-Chupin et al.,
2019; Adams et al., 2017; Yu, Vogel ¢ Forstner, 2018). We reasoned that a transcription-
terminating riboswitch in the 5° UTR of a gene should produce different patterns of
RNA-seq read coverage in the ON vs. OFF state (Figs. 1A, 1B). In either case, transcription
should begin at the TSS and proceed through the riboswitch itself. In the OFF state,
formation of the transcription-terminator structure should truncate transcripts near the
riboswitch 3" end (Fig. 1A top). By contrast, in the ON state, RNA polymerase should
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Figure 1 Theoretical framework for TaRTLEt’s approach. (A) At riboswitches that act by modulat-
ing transcription termination, a single cell’s transcript abundance profile differs sharply between the ri-
boswitch OFF and ON states. (B) When RNA is extracted from a population of cells for sequencing, cov-
erage profiles are made noisier by a combination of biological (e.g., subpopulations in ON states alongside
others in OFF states) and technological factors (e.g., transcript fragmentation, sequencing of a subset of
the fragment pool). (C) Weighted convolution on the signed sum of fragment termini attenuates the noise
signal, making transcription termination signals readily detectable even when the population-level read
coverage does not fall to zero.

Full-size Gl DOI: 10.7717/peerj.19418/fig-1

read through, producing transcripts that extend well into the downstream gene (Fig. 1A
bottom). A riboswitch that produces these two patterns under different conditions exhibits
behavior consistent with riboswitch-mediated conditional regulation of transcription
termination.

Fragment distributions and terminal pileups

What relation does the coverage map of sequencing reads bear to the pool of transcripts?
Each RNA-seq read represents some region of a transcript, but because transcripts are
typically fragmented prior to sequencing we know only that the 5’ end of a read must
align with a fragment terminus and not whether that fragment is internal or terminal to a
transcript. Fragmentation often, as in the validation dataset used here, results in a random
biased distribution (Fig. S1) of fragment sizes. Importantly, however, the new 3’ and 5’
termini produced by each fragmentation event come in neighboring pairs. Even though
the total number of fragment termini, and thus the total number of read termini, may far
exceed the number of original transcript termini, we can still extract a transcript size signal
by considering pileups of read termini. Because paired-end sequencing generates reads
that represent both ends of each sequenced fragment, the resulting data offers a higher
signal:noise ratio than single-end sequencing: there, fragmentation is more extensive and
at most one terminus of each fragment is represented in the read set, so that comparable
sequencing depth yields greater stochastic fluctuations in the set of termini captured. We
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therefore designed TaRTLEt v1.0 to restrict analysis to paired-end datasets. Future versions
could be extended to analyze appropriately deep single-end datasets.

We reasoned that a convolution approach would allow us to both extract the needed
transcript size signal and smooth the overall signal. Convolution is heavily used in
applications like edge-detection algorithms (Canny, 1986; Albawi, Mohammed ¢ Al-Zawi,
2017), where it can act as an attenuating filter for neighboring signals. Here, we want
neighboring pileups of 3’ and 5 read termini to drop out, filtering out transcript-internal
fragmentation to reveal the transcript-terminal signal. Tracking 3’ ends as +1 and 5" ends as
—1, we can first compute the signed sum of read termini for each position in the reference
(Fig. 1C), then calculate a weighted average of surrounding sums for each position. We
call the resulting convolution’s features “peaks”, and we seek to identify peaks at which a
pileup of 3’ termini is not accompanied by a pileup of 5’ termini immediately downstream.

The choice of kernel function for computation of the weighted average affects the
filter’s selectivity for changes in coverage. Rather than a flat uniform distribution, we chose
to use kernels constructed by discretizing a Gaussian distribution, such that tuning the
spread of this distribution (by the standard deviation o) tunes the filter’s selectivity for
how sharply coverage must change. Because sites of transcription termination, especially
intrinsic termination, are constrained (Roberts, 2019; Gusarov ¢ Nudler, 1999), riboswitch-
mediated transcription termination should produce a sharp drop in coverage. To match
this expectation, we might use a tight convolution (small o) kernel that attenuates peaks
arising from changes over >1-2 nt. However, both biological and technical factors (e.g.,
thermodynamic fluctuations; processes in library preparation, sequencing, and quality
control) are expected to broaden the biological signal to some degree. Through trial and
error, we chose a default o of 1.5 for kernel generation, corresponding to a filter that passes
coverage changes localized within a 6-nt region.

Regardless of the number of fragmentation events, the convolution always returns
non-zero peaks at positions with asymmetric pileups of 5" or 3’ termini. These surviving
peaks should represent a range of events: transcription termination should be relatively rare
and should cause a large, tightly centered coverage drop, giving rise to high, narrow peaks;
sporadic processes (e.g., artifacts in library prep or sequencing) should be relatively common
and yield lower, broader peaks. While these differences in peak shapes should provide an
opportunity to further refine the set of candidate peaks, the probability and details of
the processes generating background peaks may be sequence-dependent in as yet poorly
understood ways, complicating comparison to a global baseline. Instead, we reasoned that
we could collect a per-locus “noise set” of peaks within a defined neighborhood scaled to
riboswitch size. Fitting a two-dimensional Gaussian noise distribution to this collection
of peaks provides a basis for comparison, allowing us to robustly identify unusually sharp
peaks at each locus as candidate sites of riboswitch-mediated transcription termination.

Probing fragment-end distributions across treatments

For any of these sites to reveal conditional regulation by a transcription-terminating
riboswitch, the efficiency of termination (that is, the proportion of transcripts that
terminate) near the riboswitch 3’ end must vary across treatments that evoke ON and
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Figure 2 TaRTLEt pipeline for detection of transcription-terminating riboswitches in paired-end
RNA-seq data. Existing tools (top) are used to identify known riboswitch families in (meta)genomic data,
predict downstream open reading frames, and map RNA-seq reads to a reduced dataset of riboswitch
loci and their downstream regions. TaRTLEt then filters mapped reads by orientation and analyzes the
distribution of fragment termini, generating a signed sum of termini at each position and applying a
weighted convolution to attenuate the symmetric signals arising from mRNA fragmentation before
sequencing. Peaks in the convolution are clustered across conditions by genome position; then TaRTLEt
analyzes changes in fractional read coverage across each cluster to identify sites of condition-dependent
transcription termination. Locus plots are generated for each riboswitch locus under each experimental
condition represented in the RNA-seq data, to support per-locus per-condition calling of riboswitch ON
or OFF state; peak plots capture all experimental conditions, to support per-locus calling of riboswitch
regulatory mode.

Full-size B8 DOI: 10.7717/peerj.19418/fig-2

OFF states. For a riboswitch that acts by transcription termination, termination efficiency
should be low (low or no coverage drop) in the ON state and high (large coverage drop) in
the OFF state. We bound the region of interest for this search to a range of 0.5 xriboswitch
size both upstream and downstream of the riboswitch 3’ end and examine the fractional
coverage change (that is, (change in coverage across peak)/(average coverage depth across
entire riboswitch)) at each convolution peak in the region under each treatment condition.
To compare results at coincident peaks across treatment conditions, we account for
the possibility that peak location might shift slightly due to small variations in process
noise by clustering peak locations across treatment conditions (Fig. 2). Any cluster that
captures both ON and OFF states of a transcription-terminating riboswitch should exhibit
fractional coverage change with a mean that is significantly more negative and a variance
that is significantly larger than baseline (Figs. 2 and 3).
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Figure 3 Sample peak plot output of TaRTLEt, showing evidence of conditional transcription termina-
tion at a riboswitch 3’ end. For each riboswitch locus, the locus plot arising from each experimental con-
dition is convolved and fragment terminus peaks are detected. Each point shows the fractional coverage
change across one such peak. Colored lines connect peaks detected under the same experimental condi-
tions. Peak locations are shown relative to riboswitch size and 3’ end; that is, a peak at 0.1 on the x-axis lies
10% of the riboswitch length downstream of the riboswitch 3’ end. Peaks are clustered across experimen-
tal conditions based on x-position; ellipses mark peak clusters. All detected peaks are clustered, but only
clusters containing at least one transcription-termination peak are viable candidates. Significance testing
of the mean and variance of each such cluster’s fractional coverage drop identifies clusters consistent with
conditional transcription termination by the riboswitch locus (asterisk).

Full-size Gl DOL: 10.7717/peerj.19418/fig-3

TaRTLEt implementation

TaRTLEt is implemented in python v3.11 with a dedicated command-line interface (CLI).
Its usage does not require knowledge of python and the included conda environment
environment contains installations for any external CLI tools. For widespread utility, we
chose to incorporate a riboswitch identification pipeline into our approach, so that inputs
may be unannotated genomes/sequences; identified riboswitch loci are then submitted
to the mechanistic inference pipeline. A complete walk-through of TaRTLEt usage and
the analysis of data generated by TaRTLEt is available at the tool GitHub repository
(https:/github.com/lepton-7/artlet). The pipeline is summarized conceptually in Fig. 2 and
in more detail in Fig. S2.

Identification of riboswitches and open reading frames

Input sequences in FASTA format are processed through Infernal v1.1.5 (http:
Jleddylab.orginfernal) (Nawrocki & Eddy, 2013b) and Prodigal v2.6.3 (https:/github.
com/hyattpd/Prodigal) (Hyatt et al., 2010). For Infernal, each input sequence is passed
to cmscan using the --cut_ga --rfam --nohmmonly --noali --tblout options against
a comprehensive riboswitch covariance model of families compiled from the latest Rfam
collection (version 14.9 as of writing) (https:/rfam.org/) (Griffiths-Jones et al., 2003).
cmscan output is parsed to identify riboswitch loci for further processing. Prodigal is
called with the default output and translation options. For each identified riboswitch, the
downstream gene is identified from the Prodigal output and recorded for downstream
plot annotations. The downstream gene is defined as the first open reading frame past the
riboswitch 5" end and on the same strand. This definition captures open reading frames
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(ORFs) that overlap with part of the identified riboswitch sequence, in order to maximize
the likelihood of capturing ORFs that are biologically relevant to the riboswitch.

Riboswitch reference generation

To reduce computational requirements for transcript mapping, TaRTLEt trims input
genomic sequences back to riboswitch neighborhoods, producing reference sequences that
stretch from 1,000 nt upstream of each identified riboswitch locus to 1,000 nt downstream.
(For metagenomic inputs, where riboswitch loci may lie less than 1,000 nt from contig ends,
neighborhoods are permitted to be smaller or asymmetric.) We chose this neighborhood
size on the basis of common practice in paired-end sequencing library preparation, where
the target fragmentation size is often less than 1,000 nt to preserve base quality (Tan ef
al., 2019). Consequently, the generated reference neighborhoods are typically (96.61%
of riboswitch-aligned reads in our validation dataset) large enough to capture both a
riboswitch-aligned read and its paired-end mate. All references generated by TaRTLEt are
oriented 5'— 3’; references derived from (-) strand riboswitches are reverse complemented
before saving to file.

Reference alignment

RNA-seq reads are aligned to the generated riboswitch reference using HISAT2
(http:/dachwankimlab.github.iohisat2/) (Kim et al., 2019). HISAT2 was chosen for its fast
per-read alignment time, good parallel scaling, and acceptable alignment rates (Musich,
Cadle-Davidson & Osier, 2021). HISAT2 calls are made using the default options, but any
additional valid alignment options may be passed through the TaRTLEt interface. The
current TaRTLEt implementation requires that the input RNA-seq datasets be paired-end.
The resulting SAM files are converted to sorted BAMs for downstream processing.

We recommend running HISAT2 using the options --no-unal --score-min
L,0,—0.4. The use of --no-unal dramatically reduces output file sizes by omitting
unaligned reads. The use of --score-min L,@,—0.4 decreases stringency to allow reads
with alignment mismatches/soft-clipping to be included in the output; any alignment
errors are handled during downstream processing. The validation dataset presented here
was run using these parameters in addition to -p 40 (performance tuning with multiple
threads) and -t (wall-time logging).

Processing mapped reads

TaRTLEt heavily utilizes the pysam (https:/github.com/pysam-developers/pysam) library
(a python interface for samtools (Li et al., 2009) and htslib (Bonfield et al., 2021)) to
parse BAM files and generate alignment data objects for downstream data transformation.
Once mapped reads/read pairs have been collected from the sorted BAMs, they are filtered
to discard pairs in invalid orientations (RF, TANDEM, FFR, RRF), which may reflect
sequencing errors. Only pairs in the EQ and FR orientations, and pairs with only one
mapped read, are retained as valid. The EQ (“equal”) orientation denotes reads aligned
in opposite directions that overlap across their entire length, as is often the case when
the fragment sequenced is ~150 bp, comparable in scale to individual short reads. In
the FR orientation, the left-most aligned base (looking 5 — 3’ in the reference) is either
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shared between the F and R oriented reads or belongs only to the F oriented read, and the
right-most aligned base belongs exclusively to the R read.

Next, TaRTLEt generates fragment coverage pileups using the filtered set of reads
for every position in the reference sequence. Single reads (with unmapped mates) are
discarded during counting unless the --allow-single-reads flag is passed to TaRTLEt.
TaRTLEt tracks five types of coverage. Two can incorporate data from single reads if
included: “read coverage” counts bases directly mapped by a read, while “clipped fragment
coverage” counts bases mapped by HISAT2’s soft-clipped read regions. The remaining
three types require both mates to be mapped. “Overlapped fragment coverage” counts
bases overlapped by both mates; “inferred fragment coverage” counts unmapped bases
that lie between the mapped regions of the two mates; and “fragment termini coverage”
counts only the mapped base that is the origin of read synthesis, i.e., looking 5 — 3’ in the
reference, the left-most mapped base for an F read and right-most mapped base for an R
read. This last category captures the ends of sequenced fragments to feed into the signed
sum of termini for convolution analysis; we count the fragment terminus captured by the
F read as —1 and the fragment terminus captured by the R read as +1. Reads that have
soft-clipped regions are discarded from this step unless the -—allow-soft-clips flag is
specified. Fragment termini counts are removed from the read coverage and/or overlapped
coverage counts, and read coverage counts are removed from the overlapped coverage
counts, such that no mapped base is counted more than once. This ensures that counts
across all coverage types at a given position sum to the read depth at that position.

Finally, to ensure sufficient coverage for further analysis, riboswitch loci are filtered
based on the average read coverage across the length of the riboswitch. The coverage
threshold can be adjusted with the --min-cov-depth option; the validation presented
here uses the default value of 15.

Transformation and feature identification

Fragment termini coverage pileups are transformed using a convolution to extract
information about transcription starts and stops. TaRTLEt generates a 51-element
one-dimensional weighted kernel by discretizing a Gaussian probability density function
with o = 1.5. The weighted kernel is then applied to the fragment termini coverage array
through the convolution to generate an array of peaks corresponding to transcription
events. The convolution transforms coverage at each position into convolution amplitude
(arbitrary units).

TaRTLEt conducts simple peak detection as follows for a positive peak: a local
convolution amplitude maximum is defined as the peak “summit”. The peak region
covers all the bases on either side of the summit at which convolution amplitude (a) is
monotonically decreasing and (b) does not enter or cross a zero-region, defined as the
interval (—0.1,0.1). To delineate ambiguous shoulder regions between peaks, peak bounds
follow pythonic inclusive-exclusive convention where the left peak bound represents the
left-most valid base according to the monotonicity and zero-crossing criteria and the right
peak bound represents the first base that fails the criteria. Negative- and positive-amplitude
peaks are considered candidate transcription start and termination events, respectively.
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Next, TaRTLEt assesses candidate transcription-termination peaks individually to
determine which rise above background. Working with per-locus, per-condition
convolution plots, TaRTLEt compares each positive peak within a user-defined region
to a two-dimensional multivariate normal (MVN) distribution fitted to the widths and
amplitudes of each other peak in the region (the “noise set”). The region that feeds into the
noise set is defined relative to riboswitch length, with parameters defining the proportion
of the riboswitch that should be excluded at the 5" end and how far past the riboswitch
3’ end the region should stretch. (Our validation analysis used --ext-prop —0.3 1.0
to define a noise set region that excludes the first 30% of the riboswitch, includes the
remainder, and continues beyond the riboswitch 3" end to include a region equal in length
to the complete riboswitch.) The likelihood of drawing a given peak from the MVN is used
as a pseudo p-value, with a significance threshold of < 0.05. Peaks that pass this test and
exceed a user-configurable coverage change threshold (by default, a drop of >20% of the
mean coverage across the locus) are called as transcription termination events.

To facilitate biological interpretation of riboswitch activity, TaRTLEt then asks, for
each condition and each locus, whether any passing transcription-termination peaks were
observed. This within-condition check does not in itself offer evidence for riboswitch
regulation by transcription termination. Instead, it (1) feeds into the cluster-level calls
described below; (2) supports manual curation of results; and (3) allows the user to
ask, among the transcription-terminating riboswitches identified below, what set of
experimental conditions evoke the ON state vs. the OFF state.

Peak clustering and statistics

To detect differential transcription termination, TaRTLEt compares data from all treatment
conditions at each riboswitch locus. All peaks that fall within the riboswitch region of
interest (user-configurable; by default, within £ 0.5 x riboswitch size of the riboswitch 3’
end) under any condition are clustered by position to enable cross-condition comparisons.
The riboswitch 3’ end defines position 0, and peak positions are given relative to this site
as a fraction of the riboswitch size. For example, a position of —0.15 would indicate that
the peak is located 15% of the riboswitch size upstream of the riboswitch 3’ end. Clustering
is implemented via fclusterdata from the SciPy package and follows a cophenetic
distancing algorithm with complete linkage. The default (user-configurable) cophenetic
distance threshold of 0.04 was chosen through trial and error (Fig. S3).

Once peaks are assigned to clusters, cross-cluster comparisons at each locus are used
to test for condition-dependent transcription termination. Each peak is characterized
by the change in total fragment coverage across its bounds. The fractional coverage
change is defined as the difference in total coverage between the left and right bounds
of the peak, expressed as a fraction of the average total read coverage between the
5" and 3’ ends of the riboswitch. TaRTLEt performs a Mann—Whitney one-tailed U-test
(scipy.stats.mannwhitneyu) to compare each cluster’s fractional coverage change to
the mean fractional coverage change of all other peaks, to test whether the cluster mean is
more negative than the mean of the set of all other peaks.
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Testing for differences in cluster variance must account for bias from differences
in cluster sizes. TaRTLEt uses Levene’s test (scipy.stats.levene) to run pairwise
comparisons between the variance of a given cluster enclosing # peaks and that of random
samples of n peaks chosen without replacement from all other peaks at the same riboswitch
locus until the superset of peaks is exhausted or at least 60 comparisons have been made.
If the superset is exhausted before 60 comparisons are made, all peaks are replaced and the
clusters are randomly resampled to reach 60 comparisons. TaRTLEt returns the median of
the resulting 60 p-values for each peak cluster.

Finally, TaRTLEt combines peak- and cluster-level tests to assess significance. To be
called as showing evidence of condition-dependent transcription termination, a riboswitch
locus must have at least one cluster that (i) includes at least one significant transcription-
termination peak (i.e., distinct from the noise-set MVN at p < 0.05 and coverage drop
greater than or equal to the user-defined threshold; see previous section); (ii) passes the
Mann-Whitney U-test for mean fractional coverage change; and (iii) passes the Levene
test for increased variance.

Description of outputs

TaRTLEt outputs data on two layers of abstraction: single-condition convolution peaks,
and cross-condition peak clusters. At each level, TaRTLEt generates both tabular output on
each feature and plots of each riboswitch locus. For each candidate peak in the convolution,
the single-condition tabular output (peak_log.csv) captures the riboswitch locus, the
RNA-seq dataset, the location and shape of the peak, the “noise set” of comparator peaks,
TaRTLEt’s pass/fail call for that peak as a candidate transcription termination event, and
the reason for that call. Single-condition locus plots are sorted into pass/ and fail/
subdirectories, where pass/ contains locus plots for all conditions in which any peak,
regardless of location within the locus, was called as a transcription termination event. A
sample locus plot of the molybdenum cofactor (MOCO) riboswitch from E. coli is shown
in Fig. 4; for a sample peak log, see Table S1.

At the level of cross-condition cluster comparisons, TaRTLEt records each cluster’s
mean and variance test statistics in cluster_stats. csv, then uses this file in conjunction
with peak_log.csv to generate a summary peak plot that allows easy inspection of
condition-dependent modulation of transcription termination efficiency near the 3’ ends
of all riboswitches in the dataset. Figure 5 shows a sample summary peak plot. The user may
simply scan the summary peak plot to identify loci in which a cluster was marked significant
(*), optionally using the locus plots to identify particular experimental conditions that
evoked a change in riboswitch transcription termination efficiency (at loci identified as
modulating transcription termination) or to spot-check peak call quality.

Validation datasets

All the paired-end RNA-seq datasets used to test and characterize TaRTLEt here are
presented in Table 1. These datasets were obtained from the Gene Expression Omnibus
(GEO) (Barrett et al., 2012). We used the Ribocentre-switch database (Bu ef al., 2024) to
facilitate identification of previously characterized riboswitches in this dataset.
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Figure 4 Locus plot of the MOCO riboswitch from E. coli for RNA-seq sample SRR7154624. The top
panel collects fragment coverage for read pairs with R-oriented reads starting in the riboswitch region
of interest (0.5 x riboswitch size). The second panel collects fragment coverage for read pairs with R-
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RESULTS

TaRTLEt performs well on known transcriptionally-active riboswitches
To validate this new tool, we ran TaRTLEt on publicly available paired-end RNA-seq datasets
for 31 microbial genomes (Table 1). Of these, datasets for 29 genomes were successfully
processed through TaRTLEt. This collection of microbes is phylogenetically diverse, with
good representation of both Gram-positive and Gram-negative bacteria (Fig. 6A), and
includes 21 riboswitch loci that have previously been experimentally characterized.

While this low count underscores the need for high-throughput methods to supplement
in vitro approaches, it also presents a practical impediment to robust determination of
error rates. In light of this limitation, TaRTLEt uses conservative analytical and statistical
approaches and thresholds, as well as making intermediate analysis steps available to
the user for inspection. Our 29-genome validation dataset included 405 riboswitch loci
and a total of 655 RNA-seq readsets. Manual curation of TaRTLEt’s locus plots led us to
exclude one genome (P. fluorescens, 10 loci, 40 readsets) as poorly mapped. Among the
remaining 28 genomes and 395 loci, TaRTLEt identified 115,130 coverage-change features
as potential transcription-termination peaks; comparison to transcriptomic noise allowed
us to reject all but 3,437 candidates. In cross-condition significance testing of peak clusters,
1,765 of these candidates lay within the 104 clusters at 95 riboswitch loci that passed
our mean and variance test criteria. TaRTLEt calls riboswitch loci as showing evidence of
condition-dependent transcription termination based on this latter, most conservative,
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Figure 5 Peak plots (see Fig. 3) for the eight E. coli riboswitch loci identified by Infernal in the E. coli
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termination peak are bounded by solid ellipses, and those with no significant peaks are bounded by dashed
ellipses. Asterisks (*) mark peak clusters that (i) contain at least one significant transcription-termination
peak, (ii) have significantly lower mean (p < 0.05, Mann—Whitney one-tailed U-test) than the set of all
other peak clusters, and (iii) have significantly higher variance (p < 0.05, Levene’s test) when compared to
randomly sampled sets of the same number of peaks.
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most data-rich set, while the within-condition single-peak calls (and supporting data) are
made available to the user to support manual curation.

Opverall, our results are in good agreement with literature findings (Fig. 6B). TaRTLEt’s
peak plots (Fig. 5, Figs. 54, S7) showed clear condition-dependent transcription termination
at 10 of the 19 loci known to use this regulatory mode: in B. anthracis, the upstream
tandem TPP riboswitch (Welz & Breaker, 2007); in B. subtilis, the lysC lysine, mgtE M-box,
xpt purine, and samT and metK SAM riboswitches (Sudarsan et al., 2003; Dann et al.,
2007; Mandal & Breaker, 2004; Winkler et al., 2003); and in E. coli the btuB cobalamin, ribB
FMN, lysC lysine, and thiM TPP riboswitches (Nou ¢ Kadner, 1998; Hollands et al., 2012;
Sedlyarova et al., 2016; Bastet et al., 2017). In addition, TaRTLEt detected no indication
(Figs. 54, S6) of transcription-termination activity at either of the two negative-control loci
experimentally characterized as acting strictly through mechanisms other than transcription
termination (the B. subtilis glmS and Enterococcus faecalis Syx riboswitches (Collins et al.,
2007; Fuchs, Grundy ¢ Henkin, 2007; Smith et al., 2010)).

We also examined the validation dataset’s performance across the pipeline to identify
the range of situations that can give rise to inconclusive or negative results, as observed at
the nine remaining loci in our dataset with previous experimental characterization. First,
TaRTLEt cannot provide insight into riboswitch loci with read coverage too low to support
statistical analysis. We observed this outcome in 29 of the 395 riboswitch loci investigated
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Table 1 List of GEO accessions for paired-end RNA-seq read sets used for characterizing riboswitches

from each organism.
Microbe GEO accession Citation
Acinetobacter baumannii GSE183334 Unpublished
Aliivibrio fischeri ES114 GSE237189 Vander Griend et al.
(2024)
Apilactobacillus kunkeei GSE205998 Seeger et al. (2023)
Bacillus anthracis GSE152356 Corsi et al. (2021)
Bacillus subtilis str. 168 GSE219221 Guo & Herman (2023)
Bacillus subtilis str. 168 GSE226559 Unpublished
Bacteroides fragilis GSE220692 Fiebig et al. (2024)
Bacteroides thetaiotaomicron GSE129572 Briliiité et al. (2019)
Bacteroides thetaiotaomicron GSE169260 Lewis & Gui (2023)
Bacteroides xylanisolvens GSE74379 Despres et al. (2016)
Burkholderia pseudomallei GSE152295 Avican et al. (2021)
Caulobacter vibrioides GSE241057 McLaughlin, Fiebig &
Crosson (2023)

Clostridioides difficile GSE173804 Weiss et al. (2021)
Desulfovibrio vulgaris str. Hildenborough GSE101911 Chen et al. (2019)
Desulfovibrio vulgaris str. Hildenborough GSE78834 Gao et al. (2016)
Enterococcus faecalis GSE152295 Avican et al. (2021)
Escherichia coli GSE114358 Guzmdn et al. (2019)
Escherichia coli GSE122211 Sastry et al. (2019)
Escherichia coli GSE122295 Sastry et al. (2019)
Escherichia coli GSE122296 Sastry et al. (2019)
Escherichia coli 5SE122779 Anand et al. (2019)
Eubacterium limosum GSE149269 Jeong et al. (2020)
Klebsiella pneumoniae GSE229867 Liu et al. (2025)
Mpycobacterium tuberculosis str. H37Rv GSE218354 Martini et al. (2023)
Mpycolicibacterium smegmatis MC2 155 GSE232901 Grigorov et al. (2023)
Neisseria gonorrhoeae GSE191020 Ray et al. (2022)
Piscirickettsia salmonis GSE235725 Carril et al. (2023)
Pseudomonas chlororaphis subsp. Aureofaciens 30-84 GSE61200 Wang et al. (2016)
Pseudomonas fluorescens GSE200822 Hasnain et al. (2023)
Salmonella enterica sv. Typhimurium GSE203342 Kant et al. (2023)
Sinorhizobium meliloti GSE151705 Fagorzi et al. (2021)
Staphylococcus epidermidis 5SE152295 Avican et al. (2021)
Streptococcus sanguinis SK36 GSE174672 Puccio et al. (2022)
Streptomyces coelicolor GSE234439 Lietal. (2023)
Synechococcus elongatus PCC7942 GSE227397 Lu et al. (2023)
Synechocystis sp. PCC 6803 GSE132275 Unpublished
Xanthomonas albilineans GSE229478 Wimmer et al. (2024)
Xanthomonas oryzae pv. oryzae KACC 10331 GSE89651 Park et al. (2022)
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Figure 6 Compilation of TaRTLEt results for a collection of commonly studied bacteria, using
RNA-seq data obtained from public GEO repositories. (A) Phylogenetic relationships between bacteria
studied with TaRTLEt. The tree is based on GTDB (Parks et al., 2022; Rinke et al., 2021; Parks et al., 2020;
Parks et al., 2018) bacterial phylogenies (release 214.1) and built using the ggtree R package (Yu et al.,
2017). Clades highlighted blue and pink represent Gram-positive and Gram-negative taxa respectively.
(B) Evidence for condition-dependent transcription termination for every riboswitch representative, as
found in the literature and by TaRTLEt. Counts at left give the number of experimental conditions for
which paired-end RNA-seq data was available; a wider range of conditions increases the likelihood that the
dataset will capture condition-dependent transcription termination. At each locus, evidence reported in
the literature may support regulation by transcription termination, potentially among other mechanisms
(“>Trx”), or by non-transcription-termination mechanisms only (“Non trx”), or the locus may not have
been characterized in vitro (“nr”); and TaRTLEt may be inconclusive (“?”) or provide positive evidence
(“4”) for regulation by transcription termination. Where a species encodes multiple riboswitches of a
given family, plotting symbols are divided into wedges for the different loci. Counts in the color key are
tallies of riboswitch loci in each group.

Full-size & DOI: 10.7717/peerj.19418/fig-6

here, leaving 366 loci tractable for further investigation. Second, TaRTLEt might detect no
candidate transcription-termination events in the search space at a riboswitch locus (132
of 366 tractable loci); this could happen either because there is no terminator present in the
region of interest, or because under the conditions tested the terminator is always inactive.
In our validation set, this group included two loci previously characterized as acting via
transcription termination, the B. subtilis met] SAM riboswitch (Fig. S4) and the E. faecalis
pduQ AdoCbl riboswitch (Fig. S6) (Winkler et al., 2003; DebRoy et al., 2014).

Third, a locus with transcription-termination peaks might have no clusters that pass the
mean fold coverage drop test, if the conditions examined yield consistently high rates of
transcriptional read-through (whether because the conditions used sample only the ON
state or because the riboswitch acts downstream of transcription). In our validation dataset,
20 of the 234 loci with passing peaks failed this test. This group includes two riboswitch
loci (the E. coli thiC TPP and B. subtilis pbuE purine riboswitches) that have previously
been shown to modulate transcription (Winkler, Nahvi ¢ Breaker, 2002; Chauvier et al.,
2017; Mandal ¢ Breaker, 2004) but show no mean fold coverage drop here, suggesting
that the range of conditions examined was too narrow to capture the OFF state for
these riboswitches (Fig. 5). Interestingly, the purine ligand does vary enough across the
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conditions tested in B. subtilis to cause a detectable switch in transcription termination
at the xpt purine riboswitch (Fig. 6B, Fig. 54), suggesting that these two B. subtilis purine
riboswitches are responsive to different ligand concentrations.

Finally, among the clusters at a locus that both include transcription-termination peaks
and pass the mean test, none may pass the variance test (119 of the remaining 214 loci).
A cluster might fail the variance test either if the variance of other peak clusters is large
(e.g., due to shallow coverage) or if the variance of the candidate cluster is small (due to a
set of conditions that capture only one riboswitch regulatory state). In our validation set,
five loci previously found to mediate transcription termination fell into this group: the
B. anthracis tenA TPP (Fig. S5), B. subtilis ribD FMN, gcvT glycine and yoaD SAM (Fig. 54),
and S. enterica mgtA Mngr sensor riboswitches (Fig. S7) (Welz & Breaker, 2007; Wickiser
et al., 2005; Mandal et al., 20045 Winkler et al., 2003; Cromie et al., 2006). Two of these, the
B. subtilis ribD FMN riboswitch (Fig. 54, panel FMN|NC|2431617-) and the S. enterica mgtA
Mg?* sensor riboswitch (Fig. S7, panel Mg_sensor | 4699497+), appear to fail the variance
test by being consistently OFF under the conditions tested; two more (B. subtilis gcvT
glycine and yoaD SAM; Fig. 54, panels Glycine |[NC| 2549606~ and SAM|NC|2025251-) are
clearly consistent with conditional transcription termination but fall just shy of significance.
Thus while our mean- and variance-based calling approach can in general be applied to
existing datasets, the noisiness and the scope of the datasets examined can limit robust
inference. However, where regulatory mechanism is already established by other means,
the signal TaRTLEt exploits may still show riboswitch regulatory state even when the
conditions sampled capture only ON or only OFF.

TaRTLEt gives new insights into undercharacterized riboswitches
Thiamine pyrophosphate (TPP) riboswitches are the most abundant riboswitches in
genome databases (McCown et al., 2017) and were identified in nearly all of the genomes in
our validation set. In vitro characterization of this class has variously pointed to regulation
at the level of transcription termination, translation initiation, or even both (Sedlyarova
et al., 2016; Winkler, Nahvi ¢» Breaker, 2002; Chauvier et al., 2017). In one notable case,

B. anthracis encodes two TPP riboswitches in tandem upstream of the tenA gene, and each
has been shown in vitro to be able to regulate transcription termination independently
(Welz & Breaker, 2007). Of the 57 TPP riboswitches in the validation dataset, only six (two
from B. anthracis and one each from B. subtilis, S. epidermidis, E. coli, and C. vibrioides)
TPP representatives show transcriptional activity under the conditions tested. Intriguingly,
the peak plot for B. anthracis showed transcriptional activity by the upstream but not
the downstream tenA TPP riboswitch (Fig. S5, panels TPP|752099+ and TPP|752272+),
suggesting that the two tandem riboswitches are responsive under different conditions in
vivo.

A second very widespread riboswitch class binds cobalamin, with at least one example
in all but four genomes in our validation dataset. Previous research has predicted that
cobalamin riboswitches in Gram-positive taxa will typically work at the transcriptional
level, while those in Gram-negative taxa will regulate translation (Lennon ¢ Batey, 2022).
Contra this expectation, we see clear evidence of transcriptionally-active cobalamin
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riboswitches in the majority of Gram-negative taxa we investigated (Fig. 6; 15 Gram-
negative taxa with cobalamin riboswitch loci, of which ten have at least one positive TaRTLEt
result). Interestingly, however, in nearly every case, these taxa also contained one or more
additional cobalamin riboswitches that showed no evidence of transcriptional regulation.
These other riboswitches could either regulate other aspects of mRNA production,
stability, or translation, or regulate transcription termination at a different range of ligand
concentrations than this dataset captures. While TaRTLEt cannot distinguish between these
possibilities with the data used here, the observation underscores the potential variability
of riboswitches within a ligand class and highlights the utility of high-throughput analyses
for identifying interesting candidates for experimental characterization.

TaRTLEt also offers insights into the less-studied riboswitch classes. For example,
the molybdenum cofactor (MOCQO) riboswitch in E. coli regulating the moaA operon
is well-characterized structurally (Amadei et al., 2023) but not functionally. Our results
indicate that this MOCO riboswitch modulates transcription termination. Across the 32
riboswitch families represented in our validation dataset, we were able to identify previous
in vitro characterization for members of only 12 families, leaving 20 families completely
uncharacterized. We find clear evidence for riboswitch-mediated transcription termination
at 12 loci across five of these understudied families (MOCO, raiA, ydaO-yuaA, yybP-ykoY,
and ZMP-ZTP families; Fig. 6). That is, TaRTLEt-enabled opportunistic analysis of data
originally gathered for other purposes expands by nearly 50% the range of riboswitch
families for which we have data-driven insights into regulatory mechanism.

DISCUSSION

TaRTLEt’s built-in visualizations facilitate user assessment of positive-call reliability.
Clusters of peaks at multiple loci under multiple conditions can be rapidly inspected in
peak plots, with the underlying coverage plots available to check results at lower degrees of
abstraction. Thus, TaRTLEt serves as a much-needed high-throughput tool for preliminary
assessment of riboswitch mechanism and can readily identify strong candidates for in vitro
validation.

As currently implemented, TaRTLEt can analyze paired-end RNA-seq data to detect
positive evidence of condition-dependent changes in transcription termination at
riboswitch loci. The absence of such evidence cannot be used to infer a different mechanism
of riboswitch action, because TaRTLEt’s approach depends on having a dataset that captures
both ON and OFF states. Thus, among the eight species in our validation dataset for which
the RNA-seq collection included <9 conditions, TaRTLEt could detect evidence for
transcriptional regulation at any riboswitch in only four (Fig. 6B; compare to positive
results in 19 of 21 species with data on > 10 conditions). Importantly, our approach
supports inference from RNA-seq data collected across multiple different experiments,
such that marginal additional data collection for the less well-studied species could make
detection rates rise substantially.
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CONCLUSIONS

We identified a transcriptomic signal that should arise from riboswitch-mediated
conditional regulation of transcription termination, developed TaRTLEt to apply
convolution methods to extract the signal from existing public RNA-seq data, and
demonstrated that this tool supports confident identification of riboswitches that control
transcription termination. Our results with this method are in good agreement with the
limited number of in vitro characterizations available, offer new insights into previously
uncharacterized riboswitches, and emphasize that riboswitches within the same ligand
class, even within the same organism, can exhibit different ligand sensitivities and act by
different mechanisms. Whereas detailed in vitro characterization can establish which of
several regulatory modes a single riboswitch uses, our high-throughput approach can ask
which of any number of riboswitch loci appear to act by transcription termination and
broadly survey the conditions under which this activity is invoked in vivo. Application of
TaRTLEt to microbial transcriptomic and metatranscriptomic datasets therefore offers a
path forward to understanding the regulation of a wide range of biosynthetic and transport
pathways in biological contexts ranging from pure culture to natural communities in situ.
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