
Submitted 9 January 2015
Accepted 24 March 2016
Published 5 May 2016

Corresponding author
Philip H. Kass, phkass@ucdavis.edu

Academic editor
Nora Nock

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj.1940

Copyright
2016 Kass et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Syndromic surveillance in companion
animals utilizing electronic medical
records data: development and proof of
concept
Philip H. Kass1, Hsin-Yi Weng1,4, Mark A.L. Gaona1, Amy Hille2,
Max H. Sydow2, Elizabeth M. Lund2 and Peter J. Markwell3

1Department of Population Health and Reproduction, University of California, Davis, CA, USA
2Banfield Applied Research and Knowledge Team, Portland, OR, USA
3Mars Global Food Safety Center, Huairou, Beijing, People’s Republic of China
4Current affiliation: Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA

ABSTRACT
In an effort to recognize and address communicable and point-source epidemics in
dog and cat populations, this project created a near real-time syndromic surveillance
system devoted to companion animal health in the United States. With over 150
million owned pets in the US, the development of such a system is timely in light of
previous epidemics due to various causes that were only recognized in retrospect. The
goal of this study was to develop epidemiologic and statistical methods for veterinary
hospital-based surveillance, and to demonstrate its efficacy by detection of simulated
foodborne outbreaks using a database of over 700 hospitals. Data transfer protocols
were established via a secure file transfer protocol site, and a data repository was
constructed predominantly utilizing open-source software. The daily proportion of
patients with a given clinical or laboratory finding was contrasted with an equivalent
average proportion from a historical comparison period, allowing construction of the
proportionate diagnostic outcome ratio and its confidence interval for recognizing
aberrant heath events. A five-tiered alert system was used to facilitate daily assessment
of almost 2,000 statistical analyses. Two simulated outbreak scenarios were created
by independent experts, blinded to study investigators, and embedded in the 2010
medical records. Both outbreaks were detected almost immediately by the alert system,
accurately detecting species affected using relevant clinical and laboratory findings, and
ages involved. Besides demonstrating proof-in-concept of using veterinary hospital
databases to detect aberrant events in space and time, this research can be extended
to conducting post-detection etiologic investigations utilizing exposure information in
the medical record.

Subjects Veterinary Medicine, Epidemiology, Statistics
Keywords Companion animal, Syndromic surveillance, Foodborne outbreak, Epidemiology,
Temporal and spatial analysis, Proportionate diagnostic outcome ratio

INTRODUCTION
Surveillance provides the key linkage between naturally occurring disease or syndrome
occurrence and its real-time recognition (Henning, 2004; May, Chretien & Pavlin, 2009;
Wójcik et al., 2014). Multiple approaches to the conduct of surveillance exist, depending
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in part on whether measurement of incidence is possible (as in population-based active
surveillance) or not (as in hospital-based or passive surveillance). If a preponderance of
evidence points to an actual disease cluster, an epidemiologic outbreak investigation should
be immediately initiated: the sooner the investigation begins following a sudden increase
in disease frequency, the more likely that the source of the outbreak can be identified and
an intervention implemented (Rothman, 1990).

The last decade has seen an increase in implementation of surveillance systems both
in human populations (primarily to detect pandemic infectious disease (e.g., H1N1
influenza, SARS) and bioterrorism events Drewe et al., 2012; Milinovich et al., 2014) and
animal populations (Dórea, Sanchez & Revie, 2011). Although these systems alone do
not have immediate applicability to companion animal populations, there has been
interest in the United Kingdom and United States in monitoring zoonotic disease in such
populations (Day et al., 2012; Glickman et al., 2006; Halliday et al., 2007; Maciejewski et
al., 2007; Shaffer et al., 2007). While disease surveillance has been performed to a limited
extent in pet animals (notably in the United Kingdom’s SAVSNET and VetCompass
initiatives (Small Animal Veterinary Surveillance Network, 2015; Health Surveillance for
UK Companion Animals, 2015)), there have been no efforts in the last several decades
to conduct real-time surveillance for syndromes or diseases in companion animals on a
national scale in the United States.

Both infectious and non-infectious disease epidemics have been documented in
pet animal populations in the United States over the last decade (American Veterinary
Medical Association, 2003; Puschner & Reimschuessel, 2011; Centers for Disease Control and
Prevention, 2015). One well-established example is injection-site sarcomas in cats caused
by certain commonly used vaccinations. This epidemic was fortuitously recognized not
through any surveillancemechanism, but through astute observation of a temporal increase
in the absolute number of cases, as well as an increase in proportionate diagnosticmorbidity,
at a single tertiary care hospital’s pathology department (Hendrick & Goldschmidt, 1991).
Given that this epidemic was national in scope and not confined to a single vaccine
manufacturer or brand, and that certain vaccines are known to increase the incidence of
sarcomas two to five-fold (Kass et al., 1993), it is possible that it would have been detected
by a surveillance system, had one been in place, that included this specific type of cancer as
a diagnostic endpoint.

This underscores a singular point in surveillance methodology: that it can be difficult to
distinguish ‘‘signal’’ (real events) from ‘‘noise’’ (normal or endemic background frequency
of events). The strength of a surveillance system adaptive to companion animal populations
thus depends on a number of factors, including: (1) the population size; (2) the magnitude
of the causal effect of the risk factor; (3) the prevalence of exposure to the risk factor
in the population; and (4) the baseline incidence of the outcome(s). The sensitivity of a
surveillance system could be considerably improved if statistical measures were stratified
by age, underscoring how active surveillance is more than real-time data mining, but also
utilizes knowledge of health and disease to ask the appropriate queries and interpret the
findings in a veterinary medical context.

A paradigmatic example of a point source foodborne outbreak in a pet population is
the epidemic of nephrotoxicosis from ingestion of pet food adulterated with melamine
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in 2007 (Brown et al., 2007). Although this was not initially discovered through active
surveillance, had such a system focusing on syndromic and diagnostic morbidity been in
place it would have had a very high probability of detecting the epidemic because: (1) the
magnitude of the causal effect was large, even though the incidence of nephrotoxicosis was
relatively low; (2) the prevalence of melamine in pet food diets was high; (3) the outcome
was relatively specific, both as a diagnosis (acute renal disease) and as a laboratory finding
(hypercreatininemia); and (4) the outcome was of sufficient severity that owners whose
pets were under routine veterinary care were strongly motivated to have sought care.
Again, the sensitivity of such a surveillance system could have been considerably enhanced
by examining age strata, as the baseline incidence of both the laboratory finding and the
diagnostic outcome would have been particular rare (i.e., prior to exposure to melamine)
in younger age groups.

The goal of this research was to establish protocols devoted to near real-time surveillance
of dog and cat syndrome occurrence utilizing the electronic medical records of over 700
networked primary care veterinary hospitals in the United States, which are estimated to
see approximately 0.6% and 3% of the owned cat and dog populations in the United States,
respectively (R Trevejo, pers. comm., 2015;American Veterinary Medical Association, 2012).
This study’s approach builds upon the classical epidemiological principle of estimating
the proportional mortality ratio (PMR), which contrasts the proportion of deaths from
a particular cause in an exposed group with that of an unexposed group (Miettinen &
Wang, 1981). This construct has been extended to surveillance of adverse pharmacologic
outcomes in non-hospital surveillance settings through the proportional reporting
ratio (PRR) (Rothman, Lanes & Sacks, 2004). The current study uses the proportionate
diagnostic outcome ratio (PDOR), a new but related metric that differs from the PMR
and PRR by utilizing medical findings by health care providers instead of causes of death
or adverse pharmacologic outcomes, respectively, and by treating time and geographic
region as the exposures of interest. It adheres to the epidemiologic convention of favoring
estimation instead of hypothesis testing, and also differs from other algorithms for signal
detection. For example, the PDOR uses a dynamic denominator, which is different from
the Recursive-Least-Square adaptive filter that uses a deterministic input signal (Honig
& Messerschmitt, 1984). Moreover, the numerator is not included in the denominator in
the computation of PDOR. This is different from other algorithms that implement the
observed-to-expected ratio, in which the expected count is computed by including the
observed count under investigation (Kulldorff, 2015; Buckeridge et al., 2008). This study
reports on the development of analytic and interpretive protocols based on the PDOR,
and their implementation to evaluate surveillance instrumental performance using two
simulated outbreaks.

MATERIALS AND METHODS
Methodologic background for PDOR
The parameter of interest in relating an exposure to a health outcome is the hazard
(instantaneous incidence) rate ratio parameter, defined as the ratio of the observed
incidence (hazard) rate conditional on one or more covariates (X) to the potential
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Table 1 Epidemiologic measures of association and observable effect measures in longitudinal syndromic surveillance studies.

Measures T = t T =6ti(i= 0,1,...,I;I 6= t )

Syndromic cases a(t ) A(t0,tI )=6a(ti)
Total patients seen without syndrome b(t ) B(t0,tI )=6b(ti)
Source population N1(t ) N0(t0,tI )
Diagnostic outcome proportion a(t )/[a(t ) + b(t )] A(t0,tI )/[A(t0,tI ) + B(t0,tI )]
Incidence rate (hazard) a(t )/N1(t ) A(t0,tI )/N0(t0,tI )
Hazard rate ratio (empirical) [a(t )/N1(t )]/[A(t0,tI )/N0(t0,tI )]
Proportionate diagnostic outcome ratio (PDOR) {a(t )/[a(t ) + b(t )]}/{A(t0,tI )/[A(t0,tI ) + B(t0,tI )]}

Notes.
T , time; i, time points.

(expected) incidence rate in the counterfactual absence of the covariate(s). At any point
in time, the incidence rate of one or more syndromes (or diseases) in a population of
individuals exposed to one or more factors is contrasted with what the incidence rate
would have been had the factors been absent. The incidence rate ratio (IRR) statistic
is an estimate of the IRR parameter, but in a hospital-based surveillance system it is
typically not possible to measure average incidence in a day (or period of days) because
the population-at-risk is unknown and ill-defined. Therefore, substitute methods must be
employed that allow the approximation of the incidence rate ratio statistic.

Table 1, which includes definitions of the components of the following formulas,
illustrates the relationship between the IRR and the PDOR utilizing index (T = t ) and
referent times (T =6ti(i= 0,1,...,I ;i< t )), where i represents an individual time point. It
is important to note that the statement: T =6ti(i= 0,1,...,I ;i 6= t ) can apply to any values
of t under partial exchangeability assumptions. However, in a (near) real-time surveillance
program this is constrained to: T =6ti(i= 0,1,...,I ;i< t ). It can be shown (Miettinen
& Wang, 1981) that the PDOR, {a(t )/[a(t )+ b(t )]}/{A(t0,tI )/[A(t0,tI )+B(t0,tI )]},
can be used to estimate the hazard rate ratio, [a(t )/N1(t )]/[A(t0,tI )/N1(t0,tI )] when:
[a(t )+ b(t )]/N1 = {A(t0,tI )+B(t0,tI )}/N0(t0,tI ); note that a(t ) and b(t ) represent
syndromic cases and non-syndromic patients at time = t , A(t0,tI ) and B(t0,tI ) represent
the total number of syndromic cases and non-syndromic patients seen between times t0
and tI , respectively, and N1 and N0 represent the size of the source populations at times
t and time period (t0,tI ), respectively. This translates into the assumption that even in
the presence of an outbreak, the overall incidence of visiting a hospital for a syndromic
diagnosis among the source population of dogs and cats is the same at index and referent
times. This requires a ‘‘counterbalancing’’ of incidence: as the incidence of diagnosing a
particular syndrome at T = t increases, there must be a commensurate decrease in the
incidence of diagnosing other syndromes at T = t . This assumption is reasonable only
when the syndrome of interest under surveillance is rare (e.g., approximately less than 5%)
compared to other diagnoses. Based on the diagnostic outcome proportions (admittedly,
not incidence rates) observed, this may be a reasonable assumption in many cases (with the
exception, perhaps, of older age group(s)). Achieving such rarity is also facilitated by the
kind of patients that this study’s hospitals typically see, because they emphasize preventive
care: in the hospital’s population, 27.5% of dogs and 25.2% of cats (2014 internal data) were
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reported to be healthy, in contrast to 6.8% and 9.5% for dogs and cat respectively reported
as healthy in the private companion animal practice population, and their patients’ ages
are relatively younger than those of the potential population of patients (Trevejo, Yang
& Lund, 2011; Lund et al., 1999). This implies that the sample age distribution might not
be representative of age distribution in the source population; thus, stratification by age
is indicated.

If the rarity assumption holds, then the lesser assumption that the proportion of patients
seen without a particular syndrome of interest remains relatively constant over time, also
holds: b(t )/N1(t )=6b(ti)/N0(t0,tI ). This should be reasonable if there are no secular
trends in syndromic incidence, which appeared to be empirically true with most hospital
data examined prior to commencing this study. The closer T = t is to (t0,tI ), the more
reasonable this assumption becomes, and the more closely the PDOR corresponds to the
hazard rate ratio.

Background for syndromic definitions
A workshop was convened that included external academic experts in epidemiology,
nutrition, toxicology, infectious diseases, internal medicine, food safety, and clinical
pathology in order to establish a set of syndromes optimal for conducting foodborne
disease surveillance in companion animals; none were actually involved in the design of
this research or in the preparation of this manuscript. An evaluation of electronic medical
nomenclature and data fields was done to identify differences between the data desired
from the workshop and the data available in the hospital network database. Thirty-seven
syndromic components (i.e., clinical findings, including laboratory results) were selected for
further study because these would have been the most likely to have been recognized in past
foodborne disease outbreaks in pet animals, from which the following 10 were adopted for
proof-of-concept in the current study: anorexia, elevated alanine aminotransferase (ALT),
elevated serum calcium, elevated creatinine, diarrhea, lethargy, a Salmonella-positive fecal
sample, seizures, urolithiasis, and vomiting.

Information technology: data acquisition and transfer
An automated and efficient system of data transfer was required for the near real-time
design of this system. The following were system analysis and design considerations
judged to be of critical importance towards the success of this project: ubiquitous data
mapping, high performance, high availability, storage capacity, and timely reporting. To
attain ‘‘high availability,’’ we sought to design a system that could be adapted for data
input from virtually any source. The system thus developed, called ‘‘Aberrant Diagnostic
Outcome Repository in Epidemiology’’ (ADORE), was envisioned as a potential center of a
future constellation of potential separate or simultaneous information technology sources,
including universities, diagnostic laboratories, institutes, government agencies, and private
practices. In this research, however, only a single source was utilized.

Eight tables containing relevant information were queried in the Banfield database. Each
was searched for codes specific to each syndrome. If the syndrome was found in one or
more tables, then it was marked as present. Data transferred were restricted to de-identified
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Figure 1 Schematic of the loader process used to transfer data from a hospital database to a repository
used for syndromic surveillance analyses.

numbers linking owners and patients, patient demographic information, hospital, number
of encounters, and the ten syndromes analyzed in this manuscript. All hospitals used the
same electronic medical record software.

We initially utilized Microsoft Windows-based programs, including Eclipse for Java
development, MySQL for database architecture, and the UC Davis SmartSite curricular
repository for direct data transfer between the information technology center for the
hospital network and the University of California, Davis (UC Davis). However, due to
security challenges, an alternative approach to real-time transfer was developed. This
entailed creating custom scripts at the hospital network’s information technology center
based on data mapping of the ADORE system and utilizing a secure FTP site; software
utilized included SecureFX and MySQL Importer. Data was via secure FTP application
transferred from flat (pipe (|) delimited text) files provided by Banfield based on queries
from their datasets to our UC Davis server. MySQL Importer tool was utilized to transfer
the data from the flat files into tables located in the LOADER Schema. A process called
Loader was run against the raw data in these tables, which transformed the data based on
the validation and transformation criteria for the project, and inserted into the appropriate
ADORE tables or were flagged as exceptions for addressing (Fig. 1).

Key tables were created at UC Davis for data loading, which included the following
database tables: LOADER, EXAMINATIONS, PETIENTS (i.e., pet patients), CLIENTS,
LOCATIONS, HOSPITALS, RESULTS, and FINDINGS tables. It was agreed upon that
multiple-day sets of data (seven days) would be provided to the UC Davis team to allow
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data to be transferred in a relatively short period of time. The datasets were transferred to
the UC Davis Repository Monday through Friday each week starting on April 25, 2011 and
continuing through June of 2011, which allowed approximately six months of data from
2010 (i.e., May 1, through October 20, 2010) to be transferred. In total, over 4.2 million
patient records with data were imported and used for retrospective surveillance.

An external Scientific Advisory Board, comprised of experts in epidemiology, statistics,
and public health, created two foodborne disease outbreak scenarios that were embedded
into the system data without disclosure to the UCDavis team. Such blinding was deliberate,
in order simulate how the UC Davis team and the ADORE system would perform if
surveillance was prospectively implemented in real-time. The outbreaks were designed
with the intention of determining whether the team and system could detect them, how
long it would take to detect them following their onset, and to measure their magnitude
upon detection (Centers for Disease Control and Prevention, 2001). The outbreak data,
consisting of simulated medical records of patients, were created by considering the
following factors:
A. Historical hospital data of the usual prevalence of clinical signs.
B. A causative agent or chemical.
C. The contaminated food product.
D. The proportion of patients consuming the contaminated food product.
E. The proportion of patients consuming the contaminated food product exhibiting the

syndrome.
F. The number of hospitals in the affected region.
G. A susceptible patient population (e.g., species, age).
H. The clinical syndrome appropriate to the food contaminant.
I. The production/distribution pattern of the contaminated food, including the amount
produced, the proportion of bags affected, the geographic food distribution, and the
average shelf life.

J. The incubation/latency period before syndromic occurrence.

PDOR procedure implementation
Temporal cluster detection
The specific adaptation of the temporal PDOR procedure used in the current study
compared the proportion of patients seen at network hospitals on a particular day that
were positive for a particular clinical or laboratory finding with the average proportion
of patients positive for the same finding over a seven-day baseline period that ended
three months earlier. The use of a seven-day period (which can be modified in the
algorithm) allowed for within-week cyclicity of diagnoses, and the use of a three-month
lag time (which can also be modified in the algorithm) was suited for a slowly developing
foodborne outbreak. The premise behind the temporal cluster detection method was that
the proportion of patients diagnosed with individual clinical or laboratory findings should
not meaningfully change over a three month period (i.e., there are no seasonal trends),
and that the daily (unobservable) incidence rate over a seven-day period (which is not
equivalent to the rate of presentation to a veterinary hospital) was constant. These analyses
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Figure 2 Schematic of temporal analysis using the Proportionate Diagnostic Outcome Ratio proce-
dure.

were performed separately by species (dogs and cats) and in four age strata (<3 years,
3–7 years, 8–12 years, and 13 or more years), as well as for all ages combined (Fig. 2). The
following details how the procedure was implemented.

Variables and equations
A. Number of cases (Ci) on current (i th) date. Note that if the same syndromic finding

had been noted for the same animal multiple times at the same hospital visit, and if
any of these syndromes fell outside the defined threshold range for that finding, this
animal was classified as a case. Each animal was counted only once in the analysis for
that hospital visit.

B. Number of hospital visits on current date (Ni).
C. Diagnostic Outcome Proportion of current date (DOPi)=Ci/Ni.
D. Baseline (referent) time window (BW).
E. Lag time (l): between current date and the latest date of the baseline time window.
F. DOP of baseline (DOPB), computed as the ratio of the total number of cases used

for the baseline (CB) to the number of patients seen used for the baseline (NB) in the
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specified time interval defined by l and BW:

t = i−l∑
t = i−(l+BW )

Ct

t = i−l∑
t = i−(l+BW )

Nt

where Ct and Nt are the number of cases and number of hospital visits, respectively,
on date t , and i is a time point. If no case occurred during the baseline time window
(i.e., CB= 0), CB was set to 1.

G. PDOR = DOP i/DOPB.
H. The following is the equation for the percent confidence limits (CL) for PDOR:

exp

(
ln (PDOR) ± D×

√
1−DOP i

Ci
+

1−DOPB

CB

)

where exp () is the exponential function; ln is the natural logarithmic transformation;
D = 1.28 for an 80% CL and 1.96 for a 95% CL. Note that if PDOR = 0, the CL = 0.
An 80% lower confidence limit (LCL) was selected to increase detection sensitivity in
the early stages of an epidemic.

I. If a particular date was missing (e.g., due to hospital closure, such as on Christmas day)
in the baseline time window, then the baseline time window was set back one more
day, so that the [i− (l + BW )−1] th day was used in the computation for DOPB.

J. If seven out of seven days in the baseline window all had an 80% LCL > 1, the entire
week was replaced with the previous baseline window.

K. When a temporal cluster was detected, the equation for an exponentially weighted
moving average (MA) was used to smooth plots of the DOP: Et−1+α(Ot −Et−1),
where the E ’s are MA values and O’s are observed values. α (weighting factor) is
estimated by using 2/(1+K ), where K = the number of days in the moving average
(i.e., K = 7 for a weekly moving average). The initial value was set as E0=O0 (or an
average of a time period in the past).

Spatial cluster detection
The spatial cluster PDOR procedure compared geographic regions in the United States
using two levels of granularity: US Census Divisions (USCD) (n= 9) and Metropolitan
Statistical Areas (MSA) (n= 39) (Fig. 3). Each USCD’s and MSA’s DOP was compared
with the average of the other USCDs or MSAs, respectively. The spatial cluster procedure
involved two queries:
(1) Comparing among the spatial locations to identify spatial clusters (a ‘‘first query’’).
(2) Locations that exceeded the predetermined alert level from the first query then had

a ‘‘second query’’ procedure performed within each of the detected spatial locations
from the first query to examine whether there was a within-location temporal cluster.

The following are details of how the procedure was implemented (Fig. 4):
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Figure 3 Nine US Census Divisions and 39Metropolitan Statistical Areas (MSA) used with PDOR pro-
cedure. Census divisions covers the United States, while MSA encompass regions only where hospitals are
located.

First query variables and equations
A. USCD assignments were based on the client’s home address, and MSA assignments

were based on the hospital location.
B. Each clinical and laboratory finding was analyzed separately. Analysis by USCD was

conditional on species and age group, as described above for temporal cluster detection.
Analysis of MSA was stratified by species but not by age group.

C. PDORi= DOPi/DOP(A[−i]), where DOPs were the Diagnostic Outcome Proportions as
described above. Let A= the total number of geographic units (USCD orMSA). PDORi

was the ratio of DOP at a particular USCD/MSA (i) and DOP of all other USCDs/MSAs
(A[−i]). DOP(A[−i]) was computed as total number of cases on a current date among
all USCDs/MSAs except for location i divided by the total number of hospital visits on
a current date in the same locations. If the number of hospital visits for a particular
USCD/MSA (i) (i.e., the denominator of DOPi) was zero, DOPi and PDORi= 0.

D. The equation for % confidence limits (CL) for PDOR is:

exp

(
ln(PDORi) ± D ×

√
1−DOP i

Ci
+

1−DOPA[−i]

CA[−i]

)

where exp () is the exponential function; ln is natural logarithmic transformation; D=
1.28 for 80% CL and 1.96 for 95% CL; Ci is number of cases on current date at spatial
unit i andC(A[−i]) is total number of cases among all locations except for spatial unit i.
If the same syndromic finding had been noted for the same animal multiple times at the
same hospital visit, and if any of these syndromes fell outside the defined threshold range
for that clinical finding, this animal was classified as a case. Each animal was counted
only once in the analysis for that hospital visit. Furthermore, if no case occurred
in baseline locations (i.e., CA[−i] = 0), then CA[−i] = 1. If PDOR= 0, then CL = 0.
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Figure 4 Schematic of spatial analysis using the Proportionate Diagnostic Outcome Ratio procedure.
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Table 2 PDOR scoring system for temporal analyses and spatial analyses (first query).

Statistic Cutoff value Score

PDORa <1.25 0
1.25–1.99 3
2–2.99 5
3–3.99 7
≥4 9

Number of cases <3 0
≥3 2

80% LCLb ≤1.1 0
>1.1 2

95% LCLb ≤0.8 0
0.8–1.1 2
≥1.1 4

Across age groups Sumc
≥ 5 in two or more age groups 3

Across syndromes Sumc
≥ 5 in two or more syndromes 2

Across days Sumc
≥ 6 on three or more days in a week 4

Notes.
aProportionate diagnostic outcome ratio.
bLower confidence limit of a PDOR.
cSummed score of PDOR, Number of cases, 80% LCL, and 95% LCL.

Second query variables and equations
The second query followed the steps described for the PDOR procedure for temporal
cluster detection nested within each spatial cluster where there was evidence of a cluster
detected on the first query. The current threshold for entering the 2nd query was set for
these analyses to be Ci≥ 5 and PDORi≥ 1.25.

The alert model
Each day almost 2,000 analyses were run, requiring an efficient mechanism for identifying
evidence of true positives (real outbreaks) while minimizing the number of false positives,
equivalent to increasing both the sensitivity and specificity of the PDOR procedure. To
conduct what was essentially an efficient screening process, we developed a five-stage
color-coded alert system: green (level 1) was normal, with successively higher levels: blue
(level 2), yellow (level 3), orange (level 4), and red (level 5). The stronger the evidence was
for temporal or spatial clustering, the higher the alert level.

Statistics used in determining alert levels included PDOR, total number of cases, and
lower limits of 80% and 95% confidence intervals of aPDOR. The scoring systemwith cutoff
values for each statistic is summarized in Table 2. The choice of cutoff values presented
here was based on expert opinion and a consensus among project team members. The
ADORE system, however, allows users to choose cutoff values and scores.

The scoring was first applied to each syndrome, species, and age group combination,
and within each combination a sum was computed. The system then evaluated summed
scores across strata. If a sum ≥ 5 occurred in two or more age groups or syndromes, or a
sum≥ 6 occurred on three or more days in a week, additional scores were added (Table 3).
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Table 3 PDOR scoring system for spatial analyses (second query) with five or more cases and PDOR≥ 1.25 on the spatial analysis first query.

Variables Levels Score Notes

Statistics used to determine score for first step (score ≥ 5 is positive)
PDOR ≥4 9

≥3 7
≥2 5
≥1.25 3
<1.25 0

80% LCL >1.1 2
≤1.1 0

95% LCL >1.1 4
>0.8 2
≤0.8 0

Additional scores added to the first score to determine alert level
Number of days detected within one week ≤3 0 Applied to same syndrome/age stratum/species.

≥3 4 Score applies when sums are ≥5 on ≥3 days in a one week period.

This final score was used to determine alert levels: green: ≤ 8; blue: 9–12; yellow: 13-15;
orange: 16–18; and red: ≥ 19. Because no age stratification was applied in MSA analysis,
the additional score for a sum ≥ 5 occurred in more than one age group was not applied.
Therefore, the cutoff values for alert levels were reduced to: green: ≤ 6; blue: 7–10; yellow:
11–13; orange: 14–16; and red: ≥ 17.

RESULTS
The first aberrant event detected that was found to be a highly plausible outbreak yielded an
initial alert on May 15, 2010 (Figs. 5–7). The report generated for the week of May 9–May
13, 2011 (pertaining to the datesMay 8–May 16, 2010) described an event occurring in dogs
of all age groups in the Pacific USCD, and particularly in MSAs 16–18, 20, and 21 within
the Pacific USCD. The clinical finding was diarrhea. Had this been real-time surveillance,
we would have notified the hospital personnel on May 18, 2010, the date that we would
have strongly believed that this was an actual outbreak. This situation continued to be
monitored through June 13–June 17, 2011 (pertaining to dates July 4–July 18, 2010). The
alerts continued unabated through July 10, 2010, after which the outbreak appeared to have
resolved. The spatial proximity of the MSAs involved in this aberrant event was striking
and strongly suggestive of a point source outbreak. There was no compelling evidence that
this outbreak spread to other regions outside the MSAs identified above.

Following our submission of a final report of this discovery, the Scientific Advisory
Board revealed to the UC Davis team that the aberrant event detected was in fact a
provocative challenge (simulated foodborne outbreak). Simulated medical records of dogs
in all age categories with diarrhea were randomly assigned to 81 hospitals in California
and incorporated into the daily data transfer (Table 4). The outbreak consisted of the
following conditions:
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Figure 5 Simulated canine infectious agent outbreak in California. (A) Alert scores for diarrhea in Pa-
cific Census Division by date (spatial analysis, second query). (B) Number of alerts above baseline, by alert
color over time (temporal analysis).

Figure 6 Simulated canine infectious agent outbreak in Pacific Census Division.Graph shows diagnos-
tic outcome proportions (DOP) using diarrhea. Red line shows seven day moving average (spatial analysis,
second query).

A. Cause: infectious agent causing acute gastrointestinal disease.
B. Contaminated product: dry dog food made by Company ‘‘X’’ in their Reno, NV plant.
C. Susceptible population: This food is marketed to all ages, breeds, and sizes of dogs.
D. Attack rate: 8% of hospital network patients consumed this food, and 11% of those

who consumed it were clinically affected.
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Figure 7 Spatial analysis of gastrointestinal disease outbreak over four days. Pacific Census Division begins with no alert (white); then yellow
and orange; then yellow, orange, and red; and finally predominantly red.

Table 4 Numbers used to simulate the first aberrant event: an outbreak of diarrhea caused by an infec-
tious agent.Normal average daily prevalence of diarrhea is 3.4%.

Week Percent of dogs with
diarrhea caused by
infectious agent

Total percent of dogs
with diarrhea

Total number of dogs per
week with diarrhea at each
hospital

1 5.2 8.6 12
2 2.8 6.2 9
3 10.2 13.6 19
4 6.5 9.9 14
5 13.0 4.7 7
6 5.7 9.1 13
7 6.5 9.9 14
8 1.7 5.1 7
9 0 3.4 5

E. Finding for clinically affected animals: diarrhea.
F. Product/distribution information: 1,462 of 2,750 tons (53%) of food produced per

five days in the plant were distributed to the State of California. The hospital network
operates 81 hospitals in California, and the assumption was that the diets were equally
distributed throughout the state.

G. The average number of dogs seen at each hospital per day was 20, and the usual
proportion of dogs seen with diarrhea was 3.4%.
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Figure 8 Simulated aflotoxicosis outbreak in the US using elevated alanine aminotransferase (ALT) as
the clinical finding.Graphs (canine (A), feline (B)) show alert scores by date (temporal analysis).

H. Dates: the challenge data were embedded starting on May 15, 2010 and continued
through July 17, 2010.

The second aberrant event found to be a highly plausible outbreak yielded an initial alert for
August 15, 2010 (Figs. 8–11). Our report for the week of June 27–July 1, 2011 (pertaining
to the dates July 31–August 19, 2010) described the clinical and laboratory findings as
elevated ALT, anorexia, and lethargy. The average PDOR for this time was 3.7 ± 2.0 for
ALT, 4.4± 1.7 for anorexia, and 3.7± 1.2 for lethargy. Both dogs and cats in all age groups
were affected. This event was not restricted to a single USCD, but appeared to be national in
scope. That is, the temporal alerts were far more compelling in identifying this event than
the spatial alerts. The constellation of clinical and laboratory findings was compatible with
a hepatotoxic contaminant (such as an aflatoxin), and the enormous rise in the PDORs
would have caused us to define this as an actual outbreak by August 18, 2010.

This situation continued to be monitored through the July 18–July 22, 2011 reporting
period (pertaining to the dates September 24–October 20, 2010). The red alerts continued
unabated through September 26, 2010, after which the outbreak appeared to have resolved.

Following our submission of the final report, the Scientific Advisory Board revealed to
the UC Davis Team that the aberrant event detected was in fact a provocative challenge
(simulated foodborne outbreak). Simulated medical records of cats and dogs in all age
categories with clinical signs typically seen in patients with hepatic disease (e.g., elevated
ALT, anorexia, and depression) were randomly assigned to hospitals throughout the US
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Figure 9 Simulated aflotoxicosis outbreak using alanine aminotransferase (ALT) as syndrome.
Graphs (canine (A), feline (B)) show number of alerts above baseline, by alert color over time (temporal
analysis).

and incorporated into the daily data transfer (Tables 5 and 6). The outbreak was constituted
by the following conditions:
A. Causative agent: aflatoxin.
B. Contaminated product: all formulas of dry cat and dog food made in one central plant

in the Midwest USA during a two-week period. Cornmeal used in the production of
food was contaminated with aflatoxin.

C. Susceptible population: all ages, breeds, and sizes of dogs and cats.
D. Attack rate: 7.3% of dogs and 6.7% of cats were fed this diet, and 30% of those who

consumed it were affected.
E. Clinical and laboratory findings for affected animals: anorexia, depression (lethargy),

and icterus (ALT > 100 in cats, ALT > 118 in dogs).
F. Product/distribution information: the food was distributed from the single plant to the

entire country.
G. The average number of cats and dogs seen at each hospital per day was 5 and 20,

respectively. The usual proportion of cats and dogs seen with elevated ALT was 2.5%
and 2.7%, respectively; with anorexia 4.3% and 2.5%, respectively; and with depression
1.9% and 3.5%, respectively.

H. Dates: the challenge data were embedded starting on August 15 running through
September 26, 2010.
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Figure 10 Simulated canine aflatoxicosis outbreak using elevated ALT as the syndrome over time.
Graph shows diagnostic outcome proportions (DOP); red line shows seven day moving average (temporal
analysis).

DISCUSSION
Theuse of thePDOR as the basis for syndromic surveillance in the current studywas effective
in detecting two distinct and disparate simulated foodborne outbreaks in companion
animals seen at a national network of veterinary hospitals. Alerts were generated by the
surveillance system for both outbreaks on the actual day they began and, in the case of
the aflatoxin outbreak, for the duration of the challenge period; in the infectious agent
outbreak, the alerts were generated continuously for 59 of the 64 days of the outbreak,
abating five days prior to the end of the challenge period. If these had been real outbreaks,
these data would have made it possible to initiate investigations within days of their onset.

The methods developed in this study to detect epidemics differ from the pattern
recognition approaches of machine learning and artificial intelligence (although the
goals are the same), and are adapted from classical epidemiologic methods for studying
patient outcome-related data. The PDOR procedure provides a readily interpretable
epidemiological measure for quantifying the magnitude of an effect. For example, a PDOR
of 3 can be interpreted as a three-fold increase in a Diagnostic Outcome Proportion (DOP)
at a point in time compared to a baseline time or period. An additional advantage of
comparing proportions instead of counts is that a proportion accounts for variation in the
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Figure 11 Spatial analysis of simulated aflatoxicosis outbreak in the US over four successive days. The most affected US Census Divisions vary
by day, indicating the outbreak is occuring on a national level.

number of hospital visits. Measures often used to accompany such statistics, including p-
values and likelihood ratios, are not generated with this approach. Rather, confidence limits
are used to quantify precision, and unlike p-values, are interpretable as effect measures.

The five-level alert system used in our approach considers multiple data-generated
output measures. The scores are based on the user-defined importance of each of the
output measures and can be modified, based on experience, to calibrate the alert system.
Users also have the option of customizing how variables used to estimate PDOR, such
as the lag time and baseline period, are defined. For instance, a user can select different
lengths of lag time between the current date and the last day of the baseline time window.
We employed a 90-day lag time for foodborne outbreak surveillance because we expect this
type of outbreak to be gradual in onset. However, with appropriate adjustments, the PDOR
procedure is suitable for the surveillance of acute events as well as gradual outbreaks.

The PMR and PRR estimates can serve as the basis for case-control studies that estimate
the mortality odds ratio and the reporting odds ratio, respectively (Miettinen & Wang,
1981; Rothman, Lanes & Sacks, 2004). Likewise, if individual-level food consumption
information is available in the medical record, the PDOR can be adapted to estimate
incidence rate ratios by creating a similarly adaptive study design: a diagnostic outcome
case-control study. This bears similarity to a study of proportionate diagnostic outcomes,
except that comparison diet and geographic groups must be selected for reasons believed
a priori to be unrelated to the diet and geographic region of interest. This allows unbiased
estimation of the incidence rate ratio using the diagnostic outcome odds ratio. This
study design approach will potentially be effective so long as the source of disease in a
particular diet is not present in all diets and in all regions represented in the hospital
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Table 5 Numbers used to simulate the second aberrant event: an outbreak of hepatic disease caused
by aflatoxin contamination.Normal average daily prevalences of anorexia, depression, and ALT elevation
are 2.5%, 3.5%, and 2.5%, respectively.

Week Percent of cats with
syndrome caused by
aflatoxin

Total percent of cats
with syndrome

Total number of
cats per week with
syndrome at each
hospital

Anorexia 1 3 5 2
2 5 7 3
3 7 9 3
4 5 7 2
5 3 5 2
6 1 3 1

Depression 1 5 9 3
2 7 11 4
3 10 14 5
4 12 16 6
5 10 14 5

ALT elevation 6 7 11 4
1 4 6 2
2 6 8 3
3 8 10 4
4 6 8 3
5 4 6 2
6 2 4 1

network’s database (consistent with standard methodologic criteria for control selection
in case-control studies).

A limitation to the indiscriminate use of surveillance arises from false positive and false
negative errors. Type I (false positive) errors occur when the decision is made to investigate
a cluster of aberrant events that are either not attributable to any single set of factors
or are attributable to factors that are unmeasurable or beyond intervention. Although all
syndromes and diseases have causes, not all causes can be investigated, and not all outbreaks
justify investigation, so the costs and benefits must be weighed when deciding whether or
not to investigate. Decisions to move from surveillance to investigation must be carefully
made by an appropriate team of medical and epidemiological experts. Such investigations
can potentially incur considerable expense and investment of personnel (including hospital)
and resources. Type I errors therefore lead to unnecessary and unwarranted investigations.
A Type II (false negative) error arises when an epidemic occurs, but is either not detected
or not investigated. In the face of an actual epidemic, when such signal- to-noise ratios may
not be strong, the methods used in the current study can improve surveillance sensitivity
by examining strata of important factors, such as geographic location and age. Such efforts
to calibrate surveillance instruments require an understanding of veterinary medicine and
cannot be relegated to computer algorithms alone.
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Table 6 Numbers used to simulate the second aberrant event: an outbreak of hepatic disease caused
by aflatoxin contamination.Normal average daily prevalences of anorexia, depression, and ALT elevation
are 4.3%, 1.9%, and 2.7%, respectively.

Week Percent of dogs with
syndrome caused by
aflatoxin

Total percent of dogs
with syndrome

Total number of
dogs per week with
syndrome at each
hospital

Anorexia 1 5 9 13
2 7 11 15
3 10 14 20
4 12 16 22
5 10 14 20
6 7 11 15

Depression 1 3 5 7
2 5 7 10
3 7 9 12
4 9 11 15
5 7 9 13

ALT elevation 6 5 7 10
1 4 7 10
2 6 9 12
3 8 11 15
4 6 9 12
5 4 7 10
6 2 9 7

In summary, the PDOR method provides investigators with a readily interpretable,
flexible, and useful tool for detecting disease outbreaks. The ability to customize the various
settings and alert levels makes this tool suitable for detection of a multitude of scenarios
of disease occurrence. The next logical steps in the application of the PDOR methods
would be for the detection of actual disease outbreaks using hospital record data, both
retrospectively and in real-time, as well as extending the methods to conduct immediate
post-detection etiologic investigations utilizing exposure (i.e. dietary) information in the
medical record.

List of abbreviations

ADORE Aberrant Diagnostic Outcome Repository in Epidemiology
BW Baseline time window
CL Confidence limits
DOP Diagnostic outcome proportion
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IRR Incidence rate ratio
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PDOR Proportionate diagnostic outcome ratio
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