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ABSTRACT
Gasdermin B (GSDMB) is a member of the gasdermin (GSDM) protein family,
primarily known for mediating pyroptosis, an inflammatory form of programmed cell
death. Recent studies have revealed the diverse molecular functions of GSDMB and its
close association with various diseases, particularly cancers (e.g., breast cancer, gastric
cancer, bladder cancer) and inflammatory diseases (e.g., asthma, inflammatory bowel
disease). At themolecular level, GSDMB induces pyroptosis by forming pores in the cell
membrane, leading to membrane rupture. This function is common across the GSDM
protein family; however, GSDMB also exhibits unique non-pyroptotic functions,
such as modulating cell proliferation, migration, and immune responses. In multiple
cancers, including breast cancer, gastric cancer, and cervical cancer, high expression
of GSDMB correlates with poor prognosis, promoting cancer cell proliferation,
invasion, and metastasis through interactions with signaling pathways such as STAT3
and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase
(ERK). Additionally, GSDMB influences the immune microenvironment through its
pyroptotic activity, playing a role in the initiation and regulation of inflammation.Upon
activation, it can directly cleave target cells via its N-terminal domain, contributing
significantly to chronic inflammatory diseases and NK cell-mediated antibacterial
responses. In conclusion, as a multifunctional protein, GSDMB not only participates
in pyroptosis but also regulates non-pyroptotic processes, playing an important role
in cancer progression and inflammatory diseases. Further elucidating the detailed
mechanisms of GSDMB may offer novel therapeutic avenues for these conditions.

Subjects Biochemistry, Cell Biology, Molecular Biology, Oncology, Translational Medicine
Keywords GSDMB, Cancer, Inflammatory disease, Therapeutic target, Pyroptosis

INTRODUCTION
The human gasdermin (GSDM) superfamily comprises GSDMA/B/C/D, GSDME (also
known as DFNA5), and DFNB59 (Pejvakin, PJVK), with corresponding homologs in
mice (GSDMA1-3, GSDMC1-4, GSDMD, DFNA5, and DFNB59) (Bergsbaken et al., 2011;
Ding et al., 2016; Tamura et al., 2007). The GSDM family is known to regulate cellular
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proliferation, differentiation, and programmed cell death, especially pyroptosis. Pyroptosis,
first defined in 2015, is GSDM-mediated programmed cell death (Shi et al., 2015).

The GSDM gene family was first identified in the early 21st century as candidate genes
for alopecia-like skin mutations in mice (Sato et al., 1998). The name ‘‘GSDM’’ originates
from the expression of GSDM in the gastrointestinal tract and skin. GSDM proteins
exhibit selective expression across various mucosal tissues, especially during infection
(Liu & Lieberman, 2020; Saeki et al., 2000). For instance, GSDMA is found in the skin
and gastrointestinal tract; GSDMB in the lungs, esophagus, gastrointestinal tract, and
immune cells; GSDMC in keratinocytes and the gastrointestinal tract; and GSDMD in the
gastrointestinal epithelium, macrophages, and dendritic cells of the immune system (Liu
& Lieberman, 2020). GSDME is uniquely expressed in mesenchymal cells, such as skeletal
muscle, myocardium, the central nervous system, and placenta (Van Laer et al., 1998).

Early studies also pointed out that the N-terminal domain of GSDM shares significant
sequence similarity with DFNA5 (Dominant Familial Nonsyndromic Hearing Loss, locus
5) (Van Laer et al., 1998). Based on this homology, several other members of the GSDM
family have been identified. Notably, GSDMB is the only GSDM gene that has not
been found in rodents (Das et al., 2016). This observation suggests that GSDMB is not a
general component of the mammalian immune system, but rather has evolved a unique
function in humans and other mammals (Hansen et al., 2021b). In the GSDM family,
research focusing on GSDMD and GSDME is relatively abundant, and studies on the
functions and mechanisms of GSDMB are progressively deepening. Since 2007, Moffatt
et al. (2010) and Moffatt et al. (2007) have conducted large-scale GWAS studies, revealing
that single nucleotide polymorphisms (SNPs) in GSDMB, particularly rs7216389, are
strongly associated with asthma susceptibility. Located in the intronic region of the GSDMB
gene, this SNP regulates the expression of ORMDL3, playing a significant role in childhood
asthma development. Subsequent GWAS studies have also revealed associations between
GSDMB and various inflammatory and immune-related diseases, including inflammatory
bowel disease (IBD), chronic rhinosinusitis, primary biliary cirrhosis, and cervical cancer,
among others (Table 1). AlthoughGSDMB has been implicated in numerous GWAS studies
and associated with various diseases, the precise mechanisms by which it contributes to
these conditions remain insufficiently explored. There is a need for further investigation
and verification of its molecular functions and role in disease pathology, which is crucial
for translating these findings into therapeutic strategies (Chao, Kulakova & Herzberg, 2017;
Ding et al., 2016; Handunnetthi et al., 2021; Hitomi et al., 2017; Lutkowska et al., 2017; Zack
et al., 2021).

In this review we provide a comprehensive summary based on the molecular
characteristics and diverse functions of GSDMB. It details the roles of GSDMB in cancers,
autoimmune and inflammatory diseases, as well as bacterial/viral infectious diseases, as
evidenced by existing research, and explores its potential as a prognostic marker for these
diseases. Furthermore, we summarize the latest research on GSDMB as a therapeutic target,
offering new directions for the development of future strategies targeting GSDMB. By
integrating these aspects, our review presents a broader and deeper perspective, providing
fresh insights for future research.
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Table 1 The association betweenGSDMB SNPs variants and diseases.

Disease SNPs Potential functional impact References

Asthma rs7216389,
rs1031458,
rs3902920,
rs11078928

Regulates ORMDL3 expression, influences
airway inflammation and remodeling

Li et al. (2021) and
Morrison et al. (2013)

Inflammatory Bowel Disease (IBD) rs2872507 Downregulates GSDMB expression, affects
epithelial restitution

Söderman, Berglind & Almer
(2015)

Chronic Rhinosinusitis rs7216389 Associated with airway inflammation and
remodeling

Zack et al. (2021)

Type 1 Diabetes (T1D) rs12150079,
rs2305480,
rs3894194,
rs12936231

Regulates ORMDL3 and ZPBP2 expression,
impacts immune response

Barrett et al. (2009),
Verlaan et al. (2009a) and
Witsøet al. (2015)

Primary Biliary Cholangitis rs12946510 Influences ORMDL3 and GSDMB expres-
sion; linked to autoimmunity

Hitomi et al. (2017)

Cervical Cancer rs8067378 Increases GSDMB expression, linked to can-
cer progression

Lutkowska et al. (2017)

The intended audience and need for this review
This review is designed for researchers and clinicians in molecular biology, oncology,
and immunology, with a focus on GSDMB. GSDMB’s importance lies in its multifaceted
roles in cancer biology and inflammatory diseases. By influencing key processes such as
pyroptosis, cell proliferation, and immune modulation, GSDMB significantly impacts
cancer progression, metastasis, and inflammatory pathologies. Despite growing research
interest, its unique functions and regulatory pathways remain insufficiently explored.
This review consolidates current insights into GSDMB’s structure, functions, and clinical
relevance, offering a valuable resource to advance research and therapeutic development,
particularly as GSDMB emerges as a promising target in cancer and immune disorders.

SURVEY METHODOLOGY
We conducted a comprehensive literature search across PubMed, Google Scholar, and
Web of Science to identify studies relevant to this review. The search utilized keywords and
Medical SubjectHeading (MeSH) terms, includingGSDMB,GSDML,GasderminB, cancer,
neoplasms, hypersensitivity, inflammation, infectious diseases, molecular targeted therapy,
prognosis, biomarkers, autoimmune diseases, and pyroptosis, tumor microenvironment,
caspases, along with their variants. These terms were systematically sorted, combined, and
used in structured database queries. Relevant studies were selected based on a thorough
review of their abstracts. Ultimately, 90 articles published between 1998 and 2024 were
included in this review.

Characteristics of the GSDMB gene and protein structure
GSDMB was previously known as GSDML (gasdermin-like protein). The GSDMB gene
is located on chromosome 17q21.1 and comprises 11 exons. The 17q21 region may
also contain genes affecting diseases associated with abnormal immune responses, such
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as asthma, allergic rhinitis, and IBD. Such as ORMDL3, which can regulate GSDMB
expression. The GSDMB protein consists of 411 amino acids The GSDMB protein has
four splice variants of different lengths, with GSDMB3 being the longest isoform (416
amino acids) and GSDMB2 the shortest (394 amino acids) (Das, Miller & Broide, 2017;
Oltra et al., 2023). The cis-regulatory elements of GSDMB contain two distinct promoters:
a cellular promoter, which is expressed exclusively in normal gastric tissue and certain
cancer cells, and a long terminal repeat-derived (LTR-derived) promoter, which has been
detected in nearly all cancer types and multiple normal tissues. This suggests that the
LTR-derived promoter may serve as the primary driver of GSDMB expression across
various tissues and may facilitate its upregulation in cancer cells. Although existing studies
indicate the dominant role of the LTR-derived promoter in GSDMB gene expression, the
precise molecular mechanisms underlying how the LTR-derived promoter competes with
the cellular promoter to regulate GSDMB expression, as well as which specific signaling
pathways or cellular environmental factors activate the LTR-derived promoter, remain
largely unexplored (Feng, Fox & Man, 2018; Komiyama et al., 2010; Sin et al., 2006).

As an ‘‘executor’’ of pyroptosis, all GSDM family members, including GSDMB, except
Pejvakin, contain two conserved domains: an N-terminal pore-forming domain and
a C-terminal repressive domain. The N-terminal domain of most GSDMs can induce
pyroptosis, although this function has not yet been detected in Pejvakin (Rogers et al.,
2017).

Oltra et al. (2023) reported that the GSDMB gene (NCBI Gene ID: 55876) produces
at least six transcript variants, which are translated into four distinct protein isoforms
(GSDMB1-4). These isoforms exhibit differential expression patterns across various
diseases, influenced by genetic factors such as single nucleotide polymorphisms (SNPs). For
instance, studies by Panganiban et al. (2018) andMorrison et al. (2013) have demonstrated
that the rs11078928 variant impacts the alternative splicing of GSDMB, resulting in
the loss of exon 6. This exon loss may diminish the pyroptotic activity of GSDMB,
thereby potentially reducing the susceptibility to asthma (Chao, Kulakova & Herzberg, 2017;
Morrison et al., 2013). Moreover, Lutkowska et al. (2017) identified that the G allele of the
rs8067378 SNP may modulate the transcription of GSDMB, influencing the proliferation
of breast cancer cells. The primary difference among these four translated isoforms lies
in the alternative splicing of exons 6 and 7. Exon 6 encodes 13 amino acids, while exon 7
encodes nine amino acids, both of which are located within the flexible interdomain linker
region between the N-terminal (NT) and C-terminal (CT) domains. Specifically, GSDMB1
lacks exon 6 (16), GSDMB2 lacks both exons 6 and 7 (16-7), GSDMB3 contains both
exons, and GSDMB4 lacks exon 7 (17) (Oltra et al., 2023).

Molecular functions of the GSDMB protein
GSDMB exerts diverse molecular functions through both pyroptosis-dependent and
non-pyroptosis-dependent mechanisms, playing distinct roles in various diseases (Fig. 1).
Generally, GSDM proteins maintain oligomerization through interactions between their
N-terminal and C-terminal domains (Kuang et al., 2017). When stimulated by various
exogenous or endogenous factors, GSDM proteins are cleaved by certain caspases or
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granzymes, releasing the pore-forming N-terminal domain. The N-terminal domain
of GSDMs binds to acidic phospholipids including phosphatidylinositol phosphates,
phosphatidylserine, phosphatidic acid and cardiolipin, in the inner leaflet of the cell
membrane (Ding et al., 2016; Liu et al., 2016). In the full-length protein, the C-terminal
domain folds back onto the N-terminal domain to auto-inhibit pore formation. Upon
linker region cleavage, GSDMs release the active, pore-forming N-terminal domain. The
N-terminal domain subsequently oligomerizes on the plasma membrane, assembling
into pores with an inner diameter of approximately 10–16 nm, leading to membrane
rupture. These pores facilitate the release of pro-inflammatory cytokines, such as IL-1β
(4.5 nm) and IL-18 (7.5 nm), thereby amplifying immune signaling. Additionally, pore
formation disrupts cellular osmotic balance, resulting in cell swelling, membrane rupture,
and pyroptotic cell death. Notably, GSDMD pores exhibit a broader diameter range
(10–16 nm), whereas GSDMA3 pores are more uniform (10–14 nm), suggesting potential
differences in their functional roles across various cell types (Ding et al., 2016; Liu et al.,
2021).

The lipid-binding active site of GSDMB is located within its N-terminal domain.
However, both the full-length GSDMB protein and its N-terminal domain can specifically
bind to phosphoinositides and sulfatide, while other members such as GSDMA and
GSDMD do not bind to sulfatide (Chao, Kulakova & Herzberg, 2017; Kim et al., 2017).
Unlike other GSDMs, the C-terminal domain of full-length GSDMB does not prevent
its binding to phospholipids. This phenomenon may be due to the weaker interdomain
interaction between the N- and C-terminal domains of GSDMB compared to other
gasdermin family members, or the phospholipid binding site on the N-terminal domain of
GSDMBmay not be located near the interdomain interface (Ding et al., 2016; Takahashi &
Suzuki, 2012). Sulfatide is synthesized in the Golgi apparatus from galactosylceramide and
is subsequently distributed to the cell membrane, lysosomes, and the Golgi apparatus. It is
a multifunctional molecule that plays crucial roles in the immune system, nervous system,
microbial infections, cancer, insulin secretion, and hemostasis/thrombosis. Elevated levels
of sulfatide have been observed on the surface membranes of epithelial cells in various
cancers, such as lung adenocarcinoma, renal cancer, and gastric cancer, suggesting that
GSDMBmay function in the cellular transport of sulfatide. The abundant sulfatides on the
surface of cancer cells are natural ligands for P-selectin expressed on endothelial cells and
platelets. They can promote cancer cell adhesion and migration, and are associated with
the formation of cancer cell emboli, facilitating hematogenous metastasis of cancers (Chao,
Kulakova & Herzberg, 2017; Das, Miller & Broide, 2017; Garcia, Callewaert & Borsig, 2007;
Merten et al., 2005; Suchanski et al., 2018; Suchański & Ugorski, 2016; Takahashi & Suzuki,
2012). In summary, the N-terminal domain of GSDMB can specifically bind to sulfatide,
and the overexpression of sulfatide is often associated with cancer progression, suggesting
that GSDMB may contribute to cancer cell migration and metastasis.

Chen et al. (2019) discovered that full-length GSDMB binds to the caspase-4 recruitment
domain, potentially leading to the oligomerization of caspase-4, which in turn induces a
conformational change in caspase-4, enhancing its enzymatic activity and promoting the
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Figure 1 Molecular functions of GSDMB in pyroptosis and non-pyroptotic cellular processes.
Full-size DOI: 10.7717/peerj.19392/fig-1

cleavage of GSDMD, thereby inducing non-canonical pyroptosis, a role that can be halted
by negative feedback.

In summary, the researchers suggested that the GSDM-N terminus cannot form pores,
and the increase in cell death mediated by GSDMB is actually mediated by increased
caspase-4 enzymatic activity (Chen et al., 2019). However, subsequent reports refuted
this hypothesis. In 2020, Zhou et al. reported that natural killer (NK) cells and cytotoxic
lymphocytes (CTLs) kill GSDMB-positive cells through pyroptosis. The killing is caused by
the cleavage of GSDMB at Lys244/Lys229 by granzyme A (GZMA) secreted by lymphocytes,
resulting in a pair of major products (p30 and p16) and another pair of minor cleavage
products (p28 and p18). Lys244 is shared by all four isoforms of GSDMB and is the primary
physiological cleavage site forGZMA,while Lys229 is present only inGSDMB3-4. This study
was the first to demonstrate that GZMA can hydrolyze GSDMs at non-aspartic acid sites
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and form pores, redefining the notion that pyroptosis can only be activated by caspases
(Zhou et al., 2020). Chen et al. (2019) constructed various GSDMB fragments based on
caspase cleavage sites and demonstrated that none of them exhibited pore-forming activity.
Consequently, they shifted their focus to the full-length GSDMB protein, emphasizing
its role in modulating caspase-4 activity rather than directly forming membrane pores.
In contrast, in the study by Zhou et al. (2020) GZMA cleaved GSDMB at different sites,
generating an N-terminal fragment with pore-forming activity. Their findings led to the
conclusion that GSDMB, once cleaved and activated, also can directly induce pyroptosis.

Kong et al. (2023) demonstrated that GSDMB1-4 exhibit distinct functional properties.
Specifically, the cleaved N-terminal fragments of GSDMB3 and GSDMB4 can induce
pyroptosis, whereas GSDMB1 and GSDMB2 fail to trigger this form of cell death. The
non-functional isoforms either lack or possess a modified exon 6, leading to the absence
of a stable belt motif, which is thought to facilitate the oligomerization and membrane
insertion of GSDMB-NT. Additionally, non-cytotoxic GSDMB-NT can inhibit pyroptosis
induced by cytotoxic GSDMB-NT. UponNK cell attack, cells expressing GSDMB3 undergo
pyroptosis followed by further cell death, whereasGSDMB4-expressing cells exhibit amixed
cell death phenotype involving both pyroptosis and apoptosis. In contrast, cells expressing
GSDMB1 or GSDMB2 succumb exclusively to apoptosis. Notably, GSDMB4 demonstrates
partial resistance to NK cell-mediated cleavage, suggesting that only GSDMB3 retains full
functional capacity (Kong et al., 2023).

These findings are further supported by Oltra et al. (2023) who confirmed that the
translation of exon 6 is essential for GSDMB-mediated pyroptosis. Specifically, GSDMB
isoforms lacking exon 6 (GSDMB1-2) are incapable of inducing pyroptotic cell death in
cancer cells (Oltra et al., 2023).

The relationship between GSDMB and diseases
GSDMB and cancer
According to statistics from the World Health Organization (WHO), cancer has become
the second leading cause of death worldwide, following cardiovascular diseases (Ahmad &
Anderson, 2021). Due to factors such as global population aging, the incidence of cancer
continues to rise, posing a significant challenge to public health. Data from the American
Cancer Society (ACS) estimate that in 2024, the United States will report 2,001,140 new
cancer cases and 611,720 cancer-related deaths. Although the overall cancer mortality rate
has shown a declining trend with the advent of targeted therapies and immunotherapy,
the field of cancer treatment still faces multiple challenges, including early diagnosis, drug
resistance mechanisms, personalized precision therapy, and the management of treatment-
related adverse effects. Therefore, an in-depth investigation into the role and regulatory
mechanisms of GSDMB in cancer may provide critical insights for the development of
novel therapeutic strategies (Siegel, Giaquinto & Jemal, 2024; Sonkin, Thomas & Teicher,
2024).

Increasing evidence has confirmed the critical role of GSDMB in cancer; however, few
cancer-specific regulatory mechanisms have been identified. Moreover, the conclusions
regarding the relationship between GSDMB and cancer are not entirely consistent, as it is
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associated with both anticancer and pro-cancer functions, highlighting the heterogeneity
of cancers and the complexity of the immune microenvironment. GSDMB exerts its effects
in cancers through both pyroptosis-dependent and pyroptosis-independent mechanisms.
When GZMA cleaves GSDMB to release the pore-forming N-terminal domain, it can
induce cancer cell death through pyroptosis, releasing inflammatory factors and enhancing
immune cell infiltration. This may potentially enhance the efficacy of immune checkpoint
inhibitors, although it could also lead to the development of a chronic inflammatory
microenvironment that may have tumor-promoting effects. However, intact GSDMB can
promote various tumorigenic effects, such as invasion, metastasis, and drug resistance
(Hsu et al., 2023; Oltra et al., 2023; Sarrió et al., 2021; Yu et al., 2021). GSDMB has been
implicated in cancer progression, with elevated expression observed in gastric, cervical,
breast, and liver cancers (Carl-McGrath et al., 2008; Hergueta-Redondo et al., 2014; Sun
et al., 2008). Researchers have demonstrated that GSDMB is located within amplicons,
genomic regions frequently amplified during cancer progression. Therefore, GSDMB may
contribute to cancer progression and metastasis, although the exact mechanisms remain
unclear (Feng, Fox & Man, 2018). The dualmechanisms bywhich pyroptosis-related factors
promote and inhibit cancer progression remain to be explored.

The tumor microenvironment (TME) comprises non-malignant cells and their
associated components within the tumor, including immune cells, stromal cells, the
extracellular matrix (ECM), and various secreted molecules. It plays a crucial role in
cancer progression, immune regulation, and therapy resistance (Liu et al., 2024b; Xiao &
Yu, 2021; Xu et al., 2024). GSDMB, as an inflammation-related factor, not only regulates
the expression of TGF-β1 and 5-lipoxygenase (5-LO) (Das et al., 2016), but also undergoes
cleavage by GZMA released from NK cells and CTLs to induce inflammatory cell death,
thereby impacting the tumor immune microenvironment. Additionally, GSDMB may
synergize with immune checkpoint inhibitors to enhance anti-tumor immunity (Zhou
et al., 2020). In colorectal cancer, GSDMB+ tumor cells have been shown to correlate
positively with GZMA+IFN-γ+CD8+ TILs, which enhances tumor immune infiltration
(Yang et al., 2024). In melanoma, the tumor may reduce the expression of pyroptosis-
related genes (PRGs) such asGSDMB in immune cells, thereby lowering pyroptotic activity
and inhibiting anti-tumor immunity (Zhang et al., 2023). Furthermore, a PRG-based
prognostic models, including GSDMB, serve as independent prognostic factors for adrenal
cortical carcinoma (ACC) and are closely associated with immune cell infiltration, tumor
mutation burden, microsatellite instability, and immune checkpoints (Gao et al., 2023). In
summary, due to the complexity and individual specificity of the TME, GSDMB, through
its interactions, may play differential roles in various cancers by affecting immune evasion,
immune therapy responses, and other aspects.

Kong et al. (2023) found that GSDMB1-3 are the most abundant isoforms in the tested
tumor cell lines. In bladder cancer and cervical cancer, the expression of cytotoxicGSDMB3-
4 is associated with better prognosis, while GSDMB1-2, frequently upregulated in tumors,
are not associated with better prognosis, indicating that GSDMB3-4 mediated pyroptosis
has a protective role in these tumors (Kong et al., 2023). Oltra et al. (2023) reported that
GSDMB2 expression, rather than exon 6-containing isoforms (GSDMB3-4), is associated
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with poor clinical-pathological parameters in breast cancer. Specific residues in exon 6 and
other regions of the N-terminal domain are crucial for GSDMB-triggered cell death and
mitochondrial damage. Additionally, specific proteases (granzyme A, neutrophil elastase,
and caspases) differentially regulate pyroptosis by cleaving GSDMB. Granzyme A from
immune cells can cleave all GSDMB isoforms, but only in exon 6-containing isoforms does
this process lead to the induction of pyroptosis. Conversely, GSDMB isoforms cleaved
by neutrophil elastase or caspases produce non-cytotoxic short N-terminal fragments,
indicating that these proteases may act as inhibitors of pyroptosis (Oltra et al., 2023). The
expression of different GSDMB isoforms in various cancers and how GSDMB influences
cancer biology remain unclear. Das et al. (2016) discovered that GSDMB regulates TGF-β1
expression through nuclear localization and transcriptional regulatory effects, suggesting
that its function may largely be independent of its pore-forming activity. This finding
further raises the possibility that other GSDMs may also possess unknown functions that
are independent of their cleavage or pore-forming abilities (Das et al., 2016; Liu et al.,
2021).

Breast cancer
Breast cancer is one of the most common malignancies. In breast cancer, high GSDMB
expression has been associated with cancer progression, and patients with high GSDMB
expression have shown poor responses to HER2-targeted therapy. In HER2-positive
breast cancer, increased GSDMB gene expression is associated with poor prognosis
(Hergueta-Redondo et al., 2014), characterized by shorter survival and higher metastasis
rates, as well as adverse responses to HER2-targeted therapy. Recent studies have shown
that GSDMB reduces the sensitivity to HER2-targeted therapy by promoting protective
autophagy and enhancing autophagosome-lysosome fusion through its interaction with
Rab7/LC3B. Additionally, research indicates a significant co-expression trend between
GSDMB and ERBB2. The GSDMB gene is located 175 kilobases downstream of ERBB2,
and its gene amplification is highly correlated with HER2 (ERBB2) gene amplification.
GSDMB overexpression occurs in approximately 60% of HER2-positive breast cancer
cases. Molina-Crespo et al. (2019) demonstrated that targeting GSDMB with antibodies
effectively reduces metastasis, invasion, and therapy resistance in HER2-positive breast
cancer (Edgren et al., 2011; Gámez-Chiachio et al., 2022; Hergueta-Redondo et al., 2014;
Hergueta-Redondo et al., 2016). Several splice isoforms of GSDMB exist in humans, and
GSDMB2 is strongly associated with the tumorigenic and metastatic phenotype of breast
cancer cells (Hergueta-Redondo et al., 2016). This suggests that GSDMB may serve as a
novel prognostic marker for breast cancer;

Gastric cancer
Gastric cancer is amalignancy originating fromgastric cells, characterized by poor prognosis
and high mortality. One study indicated that GSDMA acts as a tumor suppressor gene in
gastric cancer, whileGSDMB is overexpressed in some gastric cancer cells andmay function
as an oncogene. Komiyama et al. (2010) examined GSDMB expression in normal and
cancerous gastric tissues and found that GSDMB is highly expressed in most gastric cancer
tissues but not in most normal gastric tissues, possibly related to gastric cancer invasion.
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They also identified an Alu element, approximately 300 bp in length, belonging to the
short interspersed nuclear elements (SINE) family of retrotransposons, located upstream
of GSDMB. The study found that the Alu element regulates GSDMB expression in cancer
cells, possibly involving the IKZF (zinc finger transcription factor) binding motif present
in this element, which plays a key role in upregulating GSDMB expression. Another study
by Saeki et al. (2015) found that GSDMB expression is driven by two promoters, including
a cellular promoter and an LTR-derived promoter. These studies suggest that GSDMB
expression levels and the activation of Alu elements and LTR-derived promoters may serve
as useful molecular markers for assessing gastric cancer development and progression
(Komiyama et al., 2010; Saeki et al., 2015). Carl-McGrath et al. (2008) found that GSDMB
may also be overexpressed in liver cancer and colorectal cancer tissues (Saeki et al., 2009).

Cervical cancer
The rs8067378 SNP variant is located downstream ofGSDMB, corresponding to the cellular
promoter and LTR region, and increases GSDMB expression, which is associated with the
progression of cervical squamous cell carcinoma. Therefore, GSDMB expression may be a
risk factor for cervical squamous cell carcinoma and may promote cancer cell growth and
accelerate metastasis of low-grade cancer cells (Lutkowska et al., 2017; Sun et al., 2008).

Colorectal cancer
Sun et al. (2024) found that the expression pattern of GSDMB is related to the prognosis,
progression, and immune response of colorectal cancer (CRC). The study revealed that
GSDMB is significantly expressed in CRC tissues, and cytoplasmic GSDMB expression
serves as an independent favorable prognostic indicator. Moreover, CRC cells with
high GSDMB expression show increased sensitivity to 5-fluorouracil chemotherapy.
Additionally, GSDMB expression is associated with systemic inflammation markers
such as neutrophils and lymphocytes in peripheral blood (Sun et al., 2024). Jiang et al.
(2024) found that GSDMB regulates the expression of DUSP6 through interaction with
IGF2BP1, thereby influencing the ERK signaling pathway, inhibiting cell proliferation,
and promoting cell death. Yang et al. (2024) explored the role of CD8+ tumor-infiltrating
lymphocytes (TILs) co-expressing GZMA and interferon-γ (IFN-γ) in regulating GSDMB
expression in the TME of colorectal cancer. Their research showed a positive correlation
between GSDMB+ tumor cells and GZMA+IFN-γ+CD8+TILs, and high infiltration of
GZMA+IFN-γ+CD8+TILs is associated with better patient prognosis (Yang et al., 2024).
These studies suggest that GSDMBnot only has a potential inhibitory role in the progression
of CRCbut also influences the immunemicroenvironment,making it a potential biomarker
for disease prognosis and a target for therapeutic intervention;

Lung cancer
Liang et al. (2024) explored the complex role of GSDMB in lung cancer and other
respiratory diseases. New evidence suggests that promoting GSDMB-mediated pyroptosis
can inhibit tumor growth and reverse resistance. In lung cancer, particularly non-small cell
lung cancer (NSCLC), GSDMB-induced pyroptosis has been shown to inhibit tumor cell
proliferation andmetastasis. However, pyroptosis can also lead to adverse effects associated
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with tumor therapy, such as increased inflammation and tissue damage. This indicates
the dual role of GSDMB in promoting and inhibiting tumor growth, requiring a balance
between its anti-tumor benefits and potential side effects in tumor therapy (Liang et al.,
2024).

Bladder cancer
In bladder cancer, the role of GSDMB remains controversial. He et al. (2021) found that
GSDMB expression is higher in bladder cancer tissues compared to adjacent normal
tissues. Their study demonstrated that GSDMB promotes bladder cancer progression
through interaction with STAT3, enhancing STAT3 phosphorylation and modulating
glucose metabolism. This pathway activates tumor cell growth and invasion, suggesting
that GSDMBmay function as an oncogene in bladder cancer. Furthermore, they identified
that USP24 stabilizes GSDMB, preventing its degradation and thereby further promoting
tumor growth. In contrast, Wang et al. (2023) focused on the therapeutic potential of
Anlotinib, a multi-target tyrosine kinase inhibitor, in treating GSDMB-positive bladder
cancer. Their bioinformatics analysis revealed that patients with high GSDMB expression
had better overall survival, and that GSDMB expression was significantly elevated in tumor
tissues compared to normal tissues. Further investigations demonstrated that Anlotinib
treatment enhanced the secretion of antitumor factors and effectively reduced tumor
growth in GSDMB-positive bladder cancer.This discrepancy may be attributed to the
dual role of GSDMB, where under certain conditions, it promotes tumor growth (e.g.,
via STAT3 signaling), whereas in the context of treatment, it may enhance therapeutic
efficacy and regulate immune responses. However, the lack of further validation of GSDMB
subtypes in these studies could be one of the reasons for the conflicting results observed.
Therefore, further research is required to reconcile these mechanisms and comprehensively
understand the role of GSDMB in bladder cancer progression and therapeutic response
(He et al., 2021; Wang et al., 2023).

Kidney cancer
Cui et al. (2021) retrieved the transcriptional expression profiles of GSDMB in clear cell
renal cell carcinoma (ccRCC) tissues and normal tissues from The Cancer Genome Atlas
(TCGA) database and validated them in the Gene Expression Omnibus (GEO) database.
Using various bioinformatics analyses, they determined the relationship between GSDMB
mRNA expression and immune infiltration. They demonstrated that GSDMB mRNA and
protein expression are upregulated in ccRCC and positively correlated with higher TNM
stages, suggesting thatGSDMBmaybe a potential biomarker associatedwith poor prognosis
and may have unique functions in regulating immune infiltration in ccRCC. Huang et al.
(2024) found that gasdermin (GSDM) family genes play an important role in ccRCC. Using
multiple bioinformatics databases, such as TCGA, GEPIA, Metascape, and cBioPortal, they
analyzed gene differential expression, gene mutations, and their impact on prognosis and
immune regulation. The results showed that GSDMA, GSDMB, GSDMC, and GSDMD
mRNA expression are upregulated in ccRCC tissues. High expression levels of GSDMB,
GSDMD, and DFNA5 are associated with poorer pathological features and lower survival
rates in ccRCC patients. In particular, GSDMBwas identified as an independent prognostic
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marker, indicating its potential as a therapeutic target and biomarker for ccRCC (Cui et
al., 2021; Huang et al., 2024). While TCGA and other public databases provide valuable
resources for transcriptomic analysis, recent studies have emphasized potential limitations
of bulk RNA-seq data. These include technical biases (such as batch effects and sequencing
depth variation) and biological confounders (such as tumor heterogeneity and immune cell
infiltration), whichmay affect the accuracy of gene expression estimates (Liu, Guo & Wang,
2024a; Liu et al., 2025). Therefore, findings based on TCGA data, including the expression
and prognostic value of GSDMB, should be interpreted with caution, and ideally validated
using complementary methods such as single-cell or spatial transcriptomics.

GSDMB and autoimmune and inflammatory diseases
In recent years, multiple studies have also revealed that GSDMB plays a crucial role in the
onset and development of various inflammatory diseases and autoimmune disorders. SNPs
of the GSDMB gene have shown significant associations with multiple diseases by affecting
pyroptosis and inflammatory responses:

Diabetes mellitus
GSDMB gene is located within the 17q21 region, which harbors multiple genes associated
with autoimmune diseases, including ORMDL3, a gene that has been demonstrated to
regulate GSDMB expression. Several single nucleotide polymorphisms (SNPs) within this
region, such as rs12150079, rs2305480, and rs3894194, have been significantly associated
with type 1 diabetes (T1D) (Barrett et al., 2009; Witsøet al., 2015). The risk allele of SNP
rs12936231 has been linked not only to an increased susceptibility to asthma and T1D
but also to upregulated expression of GSDMB and ORMDL3, along with downregulation
of ZPBP2. Inflammation is a key contributor to T1D pathogenesis, and GWAS findings
suggest that SNPs within the 17q21 region may influence GSDMB expression, thereby
modulating immune regulation and disease susceptibility in T1D (Barrett et al., 2009;
Verlaan et al., 2009a). Additionally, the N-terminal domain of GSDMB can interact with
cell membrane components to form pores, leading to the release of cellular contents and
pyroptosis, which may play a key role in the immunopathology of T1D (Feng, Fox & Man,
2018).

Ankylosing spondylitis
In ankylosing spondylitis, variations in the GSDMB gene also show significant impact.
Qiu et al. (2013) found that certain SNPs in GSDMB are associated with susceptibility and
severity of ankylosing spondylitis in the Chinese Han population. These SNPs may affect
the immune system’s response to inflammatory signals by altering GSDMB expression
and function (Qiu et al., 2013). Specifically, the N-terminal domain of GSDMB can trigger
pyroptosis in immune cells, releasing pro-inflammatory cytokines such as IL-1β and IL-18,
thereby exacerbating chronic inflammation in ankylosing spondylitis (Feng, Fox & Man,
2018).

Asthma
GSDMB is highly expressed in the bronchial epithelium of asthma patients and has been
shown to induce the expression of TGF-β1 (Das et al., 2016). Bouzigon et al. (2008) showed
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that GSDMB is significantly associated with asthma and asthma-related phenotypes,
such as bronchial hyperresponsiveness (BHR) and total IgE levels. The GSDMB gene
influences asthma occurrence and development by encoding proteins involved in cell
differentiation, cell cycle regulation, and apoptosis. Studies have found that single
nucleotide polymorphisms (SNPs) in GSDMB, particularly rs7216389, are closely related
to asthma susceptibility. This SNP is located in the intronic region of the GSDMB gene
and influences the transcriptional level of the ORMDL3 gene, further regulating airway
smooth muscle remodeling and fibrosis, increasing bronchial hyperresponsiveness. Li et al.
(2021) conducted a GWAS study and identified several SNPs of GSDMB (e.g., rs1031458
and rs3902920) that modulate the expression of GSDMB and are significantly associated
with asthma severity and long-term exacerbations. Furthermore, GSDMB expression levels
were found to be positively correlated with the expression of genes involved in multiple
antiviral pathways, suggesting that viral infections and the activation of antiviral pathways
may contribute to the development of severe asthma and asthma exacerbations (Li et
al., 2021). Additionally, SNP rs11078928 has been found to regulate the transcription of
GSDMB pyroptosis-related isoforms (GSDMB3-4) (Morrison et al., 2013), suggesting that
excessive pyroptosis may play a pathogenic role in asthma. In studies across multiple ethnic
groups, such as Puerto Ricans, African Americans, and Mexicans, rs7216389 has shown
a significant association with asthma (Galanter et al., 2008; Zhao et al., 2015). A study of
Korean children also found that asthmatic children carrying the GSDMB rs7216389 TT
genotype had significantly elevated total IgE levels and bronchial hyperresponsiveness,
further confirming the role of the GSDMB gene in asthma (Yu et al., 2011). Additionally,
the association between GSDMB and the ORMDL3 gene is particularly significant in
early-onset asthma patients exposed to tobacco smoke, suggesting that these two genes
may be co-regulated and highlighting the regulatory role of environmental factors in the
impact of the GSDMB gene on asthma occurrence (Bouzigon et al., 2008).

Inflammatory bowel disease
The SNPs in the GSDMB gene are associated with susceptibility to inflammatory bowel
disease (IBD). In contrast to asthma, studies show that SNP risk alleles for IBD typically
downregulate GSDMB expression in gut/immune cells. The rs2872507 risk allele is
significantly associated with decreased GSDMB expression levels in intestinal tissues, a
reduction observed in both inflamed and non-inflamed mucosal tissues. Additionally,
this risk allele is associated with increased expression of GSDMA and LRRC3C genes
and decreased expression of PGAP3 and ZPBP2 genes. These gene expression changes
may impact apoptosis and proliferation, further modulating the pathophysiological
processes of IBD (Söderman, Berglind & Almer, 2015; Verlaan et al., 2009b). Nitish Rana
and colleagues found that GSDMB is primarily expressed in intestinal epithelial cells
(IEC), and within these cells, GSDMB does not trigger the typical pyroptotic response.
The presence of IBD-associated GSDMB SNPs leads to functional defects, impairing
epithelial restitution/repair. They also observed that the immunosuppressant methotrexate
can upregulate the expression of uncleaved GSDMB in intestinal epithelium, suggesting
GSDMB as a potential therapeutic target for IBD, particularly in regulating epithelial barrier
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function and attenuating inflammation (Rana et al., 2022). Chen et al. (2019) proposed
that in IBD, GSDMB does not directly trigger pyroptosis by cleaving and releasing the N-
terminal domain but rather promotes non-canonical pyroptosis through direct interaction
with caspase-4. Although many studies have demonstrated the association of GSDMB
with IBD susceptibility, exploration of the mechanisms by which GSDMB influences IBD
remains relatively scarce. Whether pyroptosis induced by GSDMB affects the onset and
progression of intestinal inflammation is still to be clarified;

Psoriasis
Psoriasis is a common chronic skin disease characterized by excessive proliferation and
inflammation of skin cells. Nowowiejska et al. (2024) showed that GSDMB expression
levels in serum, urine, and skin tissues of psoriasis patients were significantly higher than in
control groups without skin diseases. GSDMB expression in psoriatic plaques was mainly
concentrated in the dermis and epidermis, and its expression was significantly increased
in psoriatic plaques compared to non-lesional skin and healthy controls. These findings
suggest that GSDMBmay play an important role in the onset and development of psoriasis
by regulating keratinocyte proliferation and migration (Nowowiejska et al., 2024).

Chronic rhinosinusitis
The SNPs of theGSDMB gene are significantly associatedwith chronic rhinosinusitis (CRS).
Studies have shown that individuals carrying the GSDMB rs7216389 SNP exhibit a higher
susceptibility to CRS. In a multi-center retrospective case-control study, participants from
two otolaryngology centers at the University of Arizona and the University of Pennsylvania
were included. The results revealed that individuals carrying the GSDMB rs7216389 risk
allele were more likely to develop CRS in both populations. Furthermore, the study
found that GSDMB rs7216389 may promote the development of CRS by affecting the
inflammatory response and remodeling processes in the nasal cavity and airways. The
research also noted that asthma and CRS share common pathophysiological mechanisms
and may manifest as unified airway disease. Rhinovirus (RV) infection plays a key role
in this process, as it exacerbates the symptoms of both asthma and CRS. The GSDMB
rs7216389 SNP is also associated with abnormal immune responses to RV infection, which
may contribute to the onset and exacerbation of asthma and CRS. These findings suggest
a potential role of the GSDMB gene in CRS and related upper airway diseases, which may
provide new directions for future treatments of these conditions (Zack et al., 2021).

Infectious diseases
GSDMB plays a key role in immune responses to a variety of infectious diseases. Upon
activation, GSDMB not only targets bacterial membranes to induce bacterial lysis, but
also activates specific pathways involved in virus-induced cell death and inflammation.
Additionally, GSDMB gene is closely linked to the activation of various immune-related
genes, which can aid in predicting the severity and prognosis of infectious diseases (Hansen
et al., 2021a; Li et al., 2023; Miranzadeh Mahabadi et al., 2024; Pasanen et al., 2024).

Hansen et al. (2021a) explored the role of GSDMB in NK cell-mediated antibacterial
defense. Their study indicated that once activated, GSDMB directly dissolves bacteria by
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recognizing and binding to specific bacterial lipids, without the need for host cell death.
Further research showed that the N-terminal domain of GSDMB binds to phospholipids
on the membranes of Gram-negative bacteria, forming pores that induce bacterial death.
This finding suggests that GSDMB has a specialized antimicrobial function, particularly
in membrane binding and bacterial dissolution. Shigella flexneri (enteroinvasive Shigella)
targets GSDMB by secreting the effector protein IpaH7.8, which ubiquitinates and degrades
GSDMB, thereby suppressing its function to evade NK cell-mediated bacterial clearance,
revealing a bacterial strategy to evade host immune responses (Hansen et al., 2021a).

Li et al. (2023) found that GSDMB plays a dual role in sepsis: it facilitates bacterial
clearance through non-canonical pyroptosis, while also regulating this process through
caspase-7 to prevent excessive inflammation. GSDMB promotes non-canonical pyroptosis
by interacting with caspase-4, but during apoptosis, activated caspase-7 cleaves GSDMB
at the D91 site, blocking its role in non-canonical pyroptosis, thus inhibiting excessive
inflammation and serving a protective role in sepsis. In sepsis mouse models, caspase-7
inhibition or deficiency in GSDMB transgenic mice resulted in more severe disease
phenotypes, further proving the significance of the caspase-7/GSDMB axis in sepsis. This
finding provides new potential therapeutic targets for sepsis, particularly in balancing
pyroptosis and apoptosis (Li et al., 2023).

Acute viral bronchiolitis is a common lower respiratory infection (LRI) and a major
cause of infant hospitalization worldwide (Florin, Plint & Zorc, 2017). Pasanen et al. (2024)
conducted a GWAS study to investigate the genetic factors contributing to bronchiolitis
susceptibility, revealing several key genetic loci. Among them, variations within the
GSDMB gene locus were found to be significantly associated with susceptibility to viral
bronchiolitis, particularly cases caused by non-respiratory syncytial virus (non-RSV). These
findings suggest that GSDMB plays a crucial role in immune responses, especially against
viral respiratory infections. Furthermore, studies have shown that severe bronchiolitis
in early childhood, particularly when caused by non-RSV viruses, is associated with an
increased risk of developing asthma later in life (Meissner, 2016). The GSDMB gene is
known to be associated with asthma susceptibility. These findings further elucidate the
genetic link between early childhood respiratory infections and the development of asthma,
indicating that GSDMBmay serve as a key biomarker for bronchiolitis severity and asthma
susceptibility (Pasanen et al., 2024).

Miranzadeh Mahabadi et al. (2024) investigated the interaction between monkeypox
virus (MPXV) and GSDMB in neural cells, finding that MPXV infection triggers pyroptosis
through GSDMB. MPXV preferentially infects human astrocytes, inducing immune
responses and activating inflammation-related genes. In this process, MPXV specifically
induces proteolytic cleavage ofGSDMB, leading to plasmamembrane rupture and cell death
(pyroptosis), which may contribute to neurological symptoms observed in monkeypox
patients. Moreover, the study showed that dimethyl fumarate (DMF) could inhibit GSDMB
cleavage induced byMPXV infection, reducing cytotoxic responses, thereby providing a new
therapeutic approach for treating monkeypox-related neurological diseases (Miranzadeh
Mahabadi et al., 2024).
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GSDMB not only plays a critical role in the immune response and pathogenesis of
infectious diseases, but also provides a new biomarker for predicting the prognosis of
these diseases. These findings open up new directions for developing therapeutic strategies
targeting GSDMB.

ADVANCES IN TUMOR THERAPY INVOLVING GSDMB
In tumors, the pro-tumor or anti-tumor effects of GSDMB may depend on the biological
context of the tumor (Sarrió et al., 2021). In breast cancer and gastric cancer, GSDMB
is often co-expressed with the HER2/ERBB2 oncogene, and GSDMB overexpression
promotes tumor invasion, metastasis, and treatment resistance (Gámez-Chiachio et
al., 2022; Hergueta-Redondo et al., 2014; Molina-Crespo et al., 2019; Sarrio et al., 2022).
Targeting GSDMB with antibodies has been shown to reduce its pro-tumor functions
(e.g., cell migration, metastasis, and drug resistance) in breast cancer cells (Molina-Crespo
et al., 2019). At the same time, if the pore-forming pyroptotic function of GSDMB is
activated in cancer cells, it may also have anti-tumor effects, which can be triggered in
vitro by granzyme A (GZMA) cleavage. In the context of immune activation, CTLs and
NK cells first recognize and engage with target cells, such as cancer cells. They then release
perforin and granzymes. Perforin forms pores in the target cell membrane, allowing
granzyme A to enter the target cell. Once inside the target cell, granzyme A specifically
cleaves GSDMB at the Lys229/Lys244 sites, releasing the GSDMB-N terminal domain
with pore-forming activity. This domain oligomerizes on the target cell membrane to
form pores, inducing pyroptosis and subsequent antitumor immune responses (Zhou et
al., 2020). Therefore, triggering GSDMB pyroptosis is considered a promising method for
effectively killing tumors. However, to develop future therapies targeting GSDMB, the
precise functional domains and regulatory mechanisms of GSDMB pyroptosis must be
thoroughly defined, as there are currently many controversial and contradictory results
(Oltra et al., 2023). Zhou et al. (2020) found that while GSDMB expression does not affect
the growth of colorectal cancer or melanoma in mice, GSDMB expression synergistically
enhances tumor growth inhibition when combined with anti-PD1 checkpoint inhibitors.
In another study, the researchers established a bioorthogonal chemical system in which
the tumor imaging probe phenylalanine trifluoroborate (Phe-BF3) can enter cells and
desilylate, cleaving a designed linker containing a silyl ether group. This system allows
controlled release of drugs from antibody-drug conjugates in mice. When combined with
nanoparticle-mediated delivery, Phe-BF3-mediated desilylation can selectively release
client proteins (including active gasdermin) into tumor cells in mice. The application of
this bioorthogonal system to breast tumors showed that inducing pyroptosis in tumor
cells significantly inhibits breast tumor growth. The system’s application suggests that
inflammation triggered by pyroptosis can elicit a powerful anti-tumor immune response
and synergize with immune checkpoint inhibitors, potentially improving immunotherapy
responsiveness (Wang et al., 2020).

In gastric cancer, particularly in HER2-positive gastric cancer, GSDMB plays a crucial
role in pyroptosis. Lin et al. demonstrated that the bispecific antibody IBI315, which

Yang et al. (2025), PeerJ, DOI 10.7717/peerj.19392 16/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.19392


simultaneously targets PD-1 and HER2, significantly enhances tumor cell killing by
inducing GSDMB-mediated pyroptosis. Specifically, IBI315 activates the cleavage of
GSDMB, leading to the release of inflammatory factors such as IL-18 from tumor cells.
These factors further activate T cells, and the activation of T cells, in turn, enhances GSDMB
expression through a positive feedback mechanism, forming a tumor cell killing loop. The
upregulation of GSDMB in HER2-positive gastric cancer cells provides a theoretical basis
for the efficacy of IBI315, suggesting the potential application of GSDMB in gastric cancer
immunotherapy (Lin et al., 2023).

In lung adenocarcinoma (LUAD), the combination of inetetamab (an anti-HER2
monoclonal antibody) and cisplatin significantly enhances the antitumor effect, primarily
through the induction of NLRP3/caspase-1/GSDMB-mediated pyroptosis. Cui et al.
found that when inetetamab was used in combination with cisplatin, it inhibited the
HER2/AKT/Nrf2 signaling pathway, increased ROS levels, and activated the NLRP3
inflammasome, which in turn triggered the cleavage of GSDMB. This process led to the
rupture of tumor cell membranes, releasing pro-inflammatory factors such as HMGB1,
and promoting the activation of immune cells. The study indicates that this pyroptosis
induction not only improves the efficacy of cisplatin but also enhances the sensitivity of
cisplatin-resistant lung adenocarcinoma cells (Cui et al., 2023).

Kong et al. (2023) demonstrated that GSDMB splice variants differ in function. The
N-terminal fragments of GSDMB3 and GSDMB4 can induce pyroptosis, while GSDMB1
and GSDMB2 do not. Tumors may block and evade killer cell-triggered pyroptosis by
producing non-cytotoxic GSDMB isoforms. In the limited current research, the expression
of the cytotoxic GSDMB3-4 isoforms in bladder cancer and cervical cancer is generally
associated with a better prognosis (Kong et al., 2023), whereas the GSDMB2 isoform is
strongly correlated with the tumorigenic and metastatic phenotypes of breast cancer cells
(Hergueta-Redondo et al., 2016). Therefore, therapies that selectively produce cytotoxic
GSDMB isoforms through alternative splicing may improve anti-tumor immunity.

CONCLUSIONS
In summary, GSDMB plays a pivotal role in the initiation and progression of both tumor
and non-tumor diseases. Beyond its diverse functions in cancer, GSDMB has garnered
significant attention for its involvement in inflammatory diseases, including asthma,
inflammatory bowel disease, and viral infections. Through mechanisms such as immune
modulation, pyroptosis regulation, and epithelial repair, GSDMB can have distinct and
even opposing effects depending on the disease context, contributing to both disease
progression and resolution based on the cellular environment.

Given its complex and context-dependent nature, GSDMB exemplifies a ‘‘double-edged
sword.’’ On one hand, it can exert tumor-suppressive effects, as demonstrated in gastric
and lung cancers, where GSDMB synergizes with immune checkpoint inhibitors and
cisplatin to enhance anti-tumor responses. Additionally, GSDMB is implicated in epithelial
repair and inflammation regulation, particularly in conditions like IBD, offering potential
for therapeutic benefit. On the other hand, certain SNPs in the GSDMB gene have been
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associated with cancer progression and drug resistance, as observed in breast cancer, as well
as the exacerbation of inflammatory diseases, including asthma and chronic rhinosinusitis
. Understanding how different GSDMB isoforms function in various diseases is crucial for
obtaining a comprehensive view of its functional diversity. Moreover, GSDMB’s role in
modulating immune responses and its interactions within the tumor microenvironment
position it as a promising therapeutic target. Targeting GSDMB could enhance its tumor-
suppressive effects in cancer while alleviating chronic inflammation in diseases like asthma
and IBD.

Recent advances in liquid biopsy technologies, including circulating tumor DNA
(ctDNA) analysis and epigenetic profiling, offer promising avenues for the noninvasive
detection of disease-associated molecular features (Gonzalez et al., 2024; Jahangiri, 2024;
Ohyama et al., 2024). Although not yet widely applied to the gasdermin family, these tools
may provide future opportunities to monitor GSDMB-associated molecular alterations
and support its potential as a diagnostic or prognostic biomarker.

Future research should focus on developing specific GSDMB-targeted therapies,
optimizing their efficacy, and minimizing associated risks. Investigating the molecular
mechanismsunderlyingGSDMB’s diverse functionswill be essential for refining therapeutic
strategies and improving patient outcomes across a wide range of diseases.
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