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Macroalgal-associated amphipod assemblages exhibit short
term resistance to ocean acidiûcation
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The pH of the world9s oceans has decreased since the Industrial Revolution due to the
oceanic uptake of increased atmospheric CO2 in a process called ocean acidiûcation. Low
pH has been linked to negative impacts on the calciûcation, growth, and survival of
calcifying invertebrates. Along the Western Antarctic Peninsula, dominant brown
macroalgae often shelter large numbers of diverse invertebrate mesograzers, many of
which are calciûed. To assess how acidiûcation may inûuence the survival of diûerent
members in these assemblages, mesograzers associated with the brown alga Desmarestia
menziesii were collected from the immediate vicinity of Palmer Station, Antarctica
(64°462S, 64°032W) in January 2020 and maintained under three diûerent pH treatments
simulating ambient conditions (approximately pH 8.1), near-future conditions for 2100 (pH
7.7), and distant future conditions (pH 7.3) for 52 days then enumerated. Total
assemblage number and the relative proportion of each species in the assemblage were
found to be similar across the pH treatments. These results suggest that amphipod
assemblages associated with D. menziesii may be resistant to short term exposure to
decreased pH.
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15 Abstract

16 The pH of the world�s oceans has decreased since the Industrial Revolution due to the 

17 oceanic uptake of increased atmospheric CO2 in a process called ocean acidification. Low pH 

18 has been linked to negative impacts on the calcification, growth, and survival of calcifying 

19 invertebrates. Along the Western Antarctic Peninsula, dominant brown macroalgae often shelter 

20 large numbers of diverse invertebrate mesograzers, many of which are calcified. To assess how 

21 acidification may influence the survival of different members in these assemblages, mesograzers 

22 associated with the brown alga Desmarestia menziesii were collected from the immediate 

23 vicinity of Palmer Station, Antarctica   in January 2020 and maintained under 

24 three different pH treatments simulating ambient conditions (approximately pH 8.1), near-future 

25 conditions for 2100 (pH 7.7), and distant future conditions (pH 7.3) for 52 days then enumerated. 

26 Total assemblage number and the relative proportion of each species in the assemblage were 

27 found to be similar across the pH treatments. These results suggest that amphipod assemblages 

28 associated with D. menziesii may be resistant to short term exposure to decreased pH.

29

30
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31 Introduction

32 Atmospheric CO2 concentrations have increased by approximately 50% since the 

33 Industrial Revolution (Joos & Spahni, 2008; NOAA, Lan & Keeling, 2024) from human-derived 

34 emissions such as the combustion of fossil fuels, the production of cement, and deforestation 

35 (Malhi, Meir & Brown, 2002; Heede, 2014; Paraschiv & Paraschiv, 2020). Approximately a 

36 third of atmospheric CO2 enters the ocean (Sabine et al., 2004; Gruber et al., 2019) where it 

37 reacts with seawater and ultimately releases free hydrogen ions, thereby lowering pH in a 

38 process called ocean acidification (OA). As a result of this process and increasing CO2 

39 emissions, the average ocean surface pH has decreased by 0.1 pH units and is predicted to 

40 decrease a further 0.4 pH units over the next eighty years (IPCC, 2022).

41 Decreased ocean pH can have a direct impact on the physiology and behavior of marine 

42 organisms, especially those that calcify (Kroeker et al., 2013; Kindinger, Toy & Kroeker, 2022). 

43 OA decreases the availability of carbonate and alters seawater chemistry, both of which can 

44 reduce an organism�s ability to calcify (Hurd et al., 2009; Doney et al., 2020). For this reason, 

45 benthic ecosystems are likely to favor non-calcifying organisms as pH decreases (Andersson, 

46 Mackenzie & Gattuso, 2011). However, the transition to a non-calcified dominant community 

47 will not be immediate. Many organisms vary not only in their ability to tolerate decreased pH but 

48 also in their ability to maintain reproductive output if they survive (Doney et al., 2009; Lopes et 

49 al., 2019; Mardones et al., 2022). Variation in responses to pH changes will likely result in 

50 ecosystems undergoing successive changes of organisms, resulting in an eventual reduction in 

51 structural complexity and decreased biodiversity in benthic communities (Andersson, Mackenzie 

52 & Gattuso, 2011; Doney et al., 2020). Such communities have already been observed in regions 

53 along a natural pH gradient (e.g., Hall-Spencer et al. 2008). For instance, communities located 
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54 around volcanic CO2 vents are dominated by of seagrasses and fleshy macroalgae rather than 

55 calcified invertebrates and coralline algae in areas closer to the vents where seawater pH is lower 

56 (Hall-Spencer et al., 2008; Koch et al., 2013) . Reduced biodiversity from OA exposure has also 

57 been observed in microbial communities (Maas et al., 2013; Nelson et al., 2020). This loss of 

58 microbial biodiversity can impact macroorganisms by reducing the settlement rate of 

59 invertebrate larvae from a likely decrease in settlement cues (Nelson et al., 2020).

60 Many invertebrates are sensitive to OA because they rely on calcification processes to 

61 create important external body structures like exoskeletons, spicules, feeding structures, etc. OA 

62 can also lower calcification (Anand et al., 2021; Ramaekers et al., 2023), increase mortality 

63 (Park et al., 2020), hinder growth (Sheppard Brennand et al., 2010; Bhuiyan et al., 2022), 

64 increase tissue damage (Anand et al., 2021), decrease fertilization (Kurihara & Shirayama, 2004; 

65 Ericson et al., 2010; Borges et al., 2018), and lead to developmental abnormalities (Ericson et al., 

66 2010). Marine invertebrates, are also susceptible to internal acidification of body fluids and the 

67 dissolution of shells to compensate for internal acidification (Doney et al., 2009). 

68 Most invertebrates can compensate for increased internal proton concentrations by either 

69 consuming more food or diverting energy toward compensatory behaviors. For example, larvae 

70 of the sea urchin Strongylocentrotus purpuratus diverts over 40% of its total ATP to protein 

71 synthesis and ion transport under OA conditions (Pan, Applebaum & Manahan, 2015). Krill, 

72 scallops, mussels, and hard corals have all been found to increase their feeding rates to meet 

73 higher metabolic rates and to mitigate decreases in growth and calcification under decreased pH 

74 conditions (Melzner et al., 2011; Saba et al., 2012; Towle, Enochs & Langdon, 2015; Ramajo et 

75 al., 2016). However, merely consuming more food may not provide enough energy for 

76 compensatory behaviors, especially if their food source is also impacted by OA. This may result 
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77 in invertebrates reallocating energy away from growth and reproduction potential to be invested 

78 in compensatory behaviors (Whiteley, 2011; Mardones et al., 2022).

79 Most OA work has focused on single species making current understanding of single 

80 organism responses to OA better known than community or ecosystem level responses (Doney et 

81 al., 2009, 2020). However, the response of the community can buffer the impacts of OA on a 

82 particular species (Hendriks, Duarte & Álvarez, 2010) if biodiversity is high. The insurance 

83 effect describes a situation where a community is protected and stabilized by high biodiversity 

84 that ensures that a subsection of the community can maintain its functional roles even if another 

85 subsection of the community fails (Yachi & Loreau, 1999). In practice, high biodiversity has 

86 been shown to lower the negative impacts of OA on vulnerable organisms in hard bottom 

87 communities by 50-90% depending on the species (Rastelli et al., 2020). However, the insurance 

88 effect can only be effective if biodiversity remains high. Changes to the environment can reduce 

89 the relative efficiency of resistant species and weaken the insurance effect of biodiversity (Eklöf 

90 et al., 2012).

91 Marine environments in high latitudes, such as the waters around the Western Antarctic 

92 Peninsula (WAP), are notably vulnerable to decreases in pH from CO2 absorption. Cold, high 

93 latitude waters have a higher Revelle factor (Revelle & Suess, 1957; Sabine et al., 2004) and, 

94 therefore, lower buffering capacity (Jiang et al., 2019). Furthermore, saturation states of 

95 aragonite and calcite tend to be lower in polar regions due to a higher Ksp from lower water 

96 temperatures (Jiang et al., 2015; Cai et al., 2021).

97 Macroalgae often dominate shallow, hard bottom communities along the WAP (Wiencke, 

98 Amsler & Clayton, 2014). These macroalgal forests shelter large numbers of mesograzers 

99 (Huang et al., 2007; Aumack et al., 2011b; Amsler et al., 2022) in assemblages that mostly 
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100 consist of amphipods with large numbers of gastropods and smaller numbers of isopods, 

101 copepods, and ostracods (Iken, 1999; Huang et al., 2007; Schram et al., 2016a; Amsler et al., 

102 2022). The density of amphipods on macroalgae in this region can be extremely high. Stands of 

103 Desmarestia menziesii, a dominant brown alga, can shelter an estimated 300,000 individuals m2 

104 of the benthos and an estimated 26,000 individuals m2 on the red alga Plocamium sp. (Huang et 

105 al., 2007; Amsler, McClintock & Baker, 2008). These densities of amphipods are one to three 

106 times higher than those typically reported in tropical and temperature regions (Amsler, 

107 McClintock & Baker, 2014).

108 Mesograzer assemblages, particularly amphipods, have a mutualistic relationship with the 

109 macroalgae they shelter on (Amsler, McClintock & Baker, 2014). Most of the macroalgal 

110 community is chemically defended against herbivory, including all of the large browns and many 

111 of the common reds with the notable exception of Palmaria decipiens (Amsler et al., 2005; 

112 Aumack et al., 2010; Amsler, McClintock & Baker, 2020). Instead of consuming their 

113 macroalgal hosts, amphipods consume epiphytic algae and emergent filamentous endophytes 

114 from their hosts (Aumack et al., 2011a) and gain refuge from predatory fish in return (Zamzow et 

115 al., 2010). These amphipods are so effective at removing epiphytes that macroalgae in the WAP 

116 usually lack visible epiphytic filaments in areas with amphipod grazers (Peters, 2003; Amsler et 

117 al., 2009). The removal of filamentous algae improves the overall health of the macroalga by 

118 removing competition for light that arises when the filaments grow out of the algal thallus 

119 (Aumack et al., 2011a).

120 A significant shift in the amphipod-macroalgal dynamic could have major consequences 

121 on the structure of the benthic community (Rodriguez & Saravia, 2024). Changes to the 

122 environment, such as OA, could impact the relationship between macroalgae and amphipods. 
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123 Crustaceans located in polar regions are likely sensitive to OA due to these species having 

124 historically low metabolic activity and low temperature habitats (Clarke, 1998; Whiteley, 2011). 

125 Amphipod communities in polar regions have shown assemblage reorganization in lowered pH 

126 waters by increasing the relative abundances of copepods and ostracods and decreasing the 

127 relative abundance of the amphipods Metaleptamphopus pectinatus and Oraderea spp. (Schram 

128 et al., 2016a). Part of this reorganization may be occurring due to physiological challenges faced 

129 by amphipods. A similar OA study by Schram et al. (2016b) found the most noticeable spikes in 

130 mortality among the amphipods Gondogeneia antarctica and Paradexamine fissicauda 

131 maintained under OA conditions corresponded with the time of highest molt frequency. 

132 More information is needed to understand why some amphipod species in these 

133 assemblages are more resistant to OA than others. In the present study, we assessed how the 

134 survival of different members of a macroalgal-associated amphipod assemblage were impacted 

135 by OA conditions. Assemblages were maintained under three different pH treatments simulating 

136 ambient conditions (approximately pH 8.1), near-future conditions for 2100 (pH 7.7, IPCC 

137 2019), and distant future conditions (pH 7.3, IPCC 2019) for 52 days then enumerated. This 

138 assessment was used to determine which amphipod species were comparatively more resistant to 

139 OA. 

140 Materials & Methods

141 Collection of macroalgae and amphipod assemblage

142 The brown macroalga Desmarestia menziesii and its associated mesograzer assemblage 

143 were collected from five sites near the U.S. Antarctic Research Program�s Palmer Station on 

144 Anvers Island on the western Antarctic Peninsula. Desmarestia menziesii was collected by scuba 

145 from Palmer Station pier   Amsler Island (S64°45.629�, 
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146 W64°05.879), Litchfield Island   Stepping Stones  

147  and Christine Island   between 4 and 11m on 21-23 

148 January 2020. Palmaria decipiens was collected on small rocks from the Palmer Station pier on 

149 20 and 21 January 2020 and from Hero Inlet   on 23 January 2020.

150 Amphipods for the experiment were collected using the methods described by Huang et 

151 al. (2007). Briefly, D. menziesii thalli were cut with a knife then gently floated into a fine mesh 

152 bag to avoid disturbing the associated grazers. Collection bags were immediately transported to 

153 Palmer Station in 19-L buckets filled with seawater. Grazers were removed from D. menziesii by 

154 repeatedly rinsing the alga with seawater in a series of fine mesh bags submerged in a tank of 

155 seawater. After the final rinse, any remaining grazers were removed by hand. 

156 The collected fauna from D. menziesii was pooled to create a sample representative of the 

157 local grazer assemblages around Palmer Station. Individuals of the carnivorous amphipod 

158 Bovallia gigantea larger than approximately 1.5 cm were removed from the pool to prevent 

159 predation on other species during the experiment. The sample was divided into thirty-two equal 

160 aliquots with a Folsom plankton splitter to generate an approximate grazer number and diversity 

161 representative of that associated with 85g of D. menziesii in the original collections. Aliquots 

162 were randomly assigned and placed in either one of the twenty-four experimental buckets or one 

163 of the eight initial samples preserved for later identification and enumeration of species.

164 Experimental setup

165 Two adjacent aquarium tanks (2.5 m diameter and 1 m depth; 3800 L) in the aquarium 

166 facility at Palmer Station were equipped with twenty-four 19-L white plastic buckets. The 

167 experimental setup was maintained on a 24-h light cycle consistent with light availability at the 

168 time of collection. An ambient flow-through seawater bath was plumbed for both tanks to 
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169 maintain an ambient temperature in all experimental buckets. Nylon mesh (75  was fixed to 

170 the outflow pipes in the buckets to prevent grazers from flowing out of the experiment.

171 An aliquot of the grazer assemblage and an approximately 85g wet weight of D. 

172 menziesii thallus was placed in each bucket. To provide a food supply for the grazers, D. 

173 menziesii were seeded with diatoms and held in outdoor tanks with unfiltered seawater for over 

174 three weeks to allow the growth of an epiphytic diatom assemblage on the thalli. Plankton mesh 

175 (63  regularly cleaned) was placed over the water inlets and standpipe drains to prevent 

176 additional mesograzers entering buckets with the unfiltered water. The epiphytes were grown in 

177 higher abundance than observed in situ to ensure a consistent food supply over the experiment. 

178 In addition to D. menziesii, a P. decipiens blade was placed into each bucket as an alternative 

179 food source for the assemblage as some, but not all, of the amphipod species consume this non-

180 chemically defended red alga (Amsler, McClintock & Baker, 2020).

181 A common head tank dispersed filtered seawater into a water distributor located in the 

182 center of each aquarium tank. Water flowed into twelve mixing reservoirs from a distributor 

183 located in the center of each aquarium tank. In addition to the water inflow pipe, each mixing 

184 reservoir also contained a pH probe, a tube with mixed air and compressed CO2, and a tube with 

185 compressed air alone. Seawater pH was monitored and adjusted to the desired pH in the mixing 

186 reservoirs then flowed into the experimental buckets before flowing out of the buckets and into 

187 the seawater bath. 

188 Eights buckets were assigned for each pH treatment [ambient (8.1), 7.7, and 7.3] based 

189 on the average pH recorded for Palmer Station during collection (approximately 8.1) and the 

190 predicted pH levels for the near and distant future (IPCC, 2022). Replicates in the decreased pH 

191 treatments were individually regulated with an automated pH monitoring system (Schoenrock et 
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192 al., 2016; Schram et al., 2016a). Bucket pH was lowered and maintained by bubbling an air-CO2 

193 mixture or air alone into the mixing reservoirs as needed. A Multi-tube Gas Proportioning 

194 rotameter (Omega Engineering, Inc.,Stamford, CT, USA) connected to multiple air pumps and a 

195 CO2 cylinder combined ratios of air and CO2 to create the air-CO2 mixture. Half of the replicates 

196 for each treatment were randomly assigned to each water bath to control for differences in light 

197 availability due to the location of the water baths. Gas exchange with the atmosphere was 

198 reduced by fixing a clear Plexiglass cover to each bucket (Schram et al., 2016a). 

199 A quarter of the buckets had seawater samples collected daily for pH (determined 

200 spectrophotometrically) and seawater total alkalinity (TA) measurements (determined by 

201 potentiometric titration; Dickson et al. 2007). This resulted in all buckets being tested over a 

202 four-day cycle. Additionally, the pH of every bucket was monitored daily with a hand-held pH 

203 probe. 

204 After the grazers and macroalgae were placed in the buckets, the pH was slowly 

205 decreased in the lower pH treatments over a 28-hour period. Following a 52-day exposure, D. 

206 menziesii were removed from the buckets. Each alga was successively rinsed in 19-L buckets of 

207 seawater to remove the grazers and subjected a visual inspection to ensure grazers were fully 

208 removed.  The collected mesograzer assemblages were preserved in 10% formalin and later 

209 identified to the lowest taxon possible using a dissecting microscope and enumerated.

210 Carbonate chemistry determination

211 Seawater pH was determined using a Perkin Elmer UV/VIS Spectrometer Lambda 40P 

212 on the total hydrogen scale (pHT) after the addition of m-cresol purple, a pH sensitive indicator, 

213 (Dickson et al., 2007). TA was measured using open cell potentiometric titration (SOP 3b, 

214 Dickson et al. 2007). Seawater samples were maintained at 20°C using a Neslab RTE-7 
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215 Circulating Bath (Thermo Scientific, USA). Titrations were completed utilizing a Mettler-Toldeo 

216 T50 open cell titrator equipped with a pH probe (Model DGi 115-SC) while Mettler-Toledo 

217 LabX® software recorded titrant volumes in real time. Temperature, salinity, pH, and TA data 

218 were used to calculate carbonate chemistry parameters. CO2calc software (Robbins et al., 2010) 

219 with CO2 constants from Roy et al. (1993) and a KHSO4 acidity constant from Dickson (1990) 

220 were used for carbonate calculations. Salinity was measured with a Seabird 45 MicroTSG from 

221 the Palmer Station Waterwall (Palmer Station Instrument Technician, 2023) and temperature was 

222 recorded during seawater sample collection. 

223 Statistical Analyses

224 Univariate statistical analyses were performed with R v4.4.0 (R Core Team, 2024) using 

225 the vegan (Oksanen et al., 2024) and stats package (R Core Team, 2024). Normality and 

226 homogeneity of variance were tested using the Shapiro-Wilks test and Levene�s test, 

227 respectively. A one-way analysis of similarity (ANOSIM) quantified similarities of the 

228 amphipod assemblages across the pH treatments. Metric multidimensional scaling (mMDS) was 

229 used to compare and visualize the similarity of the amphipod assemblage compositions. A one-

230 way analysis of variance (ANOVA) was performed to examine the abundance of taxa between 

231 the experimental groups. The cutoff for statistical significance was set to   0.05. A post-hoc 

232 power analysis was conducted using the observed effect size from the ANOVA and Kruskal-

233 Wallis tests (ranging from 0.0132 to 0.116) with the pwr package (Champely, 2020).

234 Nonparametric, multivariate analyses using PRIMER-e v. 7 (Quest Research Limited) 

235 were performed to compare macroalgal and overall species assemblages across sample sites with 

236 statistical methodology following recommendations of Clarke et al. (2014). Because species 

237 numbers varied by several orders of magnitude across samples, these data were square-root 
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238 transformed to down-weight the influence of the most abundant species. To visually compare 

239 similarity among initial and experimental amphipod assemblages, non-metric multidimensional 

240 scaling (nMDS) ordination plots were created based on Bray-Curtis similarity matrices. 

241 Statistical differences were determined using CLUSTER analysis with similarity profile 

242 (SIMPROF) tests  = 0.05). To further visually compare amphipod assemblages in the pH 

243 treatments, bootstrap averages and bootstrap regions were calculated within a metric 

244 multidimensional scaling (mMDS) ordination plot created on Bray-Curtis similarity matrices.

245 Results

246 Seawater parameters during the experiment are summarized in Table I. Mean (± SD) pH 

247 values of the lowered pH treatments were close to their target pH. Data for each parameter (pH, 

248 total alkalinity, salinity, DIC, etc.) on each day of the experiment are available at the US 

249 Antarctic Program Data Center (see Details of Data Deposit statement, below). Total alkalinity, 

250 temperature, and salinity remained similar between the pH treatments.

251 No significant differences between the amphipod assemblages at different pH was 

252 revealed by an ANOSIM. This type of test produces an R-statistic that ranges from -1 and 1 with 

253 values close to 0 indicating no difference between the groups. The data in the present study 

254 produced an R-statistic of -0.02, demonstrating that assemblages between the pH treatments were 

255 very similar to each other. The nMDS analyses also did not show a significant difference in the 

256 pH treated assemblages but did show a significant difference (SIMPROF test) between the initial 

257 samples and treatment groups (Figure 1). However, the bootstrap analysis of the mMDS data 

258 (Figure 2, supplementary video) did reveal that the amphipod assemblages were beginning to 

259 separate into distinct pH groups when analyzed at the completion of the 52-day experiment. The 
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260 total abundance of all mesograzers and total abundance of amphipods both generally decreased 

261 with decreased pH but neither trend was significant (Figure 3).

262 The relative proportions of each taxon across the pH treatments were not found to be 

263 significantly different (Figure 4). However, some general, nonsignificant trends were observed. 

264 Djerboa furcipes and Bovallia gigantea both showed resilience to decreased pH. Bovallia 

265 gigantea had a similar abundance across the pH treatments while D. furcipes generally increased 

266 in proportion with decreasing pH. Gondogeneia antarctica and Metaleptamphopus pectinatus 

267 both fell into an intermediate group. Gondogeneia antarctica experienced a decrease in its 

268 relative abundance from ambient pH to pH 7.7. However, its relative abundance was similar 

269 between the pH 7.7 and pH 7.3 treatments. Metaleptamphopus pectinatus, in comparison, 

270 initially increased in relative abundance as pH decreased to 7.7, but its relative abundance 

271 decreased to a similar level as in the ambient treatment at pH 7.3. Finally, both Oradarea spp. 

272 and Prostebbingia gracilis slightly decreased in abundance with decreased pH. A post-hoc 

273 power analysis indicated that the study only had an average of 5.84% power to detect a 

274 statistically significant effect at   0.05.

275 Discussion

276 Macroalgal-associated mesograzer assemblages were exposed to three pH treatments 

277 simulating current ambient conditions (pH 8.1), end of the century conditions (pH 7.7, IPCC 

278 2019), and distant future conditions (pH 7.3, IPCC 2019) for 52 days. Although all experimental 

279 treatments were significantly different from the initial assemblages, there was no significant 

280 difference in total abundance or species proportion between any of the pH treatments. These 

281 non-significant results could be explained by the experiment being underpowered to detect a 

282 meaningful result with an average 5.84% power. It should be noted that these post-hoc 
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283 calculations should be interpreted with caution since they were computed with observed data and 

284 do not provide a true effect size. However, since the amphipod assemblages among the 

285 treatments had become somewhat divergent in a bootstrap analysis, it is possible that they could 

286 have become significantly different had logistical constraints allowed a longer experimental 

287 duration.

288 Some trends in relative amphipod abundances were noted, but many of these trends were 

289 not consistent with the findings of a similar study by Schram et al. (2016a). Both our study and 

290 Schram et al. (2016a) found that the abundance of B. gigantea stayed consistent across the pH 

291 treatments. A decrease in the abundance of Oradarea spp. between the ambient and pH 7.3 

292 treatment was also found in both studies. The proportion of M. pectinatus in this study increased 

293 in the pH 7.7 treatment but was similar between the ambient and pH 7.3 treatments. Schram et al. 

294 (2016a), however, found a significant decrease of M. pectinatus with decreased pH. Opposite 

295 trends were found in P. gracilis with the species decreasing with decreased pH in our study but 

296 increasing with decreased pH in Schram et al. (2016a). 

297 One possible explanation for the discrepancy between the two studies is the starting 

298 assemblage organization. Although both studies sampled in similar locations using the same 

299 methods, species compositions varied. For example, D. furcipes constituted a large proportion of 

300 our assemblages, approximately 11% in the ambient treatment, but was not present in Schram et 

301 al. (2016a). Furthermore, M. pectinatus and Oradarea spp. abundances were found to be ten-fold 

302 and two-fold higher, respectively, in the assemblages of Schram et al. (2016a) compared to this 

303 study. The starting assemblage composition could have had an impact on the final assemblage 

304 composition in the experimental treatments. Collection times varied between the two studies 

305 with collections occurring in January 2020 in the present study and in March 2013 in Schram et 
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306 al. (2016a). Seasonal or interannual differences in species abundances could explain why the 

307 starting assemblage composition varied between the two studies. 

308 Another possible explanation for these varied results could be the length of the 

309 experiment. The experiment in Schram et al. (2016a) ran for 30 days while our experiment ran 

310 for 52 days. This difference in experiment time could explain why some species, like M. 

311 pectinatus, were so comparatively low in our experiment. Our initial samples contained, on 

312 average, over 300 M. pectinatus. However, most of the final assemblages across each of the 

313 experimental treatments contained less than fifteen M. pectinatus, demonstrating a massive 

314 amount of mortality from being held in the experiment. Part of this mortality could be due to the 

315 size of M. pectinatus. This species is generally small in size, making it vulnerable to predation by 

316 the small number of B. gigantea in the experiment. Final assemblage composition could have 

317 been impacted by increased mortality from being held in the experiment for a longer period of 

318 time. This reduction in M. pectinatus could also partially explain why our results differed from 

319 Schram et al. (2016a) since a majority of the dissimilarity of the pH 7.3 assemblage in their 

320 experiment was driven by low M. pectinatus abundance. 

321 Our results indicate that amphipod assemblages associated with D. menziesii exhibit 

322 resistance to short-term exposure to near future and distant future OA conditions. These results 

323 are in contrast to the reduction in species richness and abundance of crustacean assemblages  

324 with decreased pH (Hale et al., 2011; Kroeker et al., 2011; Fabricius et al., 2014). However, 

325 mesocosm experiments have been found to be less sensitive in detecting species replacements, 

326 community reshuffling, or biodiversity changes in response to OA compared to natural systems 

327 (Nagelkerken & Connell, 2022). A longer experiment is likely necessary to gain a better 

328 understanding of how OA impacts macroalgal-associated amphipod assemblages. Originally, we 
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329 planned on having a longer exposure period for the amphipod assemblages. The unexpected 

330 COVID-19 pandemic forced us to end the experiment prematurely. Even with this shortened 

331 experiment time, bootstrap nMDS data (Figure 2) shows that the assemblages were beginning to 

332 separate into separate groups, even if this result was not significant. A significant increase in 

333 mortality of the amphipods G. antarctica and Paradexamine fissicauda has been found after a 

334 three-month exposure to OA conditions (Schram et al., 2016b). The mortality of G. antarctica in 

335 this longer experiment was higher than the mortality reported in Schram et al. (2016a), 

336 demonstrating that exposure time has an impact of the severity of OA affects for these 

337 assemblages. Furthermore, peaks in mortality in Schram et al. (2016b) coincided with peaks in 

338 molt frequency which could indicate that OA impacts on other physiological processes, like 

339 molting, likely impact overall survival. 

340 While the results of this experiment show that amphipod assemblages were not impacted 

341 in relative mortality, this does not mean that the assemblages were completely unaffected to OA 

342 conditions. For example, adult Antarctic krill can maintain their survival, growth, and respiration 

343 rate under 2000  pCO2 exposure (Ericson et al., 2018). However, hatch rates and embryo 

344 survival of Antarctic krill decreases by over 90% under the same CO2 conditions (Kawaguchi et 

345 al., 2011), demonstrating there may be unforeseen long-term impacts on species that are 

346 identified as more resistant to OA in shorter studies. In some cases, the severity of OA effects is 

347 reliant on the amount of time an organism has to acclimate. The sea urchin Strongylocentrotus 

348 droebachiensis experiences a 4.5-fold decrease in fecundity and a 5-9-fold decrease in offspring 

349 reaching the juvenile stage when exposed to four months of decreased pH. However, there was 

350 no difference in either fecundity or offspring survival when the sea urchins are exposed to 

351 decreased pH for sixteen months compared to ambient conditions (Dupont et al., 2013).

PeerJ reviewing PDF | (2024:11:110325:0:1:NEW 3 Dec 2024)

Manuscript to be reviewed



352 In addition to longer exposure across one individual�s life, transgenerational exposure can 

353 have positive and negative effects on a species. Lopes et al. (2019) found that exposure to OA 

354 conditions decreased the amphipod Gammarus locusta parental generation�s survivability and 

355 caused DNA damage in their offspring. Furthermore, the offspring that could survive OA were 

356 incapable of returning to ambient conditions without experiencing an increase in lipid damage 

357 and death. In some cases, transgenerational exposure increases an organism�s ability to withstand 

358 decreased pH. Parker et al. (2015) exposed the oyster Saccostrea glomerata to lowered pH 

359 conditions for three generations. They found that adults that were descended from a parental 

360 generation exposed to lowered pH had better extracellular pH regulation compared to controls. 

361 Furthermore, the transgenerational exposed oysters had more resilient offspring with lower 

362 percentages of abnormalities, faster development, and faster shell growth compared to oysters 

363 that were naïve to decreased pH. Second generation clams of Ruditapes philippinarum exposed 

364 to decreased pH could regulate the carbonate chemistry of their calcifying fluids more efficiently 

365 than controls by switching the type of carbon they extracted from their environments (Zhao et 

366 al., 2018). The mussel Musculista senhousia produces larger eggs when exposed to decreased pH 

367 which in turn increases larval growth, survival, and metamorphosis in offspring exposed to the 

368 same conditions (Zhao et al., 2019). 

369 Mesograzer assemblages along the WAP may be preconditioned to tolerate short term 

370 decreases in pH.  Seawater pH along the WAP can fluctuate up to 0.6 pH units annually (Schram 

371 et al., 2015). There is a growing theoretical framework for how organisms will respond to 

372 climate change based on the magnitude and predictability of environmental fluctuations. 

373 Phenotypic plasticity and bet-hedging are the two most common adaptations that arise from 

374 fluctuating selection, but the type of adaptation that evolves is dependent on the timescale of 
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375 fluctuations (Tufto, 2015). Frequent and predictable environmental change supports the 

376 development of plastic adaptations (Botero et al., 2015). This concept has also been seen 

377 experimentally. Bitter et al. (2021) found that plasticity in response to lowered pH was higher in 

378 populations of the mussel Mytilus galloprovincialis which experienced more predictable pH 

379 fluctuations compared to populations in unpredictable environments. Similar findings have been 

380 observed in Antarctic mites as a response to temperature fluctuations. Deere et al. (2006) 

381 examined five mite species from terrestrial and marine environments. Mites from more stable 

382 marine environments had higher thermal tolerances compared to mites from more unpredictable 

383 terrestrial environments. The amphipod assemblages examined in the present study may have 

384 high tolerances to pH fluctuations because they are found in environments that are known to 

385 have large pH fluctuations throughout the year (Schram et al., 2015). 

386 Amphipods may be benefiting from their close relationship with macroalgae. Seaweeds 

387 have boundary layers that can range from 0.1 to 10.2 mm thick depending on the species and 

388 surrounding water flow (Raven & Hurd, 2012). These boundary layers can serve as a refuge for 

389 calcifying species during the day by buffering seawater pH (Hurd et al., 2011). The pH within 

390 the boundary layers is controlled by seaweed metabolism. During the day, pH tends to increase 

391 in the boundary layer as photosynthesis occurs. At night, pH decreases as algae continue to 

392 undergo respiration (Hurd, 2015). The pH within the boundary layers of macroalgae and 

393 seagrasses can be 0.07 to 1.2 pH units higher than surrounding seawater during the day (Jones, 

394 Eaton & Hardwick, 2000; Krause-Jensen et al., 2015; Hendriks et al., 2017). Experimentally, 

395 macroalgae have been found to mitigate some negative effects of OA on associated calcifiers. 

396 The addition of Ulva in high CO2 treatments was found to increase saturation states of aragonite 

397 and calcite and increased the growth rates of clams, scallops, and oysters (Young & Gobler, 
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398 2018). Wahl et al. (2018) found that the brown alga Fucus vesiculosus can act as a temporal 

399 refuge from OA conditions to the mussel Mytilus edulis. The mussels were able to maintain high 

400 calcification in low pH treatments by shifting a majority of their calcification process to the 

401 daytime when algal photosynthesis was occurring, and pH and calcite saturation were higher. In 

402 the present experiment, D. menziesii could have been acting as a refuge for the amphipods. Live 

403 D. menziesii thalli were maintained on a 24-hour light cycle consistent with the time of collection 

404 throughout the experiment. Photosynthesis should have been occurring continuously throughout 

405 the entire exposure period. The amphipod assemblages could have been benefiting from a 

406 possible increase in pH in the alga�s boundary layer, possibly explaining why no significant 

407 difference in mortality was found for the total assemblage or within a species between the 

408 different pH treatments. 

409 Conclusions

410 The results of the present study show that invertebrate mortality of a macroalgal-

411 associated assemblage is not negatively impacted by OA. The assemblages between the pH 

412 treatments were similar in total assemblage number and assemblage composition. These results 

413 differ from previous studies (Schram et al., 2016a) and demonstrate that starting assemblage 

414 composition or exposure time could impact assemblage resistance to OA. Furthermore, the close 

415 association with these assemblages to D. menziesii could be mitigating some of the direct 

416 negative impacts of OA. Overall, our results suggest that D. menziesii-associated amphipod 

417 assemblages may be resistant to short term OA exposure. 

418 Data Availability

419 Data are available at the United States Antarctic Program Data Center: https://www.usap-

420 dc.org/view/project/p0010193. 
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705 Figure Captions

706 Figure 1. Nonmetric multidimensional scaling (nMDS) plot based on Bray�Curtis similarity 

707 matrix for mesograzer assemblages without copepods or ostracods maintained at pH 8.1, pH 7.7, 

708 and pH 7.3 for a 52-day exposure period and initial samples. The green circles represent groups 

709 that are not significantly different (p > 0.5) in a SIMPROF test.

710

711 Figure 2. Three different 3-D perspectives of a metric multidimensional scaling (mMDS) 

712 bootstrap analysis for amphipod assemblages maintained at pH 8.1, pH 7.7, and pH 7.3 for a 52-

713 day exposure period. The black markers indicate average values for each pH treatment. The 

714 colored markers do not represent data points but rather bootstrap regions, analogous to error bars 

715 on plots of univariate data. See also the supplementary video file of the plot being rotated in 

716 space.

717

718 Figure 3: Total assemblage and amphipod counts (mean ± SE) maintained at pH 8.1, pH 7.7, 

719 and pH 7.3 for a 52-day exposure period (n = 8). 

720

721 Figure 4: Relative abundance of amphipods maintained at pH 8.1, pH 7.7, and pH 7.3 for a 52-

722 day exposure period (n = 8). Species that consistently made up less than 1% of the total 

723 assemblage were combined and graphed as the group �other.� This group included Jassa spp., 

724 Paraphimedia integricauda, Gnathiphimedia sp., and unidentifiable amphipods. 
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Table 1(on next page)

Carbonate chemistry of the ambient and lowered pH treatments (mean ± SD).

Seawater parameters (n = 8) calculated from TA (¿mol kg21 SW), spectrophotometric pHT

(mean ± SD), temperature (°C), and salinity (ppt). Calculated parameters included pCO2

(¿atm) and saturation states of aragonite («arg) and calcite («cal).
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1 Table 1. Carbonate chemistry of the ambient and lowered pH treatments (mean ± SD). Seawater 

2 parameters (n = 8) calculated from TA (¿mol kg21 SW), spectrophotometric pHT (mean ± SD), 

3 temperature (°C), and salinity (ppt). Calculated parameters included pCO2 (¿atm) and saturation 

4 states of aragonite («arg) and calcite («cal).

5

Ambient pH 7.7 pH 7.3

pHT 8.07 ± 0.07 7.69 ± 0.11 7.32 ± 0.08
TA 2284 ± 78 2261 ± 42 2245 ± 64

Temp 2.45 ± 0.34 2.46 ± 0.34 2.46 ± 0.33
Salinity 32.97 ± 0.29 32.96 ± 0.29 32.96 ± 0.29
pCO2 367 ± 48 947 ± 221 2245 ± 409
DIC 2145 ± 56 2243 ± 41 2343 ± 72
«arg 1.62 ± 0.37 0.73 ± 0.21 0.32 ± 0.07
«cal 2.59 ± 0.58 1.17 ± 0.33 0.50 ± 0.11
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Figure 1
Nonmetric multidimensional scaling (nMDS) plot based on Bray3Curtis similarity matrix
for mesograzer assemblages without copepods or ostracods maintained at pH 8.1, pH
7.7, and pH 7.3 for a 52-day exposure period and initial samples.

The green circles represent groups that are not signiûcantly diûerent (p > 0.5) in a SIMPROF
test.
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Figure 2
Three diûerent 3-D perspectives of a metric multidimensional scaling (mMDS) bootstrap
analysis for amphipod assemblages maintained at pH 8.1, pH 7.7, and pH 7.3 for a 52-
day exposure period.

The black markers indicate average values for each pH treatment. The colored markers do
not represent data points but rather bootstrap regions, analogous to error bars on plots of
univariate data. See also the supplementary video ûle of the plot being rotated in space.
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Figure 3
Total assemblage and amphipod counts (mean ± SE) maintained at pH 8.1, pH 7.7, and
pH 7.3 for a 52-day exposure period (n = 8).
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Figure 4
Relative abundance of amphipods maintained at pH 8.1, pH 7.7, and pH 7.3 for a 52-day
exposure period (n = 8).

Species that consistently made up less than 1% of the total assemblage were combined and
graphed as the group 8other.9 This group included Jassa spp., Paraphimedia integricauda,
Gnathiphimedia sp., and unidentiûable amphipods.
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