The effect of patellar taping combined with isometric strength training on pain, muscle strength, and functional performance in patients with patellofemoral pain syndrome: a randomized comparative study (#106600)

First submission

Guidance from your Editor

Please submit by 22 Nov 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 3 Figure file(s)
- 4 Table file(s)
- 1 Raw data file(s)


Custom checks

Human participant/human tissue checks

- Have you checked the authors <u>ethical approval statement?</u>
- Does the study meet our <u>article requirements</u>?
- Has identifiable info been removed from all files?
- Were the experiments necessary and ethical?

Clinical trial checks

Have you checked the authors <u>ethical approval statement?</u>

For assistance email peer.review@peerj.com

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

The effect of patellar taping combined with isometric strength training on pain, muscle strength, and functional performance in patients with patellofemoral pain syndrome: a randomized comparative study

Shahnaz Hasan Corresp. 1

Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Al Majmaah11952, Saudi Arabia

Corresponding Author: Shahnaz Hasan Email address: sh.ahmad@mu.edu.sa

Background: Patellar taping and quadriceps strengthening exercises are commonly used in physiotherapy to manage patellofemoral pain syndrome (PFPS). However, previous research has reported inconsistent findings regarding quadriceps strength gains at specific knee angles during strength training in individuals with PFPS. Objective. This study investigated the combined effects of patellar taping and isometric quadriceps strength training at 60° of knee flexion on quadriceps strength, pain, and functional performance in female patients with PFPS. **Methods.** A two-arm, parallel-group, randomized comparative design was employed. Sixty adult females with PFPS were randomly assigned to either the experimental group (n = 30), which received patellar taping combined with quadriceps strength training at 60° , or the control group (n = 30), which received placebo taping with the same training. Both interventions lasted six weeks. Pain intensity, quadriceps muscle strength, and functional performance were assessed using the numeric pain rating scale (NPRS), maximum voluntary isometric contraction (MVIC) at 60° knee flexion, single leg triple hop (SLTH) test, and anterior knee pain scale (AKPS). Statistical analysis was performed using Wilcoxon signed-rank and Mann-Whitney U tests, with significance set at 95%. **Results:** Within-group analysis showed significant improvements in NPRS and MVIC at 60° knee flexion, SLTH, and AKPS scores post-intervention (p<0.05). Between-group comparisons revealed the experimental group had significantly greater improvements in all outcomes at six weeks post-intervention. Cohen's d test confirmed the superiority of the experimental group in reducing pain and enhancing muscle strength and functional performance. Conclusion: The study demonstrates that patellar taping combined with isometric quadriceps strength training at a 60° knee flexion improves pain, muscle strength, and functional performance compared to placebo taping. These findings suggest that incorporating this combined approach may enhance rehabilitation outcomes for

patients with PFPS, providing a valuable addition to clinical practice. **Trial registration:** The study protocol was prospectively registered in the "ClinicalTrials.gov PRS" under a trial identifier NCT05168332 and last updated date 15/03/2024.

1 Original research

- 2 Title
- 3 The effect of patellar taping combined with isometric strength training on pain, muscle
- 4 strength, and functional performance in patients with patellofemoral pain syndrome: a
- 5 randomized comparative study
- 6 Short title
- 7 Patellar taping in patellofemoral pain
- 8 Author details
- 9 Shahnaz Hasan, PT, PhD*
- 10 Affiliation
- 11 Department of Physical Therapy and Health Rehabilitation, College of Applied Medical
- 12 Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia. Email:
- 13 sh.ahmad@mu.edu.sa
- 14 *Corresponding author: Dr. Shahnaz Hasan
- 15 Associate Professor, Department of Physical Therapy and Health Rehabilitation,
- 16 College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11952, Saudi
- 17 Arabia. Email: sh.ahmad@mu.edu.sa

18 Tel: +966 164042824 Extension- 2850 Fax: 0164042955

19 Abstract

20 Background: Patellar taping and quadriceps strengthening exercises are commonly used in physiotherapy to manage patellofemoral pain syndrome (PFPS). However, 21 previous research has reported inconsistent findings regarding quadriceps strength 22 gains at specific knee angles during strength training in individuals with 23 24 PFPS. Objective. This study investigated the combined effects of patellar taping and 25 isometric quadriceps strength training at 60° of knee flexion on quadriceps strength, 26 pain, and functional performance in female patients with PFPS. Methods. A two-arm, 27 parallel-group, randomized comparative design was employed. Sixty adult females 28 with PFPS were randomly assigned to either the experimental group (n = 30), which 29 received patellar taping combined with quadriceps strength training at 60°, or the 30 control group (n = 30), which received placebo taping with the same training. Both 31 interventions lasted six weeks. Pain intensity, quadriceps muscle strength, and 32 functional performance were assessed using the numeric pain rating scale (NPRS), maximum voluntary isometric contraction (MVIC) at 60⁰ knee flexion, single leg triple 33 hop (SLTH) test, and anterior knee pain scale (AKPS). Statistical analysis was 34 35 performed using Wilcoxon signed-rank and Mann-Whitney U tests, with significance set at 95%. Results: Within-group analysis showed significant improvements in NPRS 36 and MVIC at 60° knee flexion, SLTH, and AKPS scores post-intervention (p<0.05). 37

38 Between-group comparisons revealed the experimental group had significantly greater 39 improvements in all outcomes at six weeks post-intervention. Cohen's d test confirmed the superiority of the experimental group in reducing pain and enhancing muscle 40 41 strength and functional performance. **Conclusion:** The study demonstrates that patellar 42 taping combined with isometric quadriceps strength training at a 60° knee flexion 43 improves pain, muscle strength, and functional performance compared to placebo 44 taping. These findings suggest that incorporating this combined approach may enhance 45 rehabilitation outcomes for patients with PFPS, providing a valuable addition to clinical 46 practice. **registration:** The study protocol was prospectively registered in 47 "ClinicalTrials.gov PRS" under a trial identifier NCT05168332 and last updated date 48 49 15/03/2024. 50 **Keywords:** Patellofemoral Pain Syndrome; Knee pain; Strength; Maximum Voluntary 51 Isometric Contraction (MVIC)

52

53

54

55

56

57

Introduction:

Patellofemoral pain syndrome (PFPS) is the leading cause of knee discomfort in young adults and affects generally active individuals and athletes (McConnell, 1992). Globally, the prevalence of PFPS is 22.7% in the general population, and this may potentially rise during adolescence, affecting 20–30% of individuals (Borschneck G. 2021; Smith, B.E.;

- 58 Selfe, J. 2018). In Saudi Arabia, the incidence rate of PFPS is approximately 30.3%
- 59 (Aldharman; S.S.; Almuhammadi 2022).
- 60 ellofemoral pain syndrome (PFPS) is a broad term that covers various conditions
- affecting the patellofemoral joint (PFJ), including chondromalacia patellae, extensor
- 62 mechanism dysfunction, patellar subluxation, and runner's knee (L. Herrington et al.,
- 63 2004). PFPS is usually characterized by physical and biomechanical changes within the
- 64 joint, resulting in anterior knee pain during activities like running, squatting, or
- 65 climbing stairs (Hasan S.et al., 2022). These changes may involve altered patellar
- 66 tracking, muscle imbalances, and soft tissue restrictions, such as weakness in the
- 67 quadriceps or tightness in the hamstring muscles, all contributing to joint dysfunction
- 68 and pain (Alonazi A; Hasan S et al.; & Kang; K. B.; hee Lee; J.; & Yoon J. R. 2023).
- 69 Recent medical research indicates that the condition is more severe, long-lasting, and
- 70 associated with early degenerative changes in young individuals experiencing anterior
- 71 knee pain (K. M. Crossley 2014; H. Conchie 2016).
- 72 In such cases, some young patients diagnosed with Patellofemoral Pain Syndrome
- 73 (PFPS) may face a higher risk of anterior cruciate ligament (ACL) injury. (G. D. Myer
- 74 2015).
- 75 spite the prevalence of PFPS, there is no consensus on its causes, diagnostic criteria,
- or treatment approaches. (B. Choi, 2015). Patellofemoral pain has been linked to various
- 77 factors, including modifiable risk elements such as weakness in the vastus medialis

78 obliquus (VMO), patellar misalignment and hypermobility (G. S. Nunes 2013). It has 79 been proposed that these factors contribute to the development and recurrence of PFPS (S. H. Kunene 2018; R. A. Dutton 2016). Among these, quadriceps muscle strength is a 80 critical factor, strongly correlating with the condition (J. Verschueren, 2020; F. Halabchi, 81 82 2013; J. A. Osorio, 2013). Evidence shows that individuals with PFPS tend to have 83 weaker quadriceps muscles than healthy individuals (J. A. Osorio 2013). 84 Muscular imbalances within the quadriceps, particularly between the vastus medialis 85 oblique (VMO) and vastus lateralis (VL) (Thongduang, P et al. 2022), can exacerbate 86 patellar tilt (S. E. Lee et al. 2013). Studies highlight the importance of strong VMO 87 muscles in maintaining patellar stability and preventing PFPS. Delayed or insufficient 88 activation of the VMO leads to patellar maltracking, impairing knee joint function (N. 89 Wyndow, 2016). The McConnell Taping technique was initially developed to correct 90 abnormal patellar alignment by centralizing the patella and enhancing quadriceps 91 strength, mainly targeting the activation and strengthening of the vastus medialis 92 obliquus (VMO) (McConnell, 1996). Research has demonstrated that the correct patellar 93 taping technique effectively reduces pain during activities that exert significant 94 patellofemoral joint reaction forces (J. E. Earl and A. Z. Hoch 2011). Taping also 95 provides short-term pain relief during movement (P. Shahnaz 2012; P. Alba-Martin, 96 2015]. Studies suggest that strengthening the quadriceps, particularly the VMO, positively influences patellofemoral joint mechanics. The VMO is the only muscle 97

99 entire range of motion (Coqueiro, K.R 2005). In addition, past studies have suggested 100 that incorporating regular quadriceps-strengthening exercises can further enhance this effect. 101 102 A previous study by L. A. Steinkamp et al.1993, found that closed-kinetic chain 103 exercises performed with 0 to 40 degrees of knee flexion reduce patellofemoral joint 104 reaction forces. This suggests that individuals with PFPS may benefit more from a 105 closed-kinetic chain training program at this range of motion than open-kinetic chain 106 exercises. Conversely, leg-press exercises at 60 to 90 degrees of knee flexion increase 107 patellofemoral joint stress, which is particularly relevant for individuals with lesions 108 distant from the patella, as greater knee flexion may help alleviate stress on the distal 109 patella (L. A. Steinkamp et al.1993). 110 For instance, previous research identified that maximal quadriceps torque occurs at 60 111 degrees of flexion (mid-range) in male and female college students. Similarly, studies by 112 Suter and Herzog 1997 and Chan et al 2001. found that knee extensor torque peaked 113 when the knee was bent at a 90-degree angle in healthy individuals. Another study 114 revealed that isometric strengthening exercises performed at 90 degrees of knee flexion improved quadriceps strength more effectively than training at 45 degrees of knee 115 116 flexion (J. Paul & P. Balakrishnan, 2014). However, contrasting findings from

capable of achieving medial movement of the patella and remains active throughout the

(Honarpishe et al., 2015) showed no significant differences in muscle strength gains of 117 the VMO and vastus lateralis (VL) at varying knee angles in individuals with PFPS. 118 This research examines the impact of patella taping combined with isometric strength 119 training (at 60-degree knee flexion) on individuals suffering from Patellofemoral Pain 120 121 Syndrome. The study seeks to investigate the effect of this combined intervention on pain levels, quadriceps strength, and functional Performance (precisely hop distance). 122 123 The research hypothesis posits that patella taping and Isometric Strength Training at 60-124 degree knee flexion would significantly improve pain, quadriceps strength, and functional Performance in individuals with Patellofemoral Pain Syndrome. These 125 126 findings support that the observed enhancements in pain, quadriceps strength, and 127 Performance in PFPS patients following the combined intervention are attributed to 128 lecreased pain inhibition and alterations in patella position. This study's findings help develop an effective method for increasing quadriceps strength as a treatment for PFPS.

130

131

2. Materials and methods

132 Study Design

A two arm parallel group randomized comparative study design was employed to evaluate a 6-week intervention. The participants were allocated equally (1:1) to both groups (n = 30/group).

Study settings

The participants with PFPS were first diagnosed by a consultant orthopaedic surgeon 137 and referred for physiotherapy interventions to the orthopaedic rehabilitation lab, 138 Majmaah University, Al Majmaah, Riyadh, Saudi Arabia. Second, a team of three 139 140 skilled and experienced female physiotherapists, specializing in musculoskeletal disorders, McConnell taping techniques, and over 18 years of experience, conducted 141 screenings of adult females with PFPS. The participants were recruited from the 142 143 university's physical therapy clinic, Majmaah region hospital, social media posts, and 144 the general public for a duration of almost nine-month, starting from December 30, 2022, to September 25, 2023. 145

146 Study procedure

147

148

149

150

151

152

153

154

155

The participants were screened based on the study's inclusion and exclusion criteria and recruited for this study. An online random number generator (RNG) (https://www.socscistatistics.com/utilities/random/default.aspx) was used to participants' random allocation to the groups to minimizing selection bias and balancing potential confounding variables across groups, strengthen the study's reliability and internal validity. Participants were assigned to one of the groups based on the generated random numbers (1-60). The sixty generated random numbers (such as 24,1,7,33,48,11,30,3,9,55... and so on) were grouped into four segments, each consisting of 15 random numbers. The first, second, third, and fourth segments of

157

158

159

160

161

162

163

164

165

166

167

168

169

random numbers (1-15 & 31-45 and 16-30 & 46-60 random numbers) were alternately allocated to the participants of groups 1 and 2. The participant's study inclusion serial number was matched to the same number available in the generated random number segment that further belongs to either of the intervention groups. Two assistant physiotherapist who were kept blind to group allocation documented the study's outcome measures. Assessments were conducted before and after the intervention, and all female patients in each group completed the trial session. The experimental group (Group 1) received patellar taping combined with Isometric quadriceps exercise at 60 degrees' knee flexion; the Control group (Group 2) received Placebo patellar taping combined with Isometric quadriceps exercise at 60 degrees' knee flexion. The outcome measures for this study were the quadriceps muscle strength at angles of 60 degrees, pain intensity, and functional Performance. A CONSORT (2010) flow diagram (Figure 1) depicts the study procedures, including Enrollment, randomization, allocation, follow up, and analysis.

170 Please paste Figure 1. here

- 171 Figure 1. A Consolidated Standards of Reporting Trials (CONSORT) flow diagram
- 172 shows the study procedures.

173 Study participants

- 174 The study evaluated 150 adult females with knee pain over the phone. The study
- included 60 adult active females with PFPS. Their average age, height, weight, and

176 body mass index (BMI) of group 1 were 26.10 ± 0.99 years, 156.9 ± 1.47 cm, 67.65 ± 2.99 kg, and $27.48 \pm 1.07 \text{kg/cm}^2$, and group 2 were 26.17 ± 0.87 years, 157.27 ± 1.64 cm, 177 67.47 ± 2.9 kg, and 27.28 ± 0.98 kg/cm², respectively. The inclusion criteria required the 178 participants to have at least eight weeks of knee pain aggravated by specific activities, a 179 positive J sign, a more symptomatic and mal-aligned knee in case of bilateral 180 involvement, and radiographic evidence of patellar malalignment. Exclusion criteria 181 182 included a history of knee fracture, patella dislocation, knee deformity, flexion 183 contracture, ligament/meniscal injuries, NSAID or intra-articular injection, or knee 184 osteoarthritis.

- 185 Outcomes (Dependent variables)
- 186 Quadriceps muscle strength (Primary).
- The quadriceps femoris muscle strength was measured using a valid and reliable ISOMOVE dynamometer set at 60 degrees of knee flexion. The Data was collected using software version 0.0.1 of the ISOMOVE system (ISO-MANSW-IT Tecnobody). Before Testing, participants underwent a comprehensive training session to ensure they were fully equipped to use the equipment. Muscle strength measurements were taken at baseline (before treatment) and again at six week's post-treatment, providing a valid and reliable data set.
- Participants were carefully secured with safety belts across the chest, thighs, and hips, and the shin pad was positioned 5.1 cm (2 inches) superior to the medial malleolus. The

214

197 Participants were trained to keep their arms crossed over their chests and encouraged verbally to exert maximum effort during the 5-second contractions. Three consecutive 198 199 trials were conducted for each test, with a 2-minute rest interval between trials. The 200 mean score of these trials was used for statistical analysis. 201 Pain intensity (Secondary). 202 The numeric pain rating scale (NPRS) is a reliable and valid tool for measuring pain 203 (Hasan S, 2013 & Alghadir AH, 2018). Each participant was assessed for pain intensity 204 on a 0 to 10 scale, where 10 indicates the highest pain level, and 0 represents no pain. 205 Knee function (Secondary). 206 Knee function was assessed using the validated Kujala Anterior Knee Pain scale (Kujala 207 UM 1993, Hamdan M 2019). This scale consists of 13 questions designed to assess 208 various patellofemoral pain syndrome (PFPS) issues, such as walking, squatting, stair 209 climbing, jumping, running, limp presence, need for support, pain, and abnormal or 210 painful knee cap movement. The scores can range from 0 to 100, where the higher score 211 represents superior knee functional capacity. Before administration to patients with 212 patellofemoral pain, the Kujala questionnaires were translated into Arabic and 213 reviewed by native speakers of Arabic who had a medical background and were

Testing was performed on the more symptomatic leg at 60 degrees of knee flexion.

215 Single-Leg Triple Hop test (SLTH) (Secondary).

knowledgeable about the original document.

216 The single-leg triple hop test (SLTH) encompasses the landing and propulsion phases. It 217 is an effective screening tool commonly used in clinical practice to recognize individuals at risk of knee injury and assess progress in patients with PFPS and ACL 218 219 reconstruction (Dos Reis AC 2015). The test is also a comprehensive tool for evaluating 220 lower extremity muscle strength. It measures physical Performance requiring 221 significant muscular activity, making it an asset in sports medicine and physical 222 therapy. 223 In this study, participants' performance was evaluated based on their results from the 224 SLTH test. Participants began by standing on their symptomatic limb with their toes 225 directly below the starting line and then performed three consecutive hops on the same 226 limb. The distance covered from the starting point to where the back of their heel touched the ground was measured (Figure 2). Each participant completed three trials 227 228 with a three-minute rest period between each one. The best distance achieved among 229 the three trials was selected as the baseline measure.

230 Please paste Figure 2. here

- 231 Interventions
- 232 Patellar taping
- The taping techniques, meticulously detailed by McConnell, were expertly used by the physiotherapist to correct specific patellar malalignments, such as lateral and anteroposterior tilt and medial patellar glide. The tape was applied below the patella to

236	relieve pressure on the infrapatellar fat pad, as illustrated in Figure 3. Initially,
237	hypoallergenic underwrap tape was used to prevent skin tension and irritation. It was
238	followed by rigid McConnell tape to pull the skin and patella and maintain its position
239	medially (McConnell 1996; Hasan S., 2022). For the placebo taping, a nonrigid
240	hypoallergenic tape (Placebo tape) was applied with a flexed knee in a vertical direction
241	from the centre of the patella and performed quadriceps strength training at 60 degrees
242	of knee flexion without rigid patellar taping. The tape was removed after the
243	quadriceps femoris strength training and outcome measurement or if the participant
244	experienced itching, redness, or discomfort.

With patellar taping, each participant was carefully instructed to perform isometric quadriceps exercises at 60° angles and isometric hip adduction exercises to strengthen quadriceps muscles as described below.

These exercises were chosen based on their ability to recruit maximal quadriceps muscle activity. Because no single exercise resulted in maximal quadriceps muscle activation, this study chose a combination of exercises rather than a single exercise to maximize the possibility of recruiting maximal quadriceps muscle activity (Rutherford DJ, 2011).

Each participant was guided to perform three sets of exercises five days a week for six weeks. The procedure was explained to them, and they were advised to monitor their

258

267

quadriceps muscle activity during the exercises, holding the contraction for 5 secondsand resting for 10 seconds.

Please paste Figure 3. here

Quadriceps strengthening exercises

259	Patellar Taping Combined with Maximum Voluntary Isometric Contraction Exercises at
260	60 Degrees of Knee Flexion Angles: Participants were instructed to sit on the ISOMOVE
261	system (ISO-MANSW-IT Tecnobody) and perform isometric contraction of quadriceps
262	exercises at 60 degrees of knee flexion three times weekly for six weeks. They were to
263	complete three sets of two isometric contractions of quadriceps, each lasting 5 seconds,
264	with a 30-second rest between sets. To ensure consistency in performing the isometric
265	exercises at the predefined knee angles, the target knee angle was preset before each
266	session using the ISOMOVE system.

- Isometric Hip Adduction Exercise:
- Participants were instructed to lie supine with a pillow between their knees and press
- 269 firmly to engage the muscles via isometric hip adduction exercise. They performed
- 270 three sets of 10 repetitions.
- 271 Control Group (placebo patellar taping combined with isometric quadriceps exercise at
- 272 60 degrees Knee Flexion Angles:

273	Participants in the control group performed the same set of exercises with Placebo
274	patellar taping. A nonrigid hypoallergenic placebo tape was applied vertically from the
275	center of the patella with the knee flexed. They conducted quadriceps exercises without
276	rigid patellar taping.
277	Ethical considerations
278	The institutional review board at the College of Applied Medical Science, Majmaah
279	University, Saudi Arabia approved the study under an ethical approval number:
280	MUREC-Nov.20/COM-2O22/18-2 dated 20/11/2022. The study protocol was
281	prospectively registered in "ClinicalTrials.gov PRS" under trial identifier NCT05168332.
282	Participants were informed of research risks and benefits and provided written
283	informed consent following the Helsinki Declaration's standards.
284	Sample size
285	The effective sample size was estimated using a computer software, G*Power version
286	1.3.9.4 (sample size calculator tool) based on a previous study that evaluated the
287	quadriceps muscle strength in participants with PFPS (samples from two groups and
288	two-time points) with a calculated effect size greater than 0.08, the confidence interval
289	0.05 and a statistical power 0.8, an effective sample size of twenty-four in each group
290	was estimated (Alonazi A et al., 2021 & Hasan S et al., 2022). Assuming a 20% sample
291	attrition, a sample of thirty participants was required to conduct this study.

292 Statistical analysis

Data was analysed using IBM software for social statistics SPSS v.28 (IBM SPSS v.28, Armonk. NYK, Inc. USA). A Kolmogorov-Smirnov test of normality was employed for abnormal data distribution. Non-parametric tests, including a Wilcoxon Signed Rank Test and Mann-Whitney U Test, were employed to observe the efficacies of stipulated interventions on the scores of the outcome measures within and between the groups, respectively. Moreover, Cohen's *d* test determined one group's superiority over another. A confidence interval was set at 95% for all the statistical analyses.

Results

A total of 60 female participants completed the trial. The demographic and clinical data are summarized in Table 1. The Kolmogorov-Smirnov test of normality revealed that the data for the baseline demographic characteristics and outcomes measures were non-homogeneously distributed in this study (Table 1.). Therefore, non-parametric tests, including a Wilcoxon Signed Rank Test and Mann-Whitney U Test, were employed to observe the efficacies of stipulated interventions on the scores of the outcome measures within and between the groups, respectively. The mean scores and standard deviations for the demographic characteristics and baseline scores are presented in Table 1.1

Please paste Table 1. here

Within-group comparison of outcomes scores

311	Wilcoxon Signed Rank Test for within-group comparison: revealed a significant
312	improvement (p<-05) for all the outcomes scores within each group when post-
313	intervention scores were compared with baseline scores (Table 2.).
314	Please paste Table 2. here
315	Between-group comparison of outcomes scores
316	The Mann-Whitney U Test for between-group comparison revealed a significant
317	difference between the groups for all the outcomes scores compared at a six weeks'
318	post-intervention (Table 3).
319	Please paste Table 4. here
320	In addition, Cohen's d test revealed the magnitude of the stipulated interventions, thus
321	revealing a superiority of group 1 over group 2 in reducing pain intensity and
322	improving muscle strength (STN), and functional performance (SLTH & AKPS) (Table
323	4).
324	Please paste Table 4. here
325	
326	Discussion
327	This study evaluated the effects of patellar taping combined with isometric contraction
328	of quadriceps strength training at a 60-degree knee flexion angle on pain intensity,
329	quadriceps strength, and functional Performance in young adult female patients with
330	PFPS. The results showed that patellar taping combined with isometric quadriceps

331	training at a 60-degree knee flexion angle significantly improved pain, quadriceps
332	strength, and function for PFPS patients over six weeks of training compared to placebo
333	taping combined with isometric quadriceps strength training at the same angle in
334	improving pain, quadriceps strength, and functional Performance. Both experimental
335	groups demonstrated improved outcomes after the six-week intervention training.
336	However, all participants in the group that combined taping with isometric quadriceps
337	training at a 60-degree knee flexion were eventually pain-free and fully functional. In
338	contrast, participants in the other groups experienced residual pain and weakness in the
339	quadriceps muscles. The results indicate that combined patella taping with isometric
340	quadriceps training at a 60-degree knee flexion provides an effective treatment
341	component greater than a Placebo. These findings are similar to those of other
342	investigators using similar correcting taping techniques and exercises, providing
343	evidence for the efficacy of such interventions. Bockrath; Kelly et al. 1993; Gilleard;
344	Wendy, 1998).
345	Identifying the precisely combined taping with activation of isometric quadriceps
346	muscle mechanisms of action is not clear, but this observation is imperative
347	for future mechanisms-based randomized control trial studies.
348	Some authors have asserted that, with the patella correctly taped, there should be at
349	least a 50% reduction in pain when performing a step test. (Gilleard; Wendy 1998;
350	McConnell; Jenny 1986). The pain experienced on performing a step test decreased by

351	an average of 47% with active patella taping in the present study, compared to only 10%
352	with placebo tape. There was a 2% decrease in pain in the control group when repeating
353	the step test without taping. This compares very favourably with the reductions in pain
354	reported by other investigators. (Bockrath; Kelly et al. 1993; Gilleard; Wendy 1998; &
355	Wilson T.; N. Carter 2004).
356	Numerous studies have looked at patellar taping and found that it may be beneficial for
357	reducing the pain that people with PFPS experience (Petersen; Wolf et al. 2016; Barton;
358	Christian et al. 2014 & isk, Daniel 2020). The customized McConnell taping technique is
359	a typical way to minimize pain during a functional task, such as the step-down. This
360	technique uses rigid tape to reduce any combination of lateral patellar glide, tilt, and
361	rotation in the knee (Cowan; Sallie M 2002). In addition, people use untailored taping
362	on the patellar glide and medial glide (Lack; Simon; et al.2018), designed to enhance
363	vastus muscle activation and synergy (Lee; Chang Ryeol et al. 2012). Taping the patellar
364	tendon across the skin has been shown in multiple studies to increase proprioception by
365	stimulating cutaneous mechanoreceptors and, as a result, boosting afferent input to the
366	central nervous system (Kim; Hyunhee 2012; Chang; Hsiao-Yun et al. 2010; &
367	BAYRAKCI TUNAY 2008). The increased afferent fibre input and neural inhibition
368	following this phenomenon are called the nociceptive effect (Willy; Richard Wet al.2019;
369	Chang; Hsiao-Yun et al. 2010; & BAYRAKCI TUNAY 2008). The Academy of
370	Orthopaedic Physical Therapy recently recommended formulating a clinical practice

guideline for treating PFPS (Willy, Richard W. et al. 2019). They advocate patellar taping 371 372 as part of an exercise therapy treatment plan to provide immediate pain relief and improve short-term results (4 weeks). Taping techniques are ineffective over time or 373 with more intensive physical therapy. Additionally, they do not advocate taping to 374 375 improve muscle function. Overall, taping helps people with PFPS in the short term, but more research is needed 376 377 to determine how it affects them in the long term. 378 Another study discovered that individuals who trained their quadriceps at a 60-degree 379 knee angle had significantly greater quadriceps muscle strength than those who trained 380 at 30 or 90 degrees of knee flexion. As a result of their unique anatomical traits, the 381 three superficial quadriceps muscle segments, including VMO, can produce varying 382 muscle torque depending on knee angle. Moreover, this causes knee angle changes to affect muscle fibre excursion length (Pincivero; Danny M. et al. 2004). It was 383 384 hypothesized that performing isometric exercises while varying the angle at which the 385 knees were bent resulted in the best development in total strength (Lum; Danny 2019; 386 Bogdanis 2019; Rhea, Matthew R. et al. 2016). As discovered in another study, the 387 isometric exercise of the quadriceps in the mid-range may be effective for increasing function in people who suffer from knee problems (Mellinger 2019). Most voluntary 388 389 isometric knee extensor torque attribution should be given to the mechanical force-390 length characteristics of skeletal muscle (Maden-Wilkinson 2020). However, evidence

410

suggests a neural component (Suter, E.1997, Becker, Roland 2001). Because both 391 392 individual muscle fibre and whole-muscle levels appear to produce their best results 393 with a moderate force generation length, the literature supports the theory that knee 394 extensor torque is at its greatest when seated knee movement occurs in the middle of 395 the knee flexion (Schoenfeld; Brad et al. 2021; LaStayo; Paul et al. 2014). In another 396 study, both men and women in college found that peak quadriceps torque happened at 397 60° of flexion (mid-range) (Shenoy 2011). 398 In contrast to these findings, in a study involving 10 and 17 healthy adults, (Suter and 399 Herzog 1997 and Chan; Addie YF et al. 2001) found that the knee extensor torque was highest when the knee was bent at 90 degrees. Similarly, another study found that 400 401 isometric strengthening exercises performed at 90 degrees of knee flexion improved 402 quadriceps muscle strength more than 45 degrees of knee flexion training (Paul, 403 Jibi, 2014). However, participant characteristics and methodology differences make 404 directly comparing these results impossible. 405 Study limitations 406 This study has some limitations. First, it was limited to young adult female patients 407 only with PFPS. Therefore, the findings cannot be generalized to male patients. Second, 408 a follow-up was needed to assess the lasting effects of the intervention on pain

intensity, muscle strength changes and functional Performance. Therefore, additional

research is required to explore the long-term effect of corrective taping combined with

60-degree knee flexion isometric strength training in individuals with PFPS. Third, despite their potential importance, the study did not examine the individual effects of isometric quadriceps training at 60 degrees of knee flexion and patellar taping. Therefore, people with PFPS should be studied to discover if patellar tape improves muscle recruitment patterns while exercising at 60 degrees of knee flexion angles. Lastly, the study did not assess a priori power, which may limit the validity of the findings. Further research is needed to understand the association between pain, strength, and function in PFPS patients.

419 Clinical Implications

The results of this investigation could have significant repercussions for clinical practice. As previously stated, quadriceps muscle strength was highest at 60° knee flexion. This must be considered if comparing the most significant peak torque generation achieved by different approaches. This indicates that the angle may be employed for knee strength evaluation and training in patients with PFPS if a clinician or researcher is interested in boosting the strength of the quadriceps muscle. Even if the compressive force that the patella exerts on the femoral surface may be at its peak, it is essential to keep this information in mind in clinical practice when working to strengthen the quadriceps.

In the future, we recommend that PFPS be compared between activities involving an open-kinetic chain and those involving a closed-kinetic chain. At the same time, the

knee is flexed at a variety of angles. As a result, it has been suggested that, in further research, the effects of patellar taping combined with isometric strength training at 60 degrees of knee flexion for PFPS rehabilitation should be examined in greater depth, explicitly focusing on the angles of the targeted training.

Conclusions

The study demonstrated that combining patellar taping with isometric quadriceps strength training at a 60° knee angle significantly enhances pain relief, muscle strength, and functional performance compared to placebo taping. These findings highlight a promising approach for clinicians, practitioners, and physiotherapists, advocating for the integration of this technique into rehabilitation protocols to improve outcomes for patients with patellofemoral pain syndrome.

Declarations

Acknowledgements

The author extends appreciation to the Deanship of Postgraduate Studies and Scientific Research at Majmaah University for funding this research work through project number PGR-2024-1299. The authors are also grateful to the Majmaah University faculty for their support and assistance in this investigation.

Ethics approval and consent to participate statements

The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Chair of Majmaah University for Research Ethics Committee, Saudi

451	Arabia (ethical approval number: MUREC-Nov./COM-2O22/18-2; dated November 20,
452	2022). The study protocol was prospectively registered in "ClinicalTrials.gov PRS"
453	under trial identifier NCT05168332. A written informed consent form was obtained
454	from each participant before start of the study.
455	Consent to publish
456	Not applicable
457	Data Availability Statement
458	All the datasets generated that support the study's findings are available from the
459	corresponding author upon a reasonable request.
460	Funding: This research was funded by the Deanship for Postgraduate Studies and
461	Scientific Research through project number PGR-2024-1299 at Majmaah University,
462	Majmaah, Saudi Arabia. The funders had no role in the study's design, data collection,
463	analysis, interpretation, manuscript preparation, or decision to publish the results.
464	Conflicts of Interest
465	The author declares no conflict of interest, either financial or non-financial in this study.
466	Author contribution
467	The primary author contributed to study's conception, design, idea, data curation,
468	formal analysis, the results interpretation, methodology, manuscript initial and final
469	draft writing and critical editing for the manuscript's intellectual contents, and

PeerJ

- 470 approved the manuscript's final version to be submitted or published; and also take the
- 471 responsibility for the manuscript's intellectual contents.
- 472 Authors information (optional)
- 473 Not applicable

475	References
+/>	References

476 477 478	Alba-Martín, P., et al. (2015). Effectiveness of therapeutic physical exercise in the treatment of patellofemoral pain syndrome: A systematic review. <i>Journal of Physical Therapy Science</i> , 27(7), 2387-2390.
479 480 481	Aldharman, S. S., Almuhammadi, H. H., Madkhali, A. Y., et al. (2022). Prevalence of patellofemoral pain and knee pain in the general population of Saudi Arabia. <i>Cureus</i> , 14(10), e30355. https://doi.org/10.7759/cureus.30355
482 483 484	Alghadir, A. H., et al. (2018). Test–retest reliability, validity, and minimum detectable change of visual analog, numerical rating, and verbal rating scales for measurement of osteoarthritic knee pain. <i>Journal of Pain Research</i> , 851-856.
485 486 487 488	Alonazi, A., et al. (2021). Efficacy of electromyographic-biofeedback supplementation training with patellar taping on quadriceps strengthening in patellofemoral pain syndrome among young adult male athletes. <i>International Journal of Environmental Research and Public Health</i> , 18(9), 4514.
489 490 491	Barton, C., et al. (2014). Patellar taping for patellofemoral pain: A systematic review and meta- analysis to evaluate clinical outcomes and biomechanical mechanisms. <i>British Journal of Sports Medicine</i> , 48(6), 417-424.
492 493 494	BAYRAKCI TUNAY, V. O. L. G. A., et al. (2008). Comparison of the instant effects of kinesio and McConnell patellar taping on performance in patellofemoral pain syndrome. <i>Turkish Journal of Physiotherapy Rehabilitation-Fizyoterapi Rehabilitasyon</i> , 19(3).
495 496 497	Becker, R., & Awiszus, F. (2001). Physiological alterations of maximal voluntary quadriceps activation by changes of knee joint angle. <i>Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine</i> , 24(5), 667-672.
498 499	Bockrath, K., et al. (1993). Effects of patella taping on patella position and perceived pain. <i>Medicine and Science in Sports and Exercise</i> , 25(9), 989-992.
500 501 502	Borschneck, G., St John, L., Brundage, K., & Borschneck, D. P. (2021). Cross-sectional risk factors of anterior knee pain in adolescents. <i>Frontiers in Pain Research (Lausanne)</i> , 2, 720236. https://doi.org/10.3389/fpain.2021.720236
503 504	Chang, H. Y., et al. (2010). Immediate effect of forearm Kinesio taping on maximal grip strength and force sense in healthy collegiate athletes. <i>Physical Therapy in Sport</i> , 11(4), 122-127.

505 Chan, A. Y. F., et al. (2001). Effects of knee joint angles and fatigue on the neuromuscular 506 control of vastus medialis oblique and vastus lateralis muscle in humans. European Journal 507 of Applied Physiology, 84, 36-41. 508 Choi, B. (2015). Activation of the vastus medialis oblique and vastus lateralis muscles in 509 asymptomatic subjects during the sit-to-stand procedure. Journal of Physical Therapy 510 Science, 27(3), 893-895. 511 Conchie, H., et al. (2016). Adolescent knee pain and patellar dislocations are associated with 512 patellofemoral osteoarthritis in adulthood: A case control study. The Knee, 23(4), 708-711. 513 Coqueiro, K. R., et al. (2005). Analysis on the activation of the VMO and VLL muscles during 514 semisquat exercises with and without hip adduction in individuals with patellofemoral 515 pain syndrome. Journal of Electromyography and Kinesiology, 15(6), 596-603. 516 Cowan, S. M., Bennell, K. L., & Hodges, P. W. (2002). Therapeutic patellar taping changes the timing of vasti muscle activation in people with patellofemoral pain syndrome. Clinical 517 518 Journal of Sport Medicine, 12(6), 339-347. 519 Crossley, K. M. (2014). Is patellofemoral osteoarthritis a common sequela of patellofemoral pain? British Journal of Sports Medicine, 48(6), 409-410. 520 521 Dos Reis, A. C., et al. (2015). Kinematic and kinetic analysis of the single-leg triple hop test in 522 women with and without patellofemoral pain. Journal of Orthopaedic & Sports Physical 523 *Therapy*, 45(10), 799-807. 524 Dutton, R. A., Khadavi, M. J., & Fredericson, M. (2016). Patellofemoral pain. Physical Medicine and Rehabilitation Clinics, 27(1), 31-52. 525 526 Earl, J. E., & Hoch, A. Z. (2011). A proximal strengthening program improves pain, function, 527 and biomechanics in women with patellofemoral pain syndrome. The American Journal of 528 Sports Medicine, 39(1), 154-163. 529 Fukuda, T. Y., et al. (2010). Short-term effects of hip abductors and lateral rotators strengthening 530 in females with patellofemoral pain syndrome: A randomized controlled clinical trial. 531 *Journal of Orthopaedic & Sports Physical Therapy, 40(11), 736-742.* 532 Gilleard, W., McConnell, J., & Parsons, D. (1998). The effect of patellar taping on the onset of 533 vastus medialis obliquus and vastus lateralis muscle activity in persons with 534 patellofemoral pain. *Physical Therapy*, 78(1), 25-32. 535 Halabchi, F., Mazaheri, R., & Seif-Barghi, T. (2013). Patellofemoral pain syndrome and

modifiable intrinsic risk factors; How to assess and address? Asian Journal of Sports

Peer| reviewing PDF | (2024:09:106600:0:2:CHECK 1 Oct 2024)

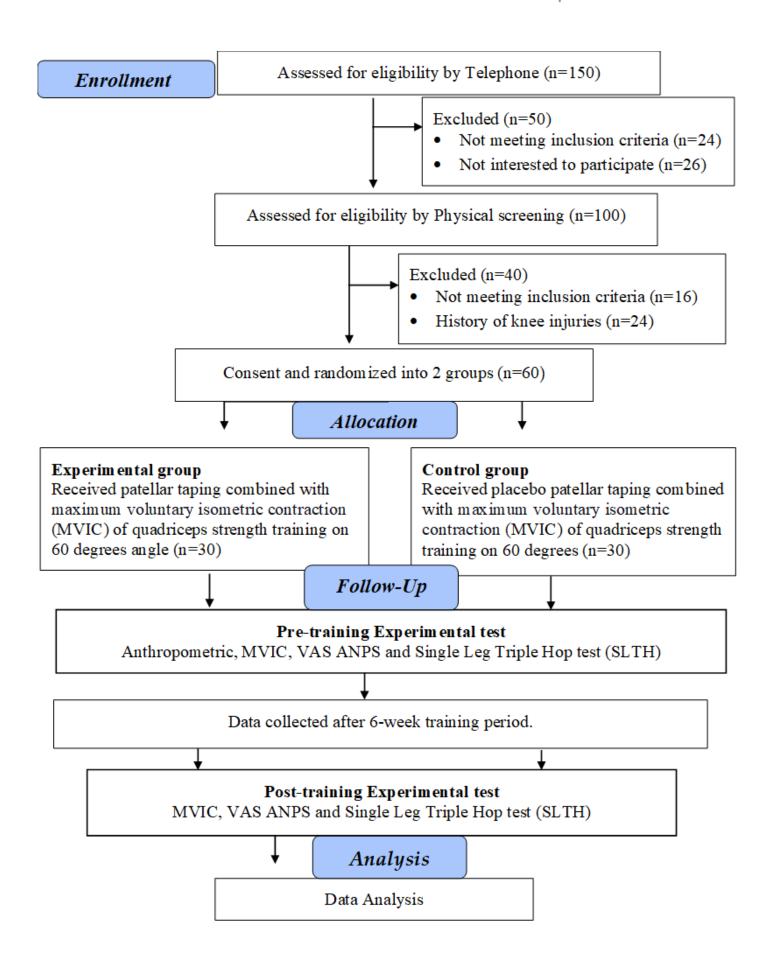
Medicine, 4(2), 85.

536

537

538 539	Hamdan, M., et al. (2019). Validation of the Arabic version of the Kujala patellofemoral pain scoring system. <i>Journal of Orthopaedic Science</i> , 24(2), 290-293.
540 541 542	Hasan, S. (2013). Comparative study: Analgesic effect of Al-TENS in variation of treatment time on experimentally induced ischaemic pain in healthy young adult. <i>Indian Journal of Physiotherapy and Occupational Therapy</i> , 7(2), 250.
543 544 545 546	Hasan, S., et al. (2022). Efficacy of patellar taping and electromyographic biofeedback training at various knee angles on quadriceps strength and functional performance in young adult male athletes with patellofemoral pain syndrome: A randomized controlled trial. <i>Pain Research and Management</i> , 2022(1), 8717932.
547 548	Herrington, L. (2004). The effect of patella taping on quadriceps strength and functional performance in normal subjects. <i>Physical Therapy in Sport</i> , <i>5</i> (1), 33-36.
549 550 551	Honarpishe, R., Bakhtiary, A. H., & Olyaei, G. (2015). Effect of quadriceps exercise training on muscle fiber angle in patients with patellofemoral pain syndrome. <i>Middle East Journal of Rehabilitation and Health</i> , 2(4).
552 553	Kang, K. B., Lee, J. H., & Yoon, J. R. (2023). Patellofemoral joint disorders. <i>Journal of the Korean Medical Association</i> , 66(8).
554 555 556	Kim, H., & Song, C. H. (2012). Comparison of the VMO/VL EMG ratio and onset timing of VMO relative to VL in subjects with and without patellofemoral pain syndrome. <i>Journal of Physical Therapy Science</i> , 24(12), 1315-1317.
557 558	Kujala, U. M., et al. (1993). Scoring of patellofemoral disorders. <i>Arthroscopy: The Journal of Arthroscopic & Related Surgery</i> , 9(2), 159-163.
559 560 561	Kunene, S. H., Ramklass, S., & Taukobong, N. P. (2018). Anterior knee pain and its intrinsic risk factors among runners in under-resourced communities in Ekurhuleni, Gauteng. <i>South African Journal of Physiotherapy</i> , 74(1), 1-7.
562 563	Lack, S., et al. (2018). How to manage patellofemoral pain–Understanding the multifactorial nature and treatment options. <i>Physical Therapy in Sport</i> , 32, 155-166.
564 565	LaStayo, P., et al. (2014). Eccentric exercise in rehabilitation: Safety, feasibility, and application. <i>Journal of Applied Physiology, 116</i> (11), 1426-1434.
566 567 568	Lee, C. R., et al. (2012). The effects of Kinesio taping on VMO and VL EMG activities during stair ascent and descent by persons with patellofemoral pain: A preliminary study. <i>Journal of Physical Therapy Science</i> , 24(2), 153-156.

569 570	Lee, S. E., & Cho, S. H. (2017). Effects of isometric contraction types on muscle oxygenation and fatigue. <i>Journal of Physical Therapy Science</i> , 29(6), 1069-1072.
571 572	Macintyre, T. E., et al. (2009). Patellofemoral pain syndrome: What do we really know? <i>International Review of Sport and Exercise Psychology</i> , 2(1), 62-84.
573 574 575	Maniar, N., et al. (2018). The effect of longer term patellar taping on pain, quadriceps strength, and quadriceps inhibition in people with patellofemoral pain. <i>Journal of Science and Medicine in Sport</i> , 21(2), 195-199.
576 577	McConnell, J. (1986). The management of chondromalacia patellae: A long term solution. <i>The Australian Journal of Physiotherapy</i> , 32(4), 215-223.
578 579	McHugh, M. P., & Cosgrave, C. H. (2010). To tape or not to tape? The role of taping in ACL injury prevention. <i>Strength & Conditioning Journal</i> , 32(5), 38-41.
580 581	Mills, K., et al. (2012). Does a dynamic warm-up reduce acute knee injury risk on landing in female basketball athletes? <i>British Journal of Sports Medicine</i> , 46(5), 402-405.
582 583	Moghadasi, A., et al. (2015). Functional knee braces for post-traumatic patellofemoral pain syndrome: A randomized controlled trial. <i>Archives of Bone and Joint Surgery</i> , 3(3), 195.
584 585	Petraglia, F., et al. (2012). Patellar tendinopathy in athletes: Diagnosis and treatment. <i>Journal of Orthopaedics and Traumatology</i> , 13(4), 197-207.
586 587	Piva, S. R., et al. (2009). Reliability of measures of impairments associated with patellofemoral pain syndrome. <i>BMC Musculoskeletal Disorders</i> , 10(1), 35.
588 589 590	Tadese, F., & Amaha, N. (2020). Immediate effect of electromyographic-biofeedback assisted therapeutic taping in subjects with patellofemoral pain syndrome. <i>Journal of Clinical & Diagnostic Research</i> , 14(9), YC01-YC05.
591 592 593	Tang, H. S., et al. (2001). A comparison of patellar taping therapy and quadriceps strengthening exercises on patellofemoral pain syndrome: A randomized clinical trial. <i>Physical Therapy Journal of Australia</i> , 25(2), 62-68.
594 595 596	Thomeé, R., et al. (1999). Eccentric and concentric torque of knee extensors and flexors in males and females with patellofemoral pain syndrome. <i>Scandinavian Journal of Medicine & Science in Sports</i> , 9(5), 272-276.
597 598	Tyler, T. F., et al. (2006). The role of hip muscle function in the treatment of patellofemoral pain syndrome. <i>The American Journal of Sports Medicine</i> , 34(4), 630-636.



599 600	Vinttonen, H. (2007). Biofeedback treatment of patellofemoral pain: A randomized controlled study. <i>Journal of Orthopaedic and Sports Physical Therapy</i> , 20(5).
601 602	Zheng, Q., et al. (2021). Exercise and patellofemoral pain syndrome: A scoping review of clinical trials. <i>Pain Research and Management</i> , 2021, 1967673.

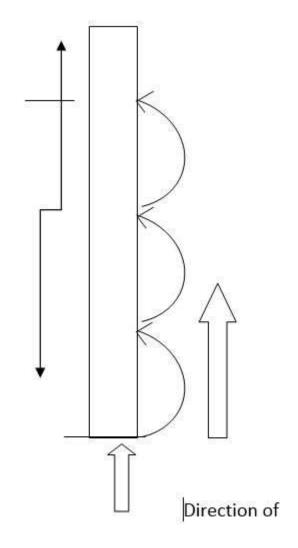
Figure 1

A CONSORT (2010) Flow Diagram

Table 1(on next page)

Descriptive details of the demographic characteristics and baseline outcomes scores within each group (N=30/group; 95% Cl).

- 1 Table 1. Descriptive details of the demographic characteristics and baseline outcomes
- 2 scores within each group (N=30/group; 95% Cl).


Variables	Mean ± Standa	Kolmogorov-Smirnov (95% Cl)			
	Group 1 (n=30)	Group 2 (n=30)	Statistics	df	p-value
Age (Years)	26.10 ± 0.99	26.17 ± 0.87	0.208	60	0.001*
Height (cm)	156.90 ± 1.47	157.27 ± 1.64	0.190	60	0.001*
Weight (kg)	67.65 ± 2.99	67.47 ± 2.98	0.176	60	0.001*
BMI (kg/m- ²)	27.48 ± 1.07	27.28 ± 0.98	0.126	60	0.019*
NRPS	7.10 ± 0.66	7.07 ± 0.70	0.189	60	0.001*
STN	109.53 ± 6.15	109.00 ± 7.17	0.126	60	0.019*
SLTH	244.97 ± 24.13	247.60 ± 18.43	0.074	60	0.200
AKPS	42.57 ± 6.76	43.70 ± 6.77	0.149	60	0.002*

*-Significance value, if p<0.05; cm: Centimetre; kg: Kilogram; NPRS: Numeric pain rating scale; STN: Strength; SLTH: Single leg triple hop; AKPS: Anterior knee pain scale

3

Figure 2

Single Leg Triple Hop (SLTH) test

Distance covered in

SLTH

Start Progression in SLTH

Table 2(on next page)

Within-group comparison of the post-intervention mean scores of the outcomes with the baseline scores, using a Wilcoxon Signed Rank test (N=30/group; 95% Cl).

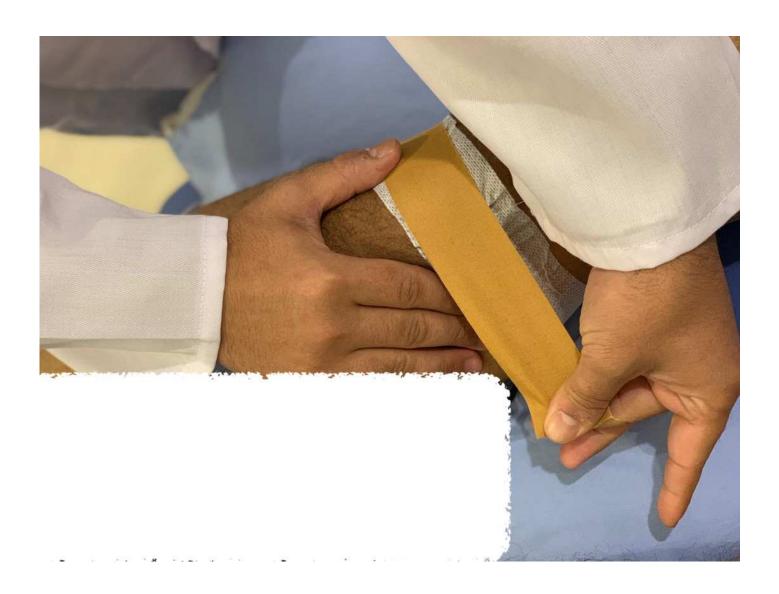
- 1 Table 2. Within-group comparison of the post-intervention mean scores of the outcomes
- 2 with the baseline scores, using a Wilcoxon Signed Rank test (N=30/group; 95% Cl).

Group 1 (n=30); Mean ± SD			Wilcoxon Signed Ranks Test		
Variables	Post intervention	Baseline	Z-Statistics	p-value	
NPRS	1.42 ± 0.63	7.10 ± 0.66	-4.805	0.001*	
STN	154.13 ± 9.29	109.53 ± 6.15	-4.810	0.001*	
SLTH	354.07 ± 35.72	244.97 ± 24.13	-4.783	0.001*	
AKPS	80.37 ± 5.10	42.57 ± 6.76	-4.788	0.001*	
Group 2 (n=30); Mean ± SD					
NPRS	4.27 ± 0.79	7.07 ± 0.70	-4.806	0.001*	
STN	122.63 ± 10.13	109.00 ± 7.17	-4.710	0.001*	
SLTH	267.27 ± 14.34	247.60 ± 18.43	-4.784	0.001*	
AKPS	69.53 ± 4.86	43.70 ± 6.77	-4.790	0.001*	

*-Significance value, if p<0.05; NPRS: Numeric pain rating scale; STN: Strength; SLTH:

Single leg triple hop; AKPS: Anterior knee pain scale

3


4

5

6

Figure 3

Patellar taping

Table 3(on next page)

Between-group comparison of post-intervention mean outcomes scores, using a Mann-Whitney U test (N=30/group; 95% Cl).

- 1 Table 3. Between-group comparison of post-intervention mean outcomes scores, using a
- 2 Mann-Whitney U test (N=30/group; 95% Cl).

Variables	Groups	Mean	Sum of	Mann-	Z-	Asympt. Sig.
(N=30/group)		Rank	Ranks	Whitney U	Statistic	(2-tailed)
NPRS	Group 1	15.50	465.00	0.000	-6.700	0.001*
	Group 2	45.00	1365.00			
STN	Group 1	45.17	1355.00	10.00	-6.510	0.001*
	Group 2	15.83	475.00			
SLTH	Group 1	45.28	1358.50	6.50	-6.560	0.001*
	Group 2	15.72	471.50			
AKPS	Group 1	44.05	1321.50	43.50	-6.065	0.001*
	Group 2	16.95	508.50			

*-Significance value, if p<0.05; NPRS: Numeric pain rating scale; STN: Strength; SLTH:

Single leg triple hop; AKPS: Anterior knee pain scale

3

4

Table 4(on next page)

A Cohen's d table (N = 60; 95% CI)

1 Table 4. A Cohen's *d* table (N=60; 95% CI)

Variables	G	Cohen's d		
(n=30/group)	Group 1	Group 2	Group 1 vs. 2	(95% Cl)
NPRS	1.42 ± 0.63	4.27 ± 0.79	- 2.85 ± -0.16	3.989*
STN	154.13 ± 9.29	122.63 ± 10.13	31.50 ± -0.84	3.241*
SLTH	354.07 ± 35.72	267.27 ± 14.34	86.80 ± 21.38	3.241*
AKPS	80.37 ± 5.10	69.53 ± 4.86	10.84 ± 0.24	2.176*

^{*-}Large effect size, if *d*>0.6; NPRS: Numeric pain rating scale; STN: Strength; SLTH:

Single leg triple hop; AKPS: Anterior knee pain scale

2

3

4

5

6