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Background. The overusing of antifungal drugs leads to an increase in the number of
clinically isolated fluconazole-resistant Candida spp. so it is an urgent need to develop
novel alternative therapeutic strategies. GmAMP is a novel peptide screened by us using
artificial intelligence modeling techniques, and pre-tests showed its strong antimicrobial
activity against clinically fluconazole-resistant Candida tropicalis. Methods. The study
aimed to comprehensively investigate the antimicrobial activity and mechanisms of
GmAMP against fluconazole-resistant C. tropicalis. The antifungal activity of GmAMP
against fluconazole-resistant C. tropicalis was measured by broth microdilution method,
growth and fungicidal kinetics, hypha transformation, and antibiofilm assay. To further
uncover the potential mechanisms of action of GmAMP, we performed scanning electron
microscopy, flow cytometry, cell membrane potential probe DiSC3(5), and reactive oxygen
species probe DCFH-DA detection to assess the cellular morphology and structure,
membrane permeability, membrane depolarization, and ROS accumulation, respectively.
At the same time, we evaluated the toxicity of GmAMP in vitro through erythrocyte
hemolysis degree and cytotoxicity assays. Cytotoxicity and therapeutic efficacy in vivo
were assessed by the Galleria mellonella larvae infection model. Results. GmAMP exhibited
significant antifungal activity against fluconazole-resistant C. tropicalis with a MIC of 25 uM
and demonstrated fungicidal effects at 100 uM within 2 h. inhibited the transition from
yeast to hypha morphology, restrained the biofilm formation rate of 88.32%, and
eradicated the mature biofilm rate of 58.28%. Furthermore, treatment of fluconazole-
resistant C. tropicalis with GmAMP at a concentration of 100 uM resulted in cell structure
damage while treatment with GmAMP at concentrations ranging from 25 ~ 100 uM all

caused membrane permeability, depolarization of cell membrane potential, and
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intracellular ROS accumulation, Moreover, GmAMP enhanced the survival rate of 75% for
G. mellonella with fluconazole-resistant C. tropicalis infection as well as reduced fungal
burden in vivo by approximately 1.0x102 CFU per larva. Conclusion. GmAMP can disrupt
the cell membrane of fluconazole-resistant C. tropicalis and also shows favorable safety
and therapeutic efficacy in vivo. Accordingly, GmAMP has the potential to be an agent
against drug-resistant fungi.
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ABSTRACT

Background. The overusing of antifungal drugs leads to an increase in the number of clinically
isolated fluconazole-resistant Candida spp. so it is an urgent need to develop novel alternative
therapeutic strategies. GmAMP is a novel peptide screened by us using artificial intelligence
modeling techniques, and pre-tests showed its strong antimicrobial activity against clinically
fluconazole-resistant Candida tropicalis.

Methods. The study aimed to comprehensively investigate the antimicrobial activity and
mechanisms of GmAMP against fluconazole-resistant C. tropicalis. The antifungal activity of
GmAMP against fluconazole-resistant C. tropicalis was measured by broth microdilution
method, growth and fungicidal kinetics, hypha transformation, and antibiofilm assay. To further
uncover the potential mechanisms of action of GmAMP, we performed scanning electron
microscopy, flow cytometry, cell membrane potential probe DiSC;(5), and reactive oxygen
species probe DCFH-DA detection to assess the cellular morphology and structure, membrane
permeability, membrane depolarization, and ROS accumulation, respectively. At the same time,
we evaluated the toxicity of GmAMP in vitro through erythrocyte hemolysis degree and
cytotoxicity assays. Cytotoxicity and therapeutic efficacy in vivo were assessed by the Galleria
mellonella larvae infection model.

Results. GmAMP exhibited significant antifungal activity against fluconazole-resistant C.
tropicalis with a MIC of 25 uM and demonstrated fungicidal effects at 100 uM within 2 h.
inhibited the transition from yeast to hypha morphology, restrained the biofilm formation rate of

88.32%, and eradicated the mature biofilm rate of 58.28%. Furthermore, treatment of
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fluconazole-resistant C. tropicalis with GmAMP at a concentration of 100 uM resulted in cell
structure damage while treatment with GmAMP at concentrations ranging from 25 ~ 100 pM all
caused membrane permeability, depolarization of cell membrane potential, and intracellular ROS
accumulation, Moreover, GmAMP enhanced the survival rate of 75% for G. mellonella with
fluconazole-resistant C. tropicalis infection as well as reduced fungal burden in vivo by
approximately 1.0x10% CFU per larva.

Conclusion. GmAMP can disrupt the cell membrane of fluconazole-resistant C. tropicalis and
also shows favorable safety and therapeutic efficacy in vivo. Accordingly, GmAMP has the
potential to be an agent against drug-resistant fungi.

Keywords: Antimicrobial peptide; GmAMP; Drug-resistance; Antifungal activity; Candida
tropicalis

INTRODUCTION

Opportunistic fungal pathogens can cause cutaneous infections and invasive infections, leading
to substantial illness and death (Thomas-Riiddel et al. 2022). Among these pathogens, invasive
candidiasis emerges as a prominent concern, characterized by mortality rates exceeding 40%
(Sasani et al. 2021; Tsay et al. 2020). C. tropicalis is a part of the human microbiomes but is also
capable of causing invasive infection and it is widely regarded as the second to fourth most
virulent genus of Candida species (Contreras Martinez et al. 2022). Azole antifungal agents,
including fluconazole, itraconazole, voriconazole, posaconazole, and others, constitute the
primary therapeutic resources against C. tropicalis infection. However, the indiscriminate and

excessive use of azoles has engendered the emergence of azole-resistant strains of C. tropicalis
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from clinical isolates. In addition, epidemiologic studies have shown that C. tropicalis has a
higher rate of resistance to fluconazole compared to other Candida species (Tseng et al. 2022).
Consequently, invasive infection due to high rates of azole resistance in C. tropicalis clinical
isolates has attracted increasing attention (Fan et al. 2023). In 2022, the World Health
Organization (WHO) issued the first list of fungal priority pathogens aimed at developing a
strategic framework for research, development, and public health interventions, with C.
tropicalis listed as a high-priority pathogen (Fisher & Denning 2023; World Health Organization
(WHO) 2022).

It is widely recognized that azoles, especially fluconazole, are crucial therapeutic and protective
agents for the controlling of Candida infections. However, due to the frequent and widespread
use of fluconazole, there is an increasing trend of resistance, which eventually leads to the
emergence of cross-resistance to other antifungal compounds (Chai et al. 2010; Jia et al. 2019;
Pappas et al. 2016). Studies have shown that resistance rates of C. tropicalis to azoles such as
fluconazole, itraconazole, voriconazole, and posaconazole have recorded resistance rates as high
as 40% to 80% (World Health Organization (WHO) 2022). In addition, more than 21% of C.
tropicalis isolates in China are resistant to fluconazole and even 21.7% of C. fropicalis isolates
were two to four times more resistant to multi-azoles in Iran (Badiee et al. 2022; Liu et al. 2022).
This resistance phenomenon may stem from various factors, including alterations in drug targets,
upregulation of drug target expression, and increased expression of efflux pumps (Lee et al.
2021). As a result, antifungal drug therapies may be inefficient in treating drug-resistant

candidiasis, which poses significant challenges in clinical management (McCarthy & Walsh
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2017; Zhang et al. 2017). Therefore, the exploitation of novel and potential antifungal agents as
well as alternative therapeutic approaches is essential to address the current problem of fungal
drug resistance.

Antimicrobial peptides (AMPs) represent critical components of the immune defense system in
organisms, with broad-spectrum antimicrobial activity, low drug resistance, and diverse
bactericidal mechanisms (Li et al. 2020). The mechanism by which antimicrobial peptides
interact with cell membranes to fulfill their antimicrobial and bactericidal effects has long been
accepted (Fernandez de Ullivarri et al. 2020; Zhou et al. 2023). This unique mechanism makes it
not easily susceptible to the development of resistance. In earlier period research work, We
employed multitasking adaptive modeling and model adaptation to establish a prediction model
and screening protocol for antifungal peptides based on antimicrobial peptide databases such as
APD, DRAMP, CAMP, antifp, etc (Zhang et al. 2022). Then we predicted more than three
million unknown functional sequences in the UniProt database from the established model and
screened out several hundreds of peptides that might be antifungally active then synthesized
them by solid-phase organic synthesis method, and the antimicrobial activity was verified by wet
experiments. Among them, the novel antimicrobial peptide SPGKKKKKKKKKKKTKKKKKK
showed strong antimicrobial activity against fluconazole-resistant C. tropicalis in the pre-test,
with a MIC of 25 uM (MIC of fluconazole against this isolate >3343 uM).

According to the sequence homology nomenclature in the antimicrobial peptide APD3 database
(http://aps.unmc.edu/AP/, main.html), The novel peptide was named GmAMP. To more fully

assess GmAMP, we first determined the MIC of GmAMP against four strains of clinically
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fluconazole-resistant C. tropicalis and the standard strain of C. tropicalis ATCC 20962, for
which GmAMP showed excellent antimicrobial activity. Besides, to assess the antifungal activity
and mechanism of GmAMP, we performed experimental validation on fluconazole-resistant C.
tropicalis. As a result, the antifungal mechanism of GmAMP against fluconazole-resistant C.
tropicalis was investigated in terms of physicochemistry and morphology, and its in vivo
efficacy was evaluated by the G. mellonella larvae infection model. Thus, the findings of this
study provide a certain experimental basis for the exploration and utilization of novel peptide
antimicrobial drugs.

MATERIALS AND METHODS

Materials

The peptide GmAMP (SPGKKKKKKKKKKKTKKKKKK) was synthesized by solid phase
chemical synthesis method by Gil Biochemical Co., Ltd (Shanghai, China), purified by reversed-
phase high-performance liquid chromatography (RP-HPLC) (Fig. S. 1A), and the purity was
>95%. They were dissolved in deionized water at a stock concentration of 5 mg/mL before use.
Then the molecular weight of GmAMP was determined using matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) (Fig. S. 1B).

Strains and cell culture conditions

The fluconazole-resistant C. tropicalis 4171, 4252, 6984, and 8402 were collected from infected
patient’s blood in the affiliated hospital of Guizhou Medical University. C. tropicalis ATCC
20962 was purchased from the Shanghai Conservation Biotechnology Center. All strains were

grown in yeast extract peptone dextrose medium (YPD, Solarbio, Beijing, China) at 35°C with
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shaking at 200 rpm until the cultures reached the exponential growth phase. RPMI-1640
(Invitrogen, Carlsbad, CA, United States) supplemented with 15% fetal bovine serum (FBS)
(Sigma-Aldrich) was used as the culture medium for hypha growth of C. tropicalis. The mouse
monocyte-macrophage cell line RAW 264.7 was donated by Jiahong Wu from the Key and
Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, and cells
were cultured in DMEM medium (Gibco, USA) containing 10% fetal bovine serum (FBS,
Gibco, USA), 100 U/mL penicillin (Gibco, USA), and 100 pg/mL streptomycin (Gibco, USA)
and maintained at 37°C in a humidified 5% CO2 incubator.

Antifungal Activity

The minimum inhibitory concentration (MIC) of GmAMP for four fluconazole-resistant C.
tropicalis from clinical isolates, a standard strain of C. tropicalis ATCC 20962 was determined
by using broth microdilution method according to the Standards of Clinical and Laboratory
Standards Institute (CLSI) (CLSI Clinical and Laboratory Standards Institute; 2023). In brief,
these yeasts of fungal strains were cultured in YPD broth medium at 35°C to the logarithmic
growth stage, and the cultures were washed by phosphate-buffered saline (PBS, 10 mM, pH 7.4)
three times and resuspension to 0.5x103~2.5x103 CFU/mL. Then 100 pL above fungal
suspension was added to a 96-well plate with a series concentration of GmAMP and fluconazole
(Yuan ye, Shanghai, China) and co-cultured with fungal suspension at 35°C for 24 h, and 10 mM
PBS and medium were used as the negative and blank controls, respectively. The drug
concentration corresponding to the well without visible fungal growth was regarded as MIC and

the experiment was performed in triplicate and repeated three times.
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Growth and fungicidal Kinetics

To analyze the antifungal or fungicidal process of GmAMP against fluconazole-resistant C.
tropicalis, the growth kinetics and time-kill kinetics of GmAMP on fluconazole-resistant C.
tropicalis were further investigated at different times after GmAMP treatment as te-previously
described (Melo et al. 2024). The concentration of the prepared fungal cells was 1.0x10°
CFU/mL according to the previously mentioned method and incubated with 25, 50, and 100 uM
of GmAMP at 35°C for 48 h. During co-culture, the ODg3¢,m Was recorded every 2 h by a
microplate reader (Thermo Scientific, USA). Meanwhile, the cultured yeasts were taken at
specific time intervals (0. 2. 4. 6. 8. 10. 12 h), then the agar solid plate experiment was
carried out after gradient dilution, and 10 mM PBS and medium was used as the negative and
blank controls in the experiment. Fungal colonies were counted after incubation at 35°C for 24 h.
Finally, the results were presented as the average of triplicate measurements from three
independent assays.

Effect of GmAMP on hypha formation

To analyze the effect of GmAMP on the transition of yeast-to-hyphal phase in fluconazole-
resistant C. tropicalis as described previously (Lochenie et al. 2024). The concentration of the
prepared fungal cells was 1.0x10° CFU/mL in RPMI 1640 medium (Gibco, USA) which
contained 15% fetal bovine serum (Gibco, USA) according to the previously mentioned method.
Then 500 pL of fungal suspension was incubated with GmAMP at concentrations (25, 50, and
100 uM) in 24 well plates and 10 mM PBS as the negative control. Next the plate after

cultivation at 37 °C for 3, 6, 9, 12, and 24 h, the hypha formation was observed and
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photographed under an inverted microscope.

Antibiofilm Assay

The fungal cells cultured to logarithmic phase were adjusted to 1.0x10° CFU/mL by using
RPMI-1640 liquid medium and were added to the 96-well polypropylene plate and then
incubated at 37°C for 90 mins (early biofilm formation) or 48 h (mature biofilm formation)
according to previous method (Zou et al. 2024). And 100 uL newly prepared 2,3-bis(2-methoxy-
4-nitro-5-sulfophenyl) 2H-tetrazolium5-carboxamide sodium salt (XTT) solution (Yuan ye,
Shanghai, China) was added to each well for 2 h at 37°C after different concentrations of
GmAMP were added and continued to co-incubate for 24 h. Absorbance was measured by using
a microplate reader at ODg49,m. Next, the sterile poly-lysine cell crawling tablets were placed at
the bottom of the 24-well plate, and fungal suspension with the above concentration of 500 uLL
was added. The early and mature biofilms were prepared according to the XTT method, and 500
pL of SYTO 9 (Invitrogen, USA) and propidium iodide (PI, Sigma, USA) solution with the final
concentration of 10 uM were added and incubated for 20 mins while 10 mM PBS was used as
the negative control. Using nail polish to seal the cover glass, laser confocal microscopy was
used to observe and obtain images.

Scanning electron microscope

The concentration of the prepared fungal cells was 1.0x10® CFU/mL based on the previous
description with minor modifications (Alfaro-Vargas et al. 2022), incubated in GmAMP with
culture medium at 35°C for 2 h, and 10 mM PBS was used as the negative control, then the

suspension was centrifuged at 5000 rpm for 10 mins, fixed with 2.5% glutaraldehyde overnight
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at 4°C, and dehydrated with 50%, 75%, 95% and 100% series of ethanol solutions for 10
minutes. It was then dried in a vacuum evaporator and coated with a thin layer of gold-
palladium. The samples were observed by scanning electron microscopy and the image
acquisition was performed using a Hitachi Regulus SU8100 (Tokyo, Japan)

Flow cytometry analysis

The concentration of the prepared fungal cells was 1.0x10® CFU/mL according to the previous
description with minor modifications (Torres et al. 2023), GmAMP with different concentrations
was incubated at 35°C for 1 h, and 10 mM PBS was used as the negative control. After that, the
fungal suspension was incubated with SYTO 9 and PI staining with a final concentration of 10
uM at 35°C for 15 mins, and the stained cells were analyzed by flow cytometry.

Membrane potential

The concentration of the prepared fungal cells was 1.0x10® CFU/mL as described in the previous
study (Decker et al. 2024), then added to 96-well plates while the membrane potential DiSC;(5)
probe was added into the fungal suspension, then treated with different concentrations of
GmAMP as well as 10 mM PBS was used as the negative control to be measured fluorescence
intensity. The change of fluorescence intensity in 1 h was continuously and dynamically
monitored with by RF-5301PC sectrofluoro-photometer (Bio-Tek Synergy HTX, United States).
Reactive oxygen species level

The levels of ROS were determined by using 2', 7'-dichlorodihydrofluorescein diacetate (DCFH-
DA, Yuan ye, Shanghai, China) according to previously described with minor modifications

(Shaban et al. 2024). The 1.0x10% CFU/mL of fungal suspension was incubated with 10 uM
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DCFH-DA, and PBS was used as the negative control. The change of fluorescence intensity in 1
h was continuously and dynamically monitored by RF-5301PC sectrofluoro-photometer (Bio-
Tek Synergy HTX, United States).

Cytotoxicity Assays

Mouse RAW 264.7 cells were used to evaluate the cytotoxicity of GmAMP on mammalian cells
as previously described (de Oliveira et al. 2023). Cells were cultured in Dulbecco's Modified
Eagle Medium (DMEM, Gibco, Grand Island, NY, USA) containing 10% fetal bovine serum
(FBS, Gibco, USA), 1% penicillin-streptomycin (Gibco, USA), and maintained at 37°C in a
humidified 5% CO, incubator. Firstly, 100 uL of RAW 264.7 cells suspension (2x10* cells/mL)
was added to 96-well plates for cultivating overnight. 100 pL with different concentrations of
GmAMP solution was added and then incubated at 37°C for 24 h. 10 mM PBS and complete
medium were used as the negative and blank controls, respectively. After the end of incubation,
10 uL of CCKS solution was added to each assay well and incubated for 1 h. Absorbance values

were detected at ODysonm, and the percentage of cell survival was counted.

Abs,5,m0f GMAMP solution — Abs,s,,,of blank control

Cell viability(% ) X 100%

)=( Abs,5,m0f PBS control — Abs,s,,,of blank control
Hemolysis of Human Red Blood Cells

The human red blood cells (hRBCs) were used to evaluate the hemolytic activity of GmAMP on

the basis of previous descriptions with minor modifications (Chiramba et al. 2024). The
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GmAMP with different concentrations and 2% hRBCs were added to the 96-well plate and
incubated for 1 h in 37°C. 1% Triton X-100 (Solarbio, Beijing, China) was the positive control,
and 10 mM PBS was used as the negative control. After the end of incubation, the samples were
taken out and centrifuged at 1000 rpm for 10 min, the supernatant of samples was transferred to a
new 96-well plate, and the percentage of hemolysis was calculated by the OD sy, absorbance

value.

Absg40,m of GmAMP solution — Absg ., of PBS control
)=( Absc40nm Of (TritonX - 100) — Absg44,,m of PBS control

Hemolysis(% ) X 100%

Galleria mellonella infection model

The larvae used in the experiment were purchased from Huiyude Biotechnology Co.,
Ltd.,(Tianjin, China), each weighing 250~300 mg and about 2~3 cm in length. As previously
described with slight modifications (Fernandes et al. 2020). All larvae were placed in a dark
incubator at 35°C overnight before the experiment. Ten larvae were randomly divided into each
group to inject 10 L. of GmAMP solution with a concentration of 8~32 mg/kg into the last left
proleg of larvae to evaluate the toxicity of GmAMP. The negative control was given an equal
volume of sterile PBS. To evaluate the efficacy of GmAMP, 12 larvae were randomly divided
into each group and injected 10 pL into the last left proleg of larvae with approximately 5.0x108
CFU/mL of fungal suspension. After 1 h in the incubator, the same volume of GmAMP was

injected into the last right proleg using the same method. Incubated at 35°C for 5 days, live and
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dead counts were performed every 24 h, and larvae were considered dead when they turned black
or soft and had no obvious tactile response. 24 h after injection of GmAMP, 3 larvae were
randomly selected from each group and placed in a 1.5 mL sterile PBS solution for high-speed
homogenization grinding. 10 pL of gradient dilution was followed by dripping on a sterile solid
YPD plate for culturing 24 h. The number of fungal single colony was recorded, and the C.
tropical burden of each larva was counted.

Data processing

Statistical mapping and data analysis were performed using GraphPad Prism 8.0 software
(GraphPad, Software). Data were expressed as mean + SD and analyzed by One-Way ANOVA.
Long-rank test was used for the analysis of Mantel-Cox survival curves for the G. mellonella

survival experiment. The P < 0.05 was considered statistically significant.

RESULTS

GmAMP chemical characteristic

The secondary structure of antimicrobial peptides plays an important role in antimicrobial
activity. a-helical structure promotes the interaction of antimicrobial peptides with the cell
membrane to enhance the antimicrobial activity (Personne et al. 2023). The antimicrobial peptide
GmAMP, composed of 21 amino acids, is predicted to have an a-helical structure (Figs. 1A and
B). The molecular weight (MW) of GmAMP was confirmed to be 2539.33 Da by mass
spectrometry. Furthermore, GmAMP has a net charge of +17 and a hydrophobicity value of -

0.757 (Fig. 1C), and these characteristics suggest that GmAMP is a hydrophilic cationic peptide.
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267 Antifungal activity

268  The results of the antifungal activity assay showed that GmAMP had strong antimicrobial effects
269 against clinical fluconazole-resistant C. tropicalis, with MICs ranging from 25 to 50 uM. In

270 comparison to this, the MIC values of fluconazole against clinical isolates exceeded 3343 uM
271 (Table 1). Consequently, to better understand the effect of GmAMP on fluconazole-resistant C.
272 tropicalis clinical isolate, 4252 isolate (MIC 25 pM) was selected for further study.

273 Growth kinetics and fungicidal kinetics

274  To elucidate the effect of GmAMP on the growth process of fluconazole-resistant C. tropicalis.
275 The growth curve of fluconazole-resistant C. tropicalis under GmAMP treatment was further

276  plotted, as shown in Fig. 2A, the fungal cells in the control group entered the logarithmic phase
277 within 6 h and reached the stabilization phase within 18 h. In comparison, GmAMP treatments at
278  concentrations of 25 pM and 50 uM were found to slow down the proliferation rate of

279  fluconazole-resistant C. tropicalis and prolong the time to reach the logarithmic phase. When

280 treated with GmAMP at a concentration of 100 uM, GmAMP showed an inhibitory effect on

281  fluconazole-resistant C. tropicalis and prevented the natural growth and reproduction of

282 fluconazole-resistant C. tropicalis. The time-fungicidal kinetic curve was further plotted to

283 clarify the fungicidal effect of GmAMP (Fig. 2B). Compared with the control group, GmAMP
284  exhibited a powerful inhibitory effect on fluconazole-resistant C. tropicalis when the

285  concentrations of GmAMP were 25 uM and 50 pM. Notably, dealing with the concentration at
286 100 pM of GmAMP, the fluconazole-resistant C. tropicalis was killed within 2 h. These results

287 indicate that GmAMP manifests effective antimicrobial activity and fungicidal effect against

Peer] reviewing PDF | (2024:10:107228:0:1:CHECK 14 Nov 2024)


Reviewer
Highlight
Is this one of the concentrations for the antifungal activity assay?

Reviewer
Sticky Note
Please see annotations in table 1 for more comments

Reviewer
Highlight
How was MIC determined? The MIC of this strain is 25uM, but your curve showed <50% inhibition at this concentration. Please address the discrepancy

Reviewer
Highlight
25uM and 50uM still showed inhibition, while 100uM showed complete inhibition?

Reviewer
Comment on Text
Were these two assays done in media where C.tropicalis only grew in yeast phase?

Reviewer
Comment on Text
Unmarked set by Reviewer


PeerJ

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

fluconazole-resistant C. tropicalis.

The transformation of yeast to the mycelial phase

The transformation of Candida mycelial morphology is closely related to its pathogenicity.
Morphological changes during the transformation of the fluconazole-resistant C. tropicalis yeast
phase to the mycelial phase were observed by using an inverted microscope which is shown in
Fig. 2C. The length of the mycelium of the fungus in the control group increased with incubation
time, and 9 h of incubation, yeast cells can be seen growing to form bundles of hyphae while
forming branches of various sizes and lengths and intertwining with each other to form a net
structure, and a more tightly netted biofilm is formed over time. Interestingly, the development
of fluconazole-resistant C. tropicalis from yeast cells to mycelial morphology was completely
inhibited after treatment with different concentrations of GmAMP. GmAMP treatments at
concentrations of 25 uM and 50 uM not only inhibited morphological transformation but also
100 uM concentration of GmAMP reduced the number of yeast cells, allowing only a minor
number of yeast cells to be observed. These results suggest that GmAMP inhibited the
morphological transformation process of fluconazole-resistant C. tropicalis from the yeast phase
to the mycelial phase.

Inhibition of biofilm formation and eradication of mature biofilm

We visualized the results by using confocal laser scanning microscopy. In the control group of
the biofilm formation assay, a compact and intact biofilm was observed to emit predominantly
green fluorescence. Nevertheless, after GmAMP treatment, intact biofilms could no longer be

formed and only dispersed incomplete membranes of different sizes were observed, while only
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single yeast cells could be seen in the high-concentration group (Fig. 3A). In the control group of
the biofilm eradication assay, it was observed that the tightly structured and network-interwoven
biofilms mainly emitted green fluorescence. After GmAMP treatment, we found that the tightly
structured biofilm became loose and the network structure was reduced and thinned, while a
reduction in the number of yeasts and an increase in the number of fungal deaths were observed,
with a predominantly red fluorescence (Fig. 3B). In addition, the biofilm activity of C. tropicalis
was determined by XTT quantitative method. Compared with the control group, GmAMP at
concentrations of 50, 100, and 200 uM inhibited biofilm formation by 49.75%, 71.28%, and
88.32%, respectively (Fig. 3C), and eliminated mature biofilm by 17.53%, 42.07%, and 58.28%,
respectively (Fig. 3D). These results indicated that GmAMP inhibited biofilm formation and
eradicated a certain amount of mature biofilm in fluconazole-resistant C. tropicalis.

Antifungal mechanism

To investigate the impact of GmAMP on the cell morphology of fluconazole-resistant C.
tropicalis, the morphological changes induced by GmAMP treatment of fungal cells for 2 h were
directly observed by scanning electron microscopy. Untreated fungal cells were morphologically
intact, with cell surfaces remaining round and smooth (Fig. 4A). When cells were exposed to 100
uM of GmAMP for 2 h, the cells were destroyed and the surface appeared rough and irregular.
(Fig. 4B). Thus, these outcomes suggested that the cellular structural integrity of fluconazole-
resistant C. tropicalis has been impaired. To further investigate the interaction of GmAMP on
cell membrane of fluconazole-resistant C. tropicalis, P1 and SYTO9 fluorescence staining were

used to determine the effect of GmAMP on the integrity of cell membrane;-PI and STOYO as
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DNA-binding dyes emitted-red and green fluorescence, respectively, and the former only
penetrated the membrane-damaged cells, while the latter emitted-greenfluereseence-and stained
both live and dead cells (Jin et al. 2005). As a result, when cells were exposed to 25, 50, and 100
uM of GmAMP, 45.02%, 76.88%, and 85.02% of the cells stained positively for PI, respectively.
Moreover, PI staining positivity showed a dose-dependent correlation with GmAMP (Fig. 4C),
which indicated that GmAMP disrupted the cell membrane integrity of fluconazole-resistant C.
tropicalis. The membrane depolarization was detected using the membrane potential probe
DiSC5(5). As shown in Fig. 4D, compared with the control group, we found that GmAMP
treatment caused depolarization of the cell membrane potential of fluconazole-resistant C.
tropicalis and the level of membrane potential rose significantly with increasing concentration of
GmAMP. Reactive oxygen species (ROS) generally maintain low levels within normal cells, but
the accumulation of higher levels of ROS can damage cellular structures (Huang et al. 2020).
Here, different concentrations of GmAMP induced ROS accumulation in fluconazole-resistant C.
tropicalis, and ROS levels showed a time-dose dependence (Fig. 4E). These results suggest that
the presence of GmAMP induced ROS production, which contributed to the crucial factor in the
antimicrobial effect of GmAMP.

Hemolytic and Cytotoxicity

To evaluate mammalian cytotoxicity, we assessed the safety of GmAMP on human red blood
cells and RAW 264.7 cells. The hemolysis experiment was performed using 2% human red
blood cells. At a concentration of 200 uM, GmAMP exhibited slight hemolysis with a hemolysis

rate of 35.64% (Fig. 5A). Moreover, GmAMP showed no obvious cytotoxicity to RAW 264.7
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cells, and the cell viability of mouse macrophage RAW 264.7 remained above 80% at 200 pM
concentration of GmAMP (Fig. 5B).

Therapeutic effect on fluconazole-resistant C. tropical infection in vivo

The Galleria mellonella larvae infection model was used to study the in vivo therapeutic effect
of GmAMP. In the peptide toxicity test (Fig. 6B). All larvae survived and were undead in the
experimental model, suggesting that GmAMP did not show significant toxicity in the
concentration range of 32 mg/kg. Survival of larvae infected with fluconazole-resistant C.
tropicalis was increased by injecting various concentrations of GmAMP, with 75% survival in
the 32 mg/kg group (P<0.05), whereas the control group has 40% survival rate at 5 days post
infection (Fig. 6C). These results were also reflected by the fungal burden of Galleria mellonella
larvae, after treating larvae with GmAMP for 24 hours, and the number of colonies pre larvae
was significantly reduced in all treatment groups while 32 mg/kg of GmAMP reduced fungal
burden from 5.27x103 to 6.37x10% CFU per larva (Fig. 6D). Consequently, GmAMP has the
potential for clinical application as it effectively treats fluconazole-resistant C. tropicalis
infection and reduces the fungal burden in vivo.

DISCUSSION

Currently, the irrational use of antifungal drugs is leading to a rapid development of resistance to
antifungal drugs resulting in a surge in morbidity and mortality from invasive fungal infection
(Fan et al. 2024). The isolation rate of Candida species, such as Candida albicans, Candida
glabrata, Candida tropicalis, Candida krusei, and Candida parapsilosis is steadily increasing in

hospitals (Falagas et al. 2010; Lee et al. 2022). Recent reports show that the proportion of
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fluconazole-resistant C. tropicalis isolates continues to rise in China (Wang et al. 2021). The
development of new antifungal drugs to address this problem is imminent. Widely distributed in
animals, plants, and other organisms, AMPs are a fast and effective barrier against pathogens in
humans. AMPs exert their antimicrobial activity through a unique membrane-targeting
mechanism that avoids the development of drug resistance and is regarded as a novel alternative
to synthetic antibiotics (Mulukutla et al. 2024).

In this study, we determined in vitro the antimicrobial activity of GmAMP against four clinical
isolates of fluconazole-resistant C. tropicalis and the standard strain of C. tropicalis ATCC
20962, and GmAMP showed good antimicrobial effect against clinical isolate of fluconazole-
resistant C. tropicalis 4252, with a MIC value of 25 uM. GmAMP not only delayed the
proliferation rate and inhibited the growth and reproduction of fungi, but also effectively killed
GmAMP within 2 h. These results revealed that GmAMP is an effective antimicrobial agent, and
there is a need to further investigate the antifungal efficacy of GmAMP.

The process of transformation from the yeast phase to the mycelial phase, termed "biphasic", is
considered the most important pathogenic characteristic of Candida, and is also recognized as a
key stage in biofilm formation and maturation (Zhu et al. 2024). Furthermore, the hyphae formed
during the morphological transformation can penetrate cells and invade the bloodstream,
expressing a wide range of virulence factors, and are therefore considered to be a more virulent
phenotype than yeast (Khamzeh et al. 2023). Herein, GmAMP inhibited the transition of yeast
phase cells to mycelial phase morphology, preventing the process of mycelial development,

which demonstrates that GmAMP plays a key role in inhibiting the formation and maturation of
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fluconazole-resistant C. tropicalis biofilm by preventing mycelial development. The yeast cells
of C. tropicalis are characterized by a high capacity to form biofilms compared to other Candida
species (Zuza-Alves et al. 2017), which may be related to an increased amount of biomass in the
membranes and extracellular matrix, leading to a denser structure (Chandra & Mukherjee 2015;
Desai & Mitchell 2015). Here, the 50 uM (2xMIC) of GmAMP inhibits biofilm formation and
has an eradicative effect on mature biofilms. Moreover, GmAMP inhibited and eliminated
biofilms of fluconazole-resistant C. tropicalis in a concentration-dependent manner. Therefore,
GmAMP showed good bioactivity in inhibiting morphological transformation and anti-biofilm
processes.

It has been reported that most antimicrobial peptides exert their antimicrobial effects mainly by
targeting cell membranes (Aguiar et al. 2020; Buda De Cesare et al. 2020; Hu et al. 2022). In the
present study, the results of the scanning electron microscopy assay demonstrated that GmAMP
disrupts the morphology and structure of the fluconazole-resistant C. tropicalis. A similar
phenomenon was also found by Ma, et al (Ma et al. 2020; Zhang et al. 2023). Moreover, we
speculated the exact reason for the morphological damage and subsequent cell death is correlated
with increased membrane permeability resulting from electrostatic interactions between the
positively charged peptide GmAMP and the negatively charged components of the fungal
cytoplasmic membrane (Boparai & Sharma 2020; Jayasinghe et al. 2023; Kodedova et al. 2019).
The experimental result verified membrane permeability by a significant increase in the number
of PI-stained positive cells of the fungi treated with GmAMP. Changes in cell membrane

permeability usually trigger variation in cell membrane potential, which is closely related to
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cellular function (D'Auria et al. 2022). When membrane-modifying compounds (e.g., peptides)
depolarize the membrane then the potential is lost. DiSC;(5) is released into the solution, causing
fluorescence enhancement, which indicates that the cytoplasmic membrane is altered because of the
cell membrane depolarization by the action of GmAMP in a concentration-dependent manner,
which suggests that the dissipation of membrane potential might be involved in the formation of
channels or pores, then allowed the passage of ions or macromolecules, to lead cytoplasmic
membrane dysfunction (Bezerra et al. 2022; Venkatesh et al. 2017). It has been found that aerobic
metabolism-generated ROS are usually present in cells that are in equilibrium with antioxidant
enzymes, and excess ROS have certain deleterious effects on the basic structure of fungi, such as
damage to nucleic acids, DNA, amino acid residues, and cell membranes (Perrone et al. 2008). We
found that GmAMP induced the accumulation of reactive oxygen species in a dose-dependent
manner(Taveira et al. 2022). In brief, we hypothesized that the cationic peptide GmAMP can interact
with certain negatively charged substance molecules on the cell membrane through electrostatic
interactions, it leads to a series of consequences such as increased membrane permeability, altered
depolarization of the membrane potential, structural loss of membrane integrity, accumulation of ROS,
and further leakage of intracellular contents, which finally leads to cytoplasmic membrane dysfunction
and cell death.

The excellent antimicrobial activity of antimicrobial peptides is usually associated with strong
hemolytic activity and cytotoxicity, and assessment of the in vitro safety of AMP is paramount for
further consideration as a potential clinical candidate (Zhang et al. 2024). In this study, our results

showed that GmAMP showed little cytotoxicity and low hemolytic effect. Although some cytotoxicity
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and hemolytic activity were observed at higher concentrations, considering the MIC value of GmAMP
was 25 uM (Table 1), which was much lower than its cytotoxicity concentration, GmAMP safety is
also guaranteed under the premise of ensuring its activity. However, the potential toxicity of GmAMP
to other mammalian cells remains to be studied.

Cytotoxicity and hemolytic assays confirmed the safe and effective dosage range of GmAMP, laying
the foundation for its application in animal studies. In this study, the therapeutic efficacy of GmAMP
was tested in vivo using the Galleria mellonella larvae infection model, which showed a significant
improvement in survival. GmAMP treatment significantly reduced the fungal burden of Galleria
mellonella larvae in vivo, and these findings suggest that GmAMP may exhibit a strong safety and
certain therapeutic potential.

CONCLUSIONS

This work describes the antifungal activity and mechanism of antimicrobial peptide GmAMP
and therapeutic efficacy in vivo. GmAMP possesses potent antimicrobial activity, anti-biofilm
formation, and eradication ability, and may play an antimicrobial role by disrupting the structure
of fungal cytomembrane. Here, GmAMP displays low cytotoxicity and low hemolytic activity in
vitro experiments. Furthermore, GmAMP exhibits a therapeutic effect against fluconazole-
resistant C. tropical infection and reduces the number of fungi in vivo. These properties make
GmAMP a potential treatment for fluconazole-resistant C. tropical infection, which is worthy of
further optimization and development. In addition, GmAMP offers more possibilities for the
clinical application of antimicrobial peptides for safety and therapeutic efficacy in the

development of drug resistance.
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The determination of the antifungal activity of GmAMP against four strains of C. tropicalis.
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1 Table 1:
2 Antifungal activity of GmAMP.

3 The determination of the antifungal activity of GmAMP against four strains of C. tropicalis.

MIC (uM)
Strains
GmAMP Fluconazole
Fluconazole-resistant C. tropicalis 4252 25 >3343
Fluconazole-resistant C. tropicalis 4171 50 >3343
Fluconazole-resistant C. tropicalis 6984 50 >3343
Fluconazole-resistant C. tropicalis 8402 50 >3343
C. tropicalis ATCC 20962 12 13
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Figure 1

Physicochemical properties of GmAMP.

(A) Heliguest software (https://heliquest. ipmc.cnrs.fr/) was used to draw the spiral wheel
diagram, positively charged amino acids are indicated in blue, uncharged polar residues are
shown in purple[Jthe red ‘N’ represents the starting position and the arrow represents the
hydrophobic moment. (B) The structure of GmAMP was predicated by AlphFold2. (C) The
physical and chemical properties of GmAMP were analyzed via the Expasy ProtParam website

(http://web.expasy.org/protparam/).
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Figure 1 Physicochemical properties of GmAMP. (A) Heliquest software (https://heliquest. ipme.cnrs.fi/) was

used to draw the spiral wheel diagram, positively charged amino acids are indicated in blue, uncharged polar

residues are shown in purple, the red "N’ represents the starting position and the arrow represents the hydrophobic

moment. (B) The structure of GmAMP was predicated by AlphFold2. (C) The physical and chemical properties

of GmAMP were analyzed via the Expasy ProtParam website (http://web.expasy.org/protparam/).
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Figure 2

Effect of GmAMP on the growth of fluconazole-resistant C. tropicalis.

(A) Growth kinetics of fluconazole-resistant C. tropicalis. (B) Time-killing kinetics of

fluconazole-resistant C. tropicalis. (C) The transformation from yeast phase to mycelial phase

of fluconazole-resistant C. tropicalis. Scale bar, 25 um.
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Figure 2 Effect of GmAMP on the growth of fluconazole-resistant C. tropicalis. (A) Growth kinetics of
fluconazole-resistant C. tropicalis. (B) Time-killing kinetics of fluconazole-resistant C. tropicalis. (C) The

transformation from yeast phase to mycelial phase of fluconazole-resistant C. tropicalis. Scale bar, 25 um.
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Figure 3

Effect of GmAMP on the biofilm of fluconazole-resistant C. tropicalis.

Inhibition (A) and eradication (B) effects of fluconazole-resistant C. tropicalis biofilms treated
with GmAMP at different concentrations observed by confocal laser scanning microscopy.
Images obtained by live/dead staining (SYTO 9, green; PI, red). Scale bar, 20 um. The activity
level of biofilm under different concentrations of GmAMP was determined by the XTT
reduction method (C and D), and the colorimetric absorbance was measured at OD490nm.
The error bar represents the standard deviation of the three independent experiments. ***P

< 0.001 compared with the control group.
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Figure 3 Effect of GmAMP on the biofilm of fluconazole-resistant C. fropicalis. Inhibition (A) and eradication
(B) effects of fluconazole-resistant C. tropicalis biofilms treated with GmAMP at different concentrations
observed by confocal laser scanning microscopy. Images obtained by live/dead staining (SYTO 9, green; PI, red).
Scale bar, 20 pm. The activity level of biofilm under different concentrations of GmAMP was determined by the
XTT reduction method (C and D), and the colorimetric absorbance was measured at ODu4gonm. The error bar

Ty

represents the standard deviation of the three independent experiments. """ P < 0.001 compared with the control

group.
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Figure 4

Effects of GmAMP cell morphology and cell membranes of fluconazole-resistant C.
tropicalis.

The control group (A) and GmAMP group treated with 100 uM (B) of fluconazole-resistant C.
tropicalis morphological images by scanning electron microscopy. (C) Cell membrane
permeability of GmAMP on the fluconazole-resistant C. tropicalis was determined by flow
cytometry, and with SYTO 9 and PI as pore formation mechanism marker. (D) DiSC3(5) was
used to detect the cell membrane depolarization of fluconazole-resistant C. tropicalis. (E) The

ROS-induced accumulation of DCFH-DA is a pore formation mechanism marker
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Figure 4 Effects of GmAMP cell morphology and cell membranes of fluconazole-resistant C. tropicalis. The
control group (A) and GmAMP group treated with 100 pM (B) of fluconazole-resistant C. tropicalis
morphological images by scanning electron microscopy. (C) Cell membrane permeability of GmAMP on the
fluconazole-resistant C. tropicalis was determined by flow cytometry, and with SYTO 9 and P as pore formation
mechanism marker. (D) DiSCa(5) was used to detect the cell membrane depolarization of fluconazole-resistant

C. tropicalis. (E) The ROS-induced accumulation of DCFH-DA is a pore formation mechanism marker.
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Figure 5

The hemolytic and cytotoxicity effects of GmAMP.

(A) The cytotoxicity of GmAMP against RAW 264.7 cells. (B) The hemolysis rate of 2% human

red blood cells.
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Figure 5 The hemolytic and cytotoxicity effects of GmAMP. (A) The cytotoxicity of GmAMP against RAW

264.7 cells. (B) The hemolysis rate of 2% human red blood cells.
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Figure 6

In vivo toxicity and therapeutic activity of GmAMP in the G. mellonella model.

(A) Schematic diagram of the GmAMP treatment. (B) The toxicity of GmAMP in G. mellonella
larvae model. (C) Survival of larvae after treatment with GmAMP. (D) Fungal burden of larvae
after treatment with GmAMP. *P < 0.05; ***P < 0.001 compared with the group of

fluconazole-resistant C. tropicalis + PBS.
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Figure 6 In vivo toxicity and therapeutic activity of GmAMP in the G. mellonella model. (A) Schematic
diagram of the GmAMP treatment. (B) The toxicity of GmAMP in G. mellonella larvae model. (C) Survival of
larvae after treatment with GmAMP. (D) Fungal burden of larvae after treatment with GmAMP. *P < 0.05; **'P

< 0.001 compared with the group of fluconazole-resistant C. fropicalis + PBS.
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