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ABSTRACT
The pH of the world’s oceans has decreased since the Industrial Revolution due to the
oceanic uptake of increased atmospheric CO2 in a process called ocean acidification.
Low pH has been linked to negative impacts on the calcification, growth, and survival
of calcifying invertebrates. Along the Western Antarctic Peninsula, dominant brown
macroalgae often shelter large numbers of diverse invertebrate mesograzers, many of
which are calcified. Mesograzer assemblages in this region are often composed of large
numbers of amphipods which have key roles in Antarctic macroalgal communities.
Understanding the impacts of acidification on amphipods is vital for understanding
how these communities will be impacted by climate change. To assess how long-term
acidification may influence the survival of different members in these assemblages,
mesograzers, particularly amphipods, associated with the brown alga Desmarestia
menziesii were collected from the immediate vicinity of Palmer Station, Antarctica
(S64◦46′, W64◦03′) in January 2020 and maintained under three different pH treat-
ments simulating ambient conditions (approximately pH 8.1), near-future conditions
for 2100 (pH 7.7), and distant future conditions (pH 7.3) for 52 days then enumerated.
Total assemblage number and the relative proportion of each species in the assemblage
were found to be similar across the pH treatments. These results suggest that amphipod
assemblages associated with D. menziesii may be resistant to long-term exposure to
decreased pH.

Subjects Ecology, Marine Biology
Keywords Climate change, Crustaceans, Ocean acidification, Amphipods, Assemblages

INTRODUCTION
Atmospheric CO2 concentrations have increased by approximately 50% since the Industrial
Revolution (Joos & Spahni, 2008; Lan & Keeling, 2024) from human-derived emissions
such as the combustion of fossil fuels, the production of cement, and deforestation (Malhi,
Meir & Brown, 2002; Heede, 2014; Paraschiv & Paraschiv, 2020). Approximately a third of
atmospheric CO2 enters the ocean (Sabine et al., 2004; Gruber et al., 2019) where it reacts
with seawater and ultimately releases free hydrogen ions, thereby lowering pH in a process
called ocean acidification (OA). As a result of this process and increasing CO2 emissions,
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the average ocean surface pH has decreased by 0.1 pH units and is predicted to decrease a
further 0.4 pH units over the next eighty years (IPCC, 2022).

Decreased ocean pH can have a direct impact on the physiology and behavior of marine
organisms, especially those that calcify like amphipods (Kroeker et al., 2013; Kindinger,
Toy & Kroeker, 2022). For example, marine invertebrates can be susceptible to internal
acidification of body fluids and the dissolution of shells to compensate for internal
acidification (Doney et al., 2009). Furthermore,OA exposure can lower calcification (Anand
et al., 2021; Ramaekers et al., 2023), increase mortality (Park et al., 2020), hinder growth
(Sheppard Brennand et al., 2010; Bhuiyan et al., 2022), increase tissue damage (Anand et
al., 2021), decrease fertilization (Kurihara & Shirayama, 2004; Ericson et al., 2010; Borges et
al., 2018), and lead to developmental abnormalities in invertebrates (Ericson et al., 2010;
Agnalt et al., 2013).

Crustaceans possess exoskeletons that are commonly composed of calcite with a
protective outer cuticle that can provide some dissolution protection from OA (Chave,
1954; Boßelmann et al., 2007; Whiteley, 2011; Leung, Zhang & Connell, 2022). While the
exoskeleton may be more protected from dissolution, the mineralogy of crustacean
exoskeletons can be altered fromOA exposure (Siegel et al., 2022). For example, the shrimp
Lysmata californica becomesmore susceptible to exoskeletal ‘cracking’ andmore vulnerable
to predators after an increase in Ca/Mg ratios in the shrimp’s exoskeleton following low
pH exposure (Taylor et al., 2015). Furthermore, exposure to OA conditions can lengthen
the intermolt period for some crustaceans and can lead to spikes in mortality when molting
(Keppel, Scrosati & Courtenay, 2012; Schram et al., 2016b; Long, Swiney & Foy, 2021).

Most invertebrates can compensate for increased internal proton concentrations by
either consuming more food or diverting energy toward compensatory behaviors. For
example, larvae of the sea urchin Strongylocentrotus purpuratus diverts over 40% of its
total ATP to protein synthesis and ion transport under OA conditions (Pan, Applebaum &
Manahan, 2015). Krill, scallops, mussels, and hard corals have all been found to increase
their feeding rates to meet higher metabolic rates and to mitigate decreases in growth
and calcification under decreased pH conditions (Melzner et al., 2011; Saba et al., 2012;
Towle, Enochs & Langdon, 2015). However, a meta-analysis by Brown et al. (2018) found
that a higher food supply could exacerbate negative impacts of OA on invertebrate growth.
Regardless,merely consumingmore foodmay not provide enough energy for compensatory
behaviors, especially if their food source is also impacted by OA (Schoenrock et al., 2015;
Oswalt et al., 2025). This may result in invertebrates reallocating energy away from growth
and reproduction potential to be invested in compensatory behaviors (Whiteley, 2011;
Mardones et al., 2022).

Most OA work has focused on single species making current understanding of single
organism responses to OA better known than community or ecosystem level responses
(Doney et al., 2009;Doney et al., 2020). However, the response of the community can buffer
the impacts of OA on a particular species (Hendriks, Duarte & Álvarez, 2010) if biodiversity
is high. The insurance effect describes a situation where a community is protected and
stabilized by high biodiversity that ensures that a subsection of the community can
maintain its functional roles even if another subsection of the community fails (Yachi &
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Loreau, 1999). In practice, high biodiversity has been shown to lower the negative impacts
of OA on vulnerable organisms in hard bottom communities by 50–90% depending
on the species (Rastelli et al., 2020). However, the insurance effect can only be effective
if biodiversity remains high. Variation in responses to pH changes will likely result in
ecosystems undergoing successive changes of organisms, resulting in an eventual reduction
in structural complexity and decreased biodiversity in benthic communities (Andersson,
Mackenzie & Gattuso, 2011; Doney et al., 2020). This reduction in biodiversity can reduce
the relative efficiency of resistant species and weaken the insurance effect of biodiversity
(Eklöf et al., 2012).

Marine environments in high latitudes, such as the waters around the Western Antarctic
Peninsula (WAP), are notably vulnerable to decreases in pH from CO2 absorption, which
can vary depending on wind patterns (Conrad & Lovenduski, 2015). Cold, high latitude
waters have a higher Revelle factor (Revelle & Suess, 1957; Sabine et al., 2004) and, therefore,
lower buffering capacity (Jiang et al., 2019). Furthermore, saturation states of aragonite and
calcite tend to be lower in polar regions due to a higher Ksp from lower water temperatures
(Jiang et al., 2015; Cai et al., 2021). Undersaturation events of aragonite already occur
in parts of the Southern Ocean (Hauri, Friedrich & Timmermann, 2016). Under OA
conditions, the extent and duration of these events are projected to increase, resulting in
some regions experiencing months of aragonite undersaturation yearly (Hauri, Friedrich
& Timmermann, 2016). Antarctic invertebrates have been found to be very sensitive to
changes in pH, with many species showing negative responses to any CO2 concentrations
above present day levels (Hancock et al., 2020). However, there is evidence that some
Antarctic invertebrates are more resilient to OA. Antarctic crustaceans are considered
to be less susceptible to OA compared to more sessile calcifiers, like mollusks (Figuerola
et al., 2021). However, even sessile organisms can adapt to OA exposure with long-term
ecological records showing that the Antarctic clam Laternula elliptica can develop its outer
organic layer to protect its shell from acidification (Seo et al., 2024).

Macroalgae often dominate shallow, hard bottomcommunities along theWAP (Wiencke,
Amsler & Clayton, 2014). These macroalgal forests shelter large numbers of mesograzers
(Huang et al., 2007; Aumack et al., 2011b; Amsler et al., 2022) in assemblages that mostly
consist of amphipods with large numbers of gastropods and smaller numbers of isopods,
copepods, and ostracods (Iken, 1999; Huang et al., 2007; Schram et al., 2016a; Amsler et al.,
2022). The density of amphipods on macroalgae in this region can be extremely high.
Stands of Desmarestia menziesii, a dominant brown alga, can shelter an estimated 300,000
individuals m−2 of the benthic substrate and an estimated 26,000 individuals m−2 on
the red alga Plocamium sp. (Huang et al., 2007; Amsler, McClintock & Baker, 2008). These
densities of amphipods are one to three times higher than those typically reported in
tropical and temperature regions (Amsler, McClintock & Baker, 2014).

Mesograzer assemblages, particularly amphipods, have a mutualistic relationship with
the macroalgae they shelter on (Amsler, McClintock & Baker, 2014). Most of the macroalgal
community is chemically defended against herbivory, including all of the large browns
and many of the common reds with the notable exception of Palmaria decipiens (Amsler
et al., 2005; Aumack et al., 2010; Amsler, McClintock & Baker, 2020). Instead of consuming
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their macroalgal hosts, amphipods consume epiphytic algae and emergent filamentous
endophytes from their hosts (Aumack et al., 2011a) and gain refuge from predatory fish in
return (Zamzow et al., 2010). These amphipods are so effective at removing epiphytes that
macroalgae in the WAP usually lack visible epiphytic filaments in areas with amphipod
grazers (Peters, 2003; Amsler et al., 2009). The removal of filamentous algae improves the
overall health of the macroalga by removing competition for light that arises when the
filaments grow out of the algal thallus (Aumack et al., 2011a).

A significant shift in the amphipod-macroalgal dynamic could have major consequences
on the structure of the benthic community (Rodriguez & Saravia, 2024). Changes to
the environment, such as OA, could impact the relationship between macroalgae and
amphipods. Crustaceans located in polar regions are likely sensitive to OA due to these
species having historically low metabolic activity and low temperature habitats (Clarke,
1998; Whiteley, 2011). Amphipod communities in polar regions have shown assemblage
reorganization in lowered pH waters by increasing the relative abundances of copepods
and ostracods and decreasing the relative abundance of the amphipodsMetaleptamphopus
pectinatus and Oraderea spp. (Schram et al., 2016a). Part of this reorganization may be
occurring due to physiological challenges faced by amphipods. A similar OA study by
Schram et al. (2016b) found the most noticeable spikes in mortality among the amphipods
Gondogeneia antarctica and Paradexamine fissicauda maintained under OA conditions
corresponded with the time of highest molt frequency.

More information is needed to understand why some amphipod species in these
assemblages are more resistant to OA than others. The assemblage reorganization observed
in Schram et al. (2016a) occurred under a short term OA exposure of 30 days. Additionally,
another experiment by Schram et al. (2016b) found that the impacts of OA on two
Antarctic amphipods became more pronounced under a longer exposure time of 90
days. Furthermore, the effects of OA were relatively stronger on one species, Paradexamine
fissicauda. It is currently unclear if the reorganization observed in Schram et al. (2016a)
would be maintained or strengthened under longer term exposure. In the present study,
we hypothesized that amphipod species from the WAP would vary in their survival under
longer-termOA conditions. We assessed the survival of different members of a macroalgal-
associated amphipod assemblage by maintaining the assemblages under three different pH
treatments simulating ambient conditions (approximately pH 8.1), near-future conditions
for 2100 (pH 7.7; IPCC, 2022), and distant future conditions (pH 7.3; IPCC, 2022) for 52
days then enumerating the species. This assessment was used to determine which amphipod
species were comparatively more resistant to OA.

MATERIALS & METHODS
Collection of macroalgae and mesograzer assemblages
The brown macroalga Desmarestia menziesii J. Agardh and its associated mesograzer
assemblage were collected from five sites near the US Antarctic Research Program’s Palmer
Station on Anvers Island on the western Antarctic Peninsula. Desmarestia menziesii was
collected by scuba from Palmer Station pier (S64◦46.477′, W64◦03.274′), Amsler Island
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(S64◦45.629′, W64◦05.879), Litchfield Island (S64◦46.095′, W64◦03.025′), Stepping Stones
(S64◦47.031′, W63◦59.453′), and Christine Island (S64◦47.479′, W64◦01.024′) between
4 and 11 m on 21–23 January 2020. Collections were made from multiple sites so that
the amphipod assemblages from them were more generally representative of those in the
overall Palmer Station area. Palmaria decipiens (Reinsch) R. W. Ricker, which was used as
a supplementary food source only, was collected on small rocks from the Palmer Station
pier on 20 and 21 January 2020 and from Hero Inlet (S64◦46.555′, W64◦02.944′) on 23
January 2020.

Amphipods for the experiment were collected using the methods described by Huang
et al. (2007). Briefly, D. menziesii thalli were cut with a knife then gently floated into a fine
mesh bag to avoid disturbing the associated grazers. Collection bags were immediately
transported to Palmer Station in 19-L buckets filled with seawater. Grazers were removed
from D. menziesii by repeatedly rinsing the alga with seawater in a series of fine mesh bags
submerged in a tank of seawater. After the final rinse, any remaining grazers were removed
by hand.

The collected fauna fromD. menziesiiwas pooled to create a sample representative of the
local grazer assemblages around Palmer Station. Individuals of the carnivorous amphipod
Bovallia gigantea Pfeffer, 1888 larger than approximately 1.5 cm were removed from the
pool to prevent predation on other species during the experiment. The sample was divided
into thirty-two equal aliquots with a Folsom plankton splitter to generate an approximate
grazer number and diversity representative of that associated with 85 g of D. menziesii
in the original collections. Aliquots were randomly assigned and placed in either one of
the twenty-four experimental buckets or one of the eight initial samples. All of the initial
samples were immediately preserved and species were enumerated.

Experimental setup
Two adjacent aquarium tanks (2.5 m diameter and 1 m depth; 3800 L) in the aquarium
facility at Palmer Station were equipped with twenty-four 19-L white plastic buckets (see
Fig. S1 andOswalt et al., 2025). The experimental setup was maintained with 24-h constant
light consistent with light availability at the time of collection. An ambient flow-through
seawater bath was plumbed for both tanks to maintain an ambient temperature in all
experimental buckets. Nylon mesh (75 µm) was fixed to the outflow pipes in the buckets
to prevent grazers from flowing out of the experiment.

An aliquot of the grazer assemblage and an approximately 85 g wet weight ofD. menziesii
thallus was placed in each bucket. To provide a food supply for the grazers, D. menziesii
were seeded with diatoms and held in outdoor tanks with unfiltered seawater for over
three weeks to allow the growth of an epiphytic diatom assemblage on the thalli. Plankton
mesh (63 µm, regularly cleaned) was placed over the water inlets and standpipe drains to
prevent additional mesograzers entering buckets with the unfiltered water. The epiphytes
were grown in higher abundance than observed in situ to ensure a consistent food supply
over the experiment. In addition to D. menziesii, a P. decipiens blade was placed into
each bucket as an alternative food source for the assemblage as some, but not all, of the
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amphipod species consume this non-chemically defended red alga (Amsler, McClintock &
Baker, 2020).

A common head tank dispersed filtered seawater into a water distributor located in
the center of each aquarium tank. Water flowed into twelve mixing reservoirs from a
distributor located in the center of each aquarium tank. In addition to the water inflow
pipe, each mixing reservoir also contained a pH probe (model 59001-70; Cole Parmer), a
tube with mixed air and compressed CO2, and a tube with compressed air alone. Seawater
pH was monitored and adjusted to the desired pH in the mixing reservoirs then flowed
into the experimental buckets before flowing out of the buckets and into the seawater bath.

Eights buckets were assigned for each pH treatment (ambient (8.1), 7.7, and 7.3) based on
the average pH recorded for Palmer Station during collection (approximately 8.1) and the
predicted pH levels for the near and distant future (IPCC, 2022). Replicates in the decreased
pH treatments were individually regulated with an automated pH monitoring system
(Schoenrock et al., 2016; Schram et al., 2016a). Bucket pH was lowered and maintained by
bubbling an air-CO2mixture or air alone into themixing reservoirs as needed. AMulti-tube
Gas Proportioning rotameter (Omega Engineering, Inc., Stamford, CT, USA) connected
to multiple air pumps and a CO2 cylinder combined ratios of air and CO2 to create the
air-CO2 mixture. Half of the replicates for each treatment were randomly assigned to each
water bath to control for differences in light availability due to the location of the water
baths. Gas exchange with the atmosphere was reduced by fixing a clear Plexiglass cover to
each bucket (Schram et al., 2016a).

Each day, one quarter of the buckets had seawater samples collected for pH (determined
spectrophotometrically) and seawater total alkalinity (TA) measurements (determined by
potentiometric titration; Dickson, Sabine & Christian, 2007). This resulted in all buckets
being tested over a four-day cycle. Additionally, the pH of every bucket was monitored
daily with a hand-held pH probe (Orion Star A221 pH meter; Thermo Fisher Scientific,
Waltham, MA, USA).

After the grazers and macroalgae were placed in the buckets, the pH was decreased in
the lower pH treatments over a 28-hour period. Following a 52-day exposure, D. menziesii
were removed from the buckets. Each alga was successively rinsed in 19-L buckets of
seawater to remove the grazers and subjected to a visual inspection to ensure grazers were
fully removed. The collected mesograzer assemblages were preserved in 10% formalin and
later identified to the lowest taxon possible using a dissecting microscope and enumerated.

Carbonate chemistry determination
Seawater pH was determined using a Perkin Elmer UV/VIS Spectrometer Lambda 40P on
the total hydrogen scale (pHT) after the addition ofm-cresol purple, a pH sensitive indicator
(Dickson, Sabine & Christian, 2007). TA was measured using open cell potentiometric
titration (SOP 3b, Dickson, Sabine & Christian, 2007). Seawater samples were maintained
at 20 ◦C using a Neslab RTE-7 Circulating Bath (Thermo Fisher Scientific). Titrations were
completed utilizing a Mettler-Toldeo T50 open cell titrator equipped with a pH probe
(Model DGi 115-SC) while Mettler-Toledo LabX® software recorded titrant volumes
in real time. Temperature, salinity, pH, and TA data were used to calculate carbonate
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chemistry parameters. CO2calc software (Robbins et al., 2010) with CO2 constants from
Roy et al. (1993) and aKHSO4 acidity constant fromDickson (1990)were used for carbonate
calculations. Salinity was measured with a Seabird 45 MicroTSG from the Palmer Station
Waterwall (Palmer Station Instrument Technician, 2023) and temperature was recorded
during seawater sample collection.

Statistical analyses
Univariate and multivariate statistical analyses were performed with R v4.4.0 (R Core
Team, 2024) using the vegan (Oksanen et al., 2024) and stats package (R Core Team,
2024). Normality and homogeneity of variance were tested using the Shapiro–Wilk test
and Levene’s test, respectively. A one-way analysis of similarity (ANOSIM) quantified
similarities of the amphipod assemblages across the pH treatments. A one-way analysis
of variance (ANOVA) was performed to examine the total abundance of the mesograzer
assemblages between the experimental groups. A permutational analysis of variance
(PERMANOVA) was used to examine the composition of taxa between the experimental
groups. These data were arcsine transformed to help normalize percentages. The cutoff for
statistical significance was set to α ≤ 0.05.

Nonparametric, multivariate analyses using PRIMER-e v. 7 (Quest Research Limited)
were performed to compare macroalgal and overall species assemblages across sample sites
with statistical methodology following recommendations of Clarke et al. (2014). Because
species numbers varied by several orders of magnitude across samples, these data were
square-root transformed to down-weight the influence of the most abundant species.
To visually compare similarity among initial and experimental amphipod assemblages,
non-metric multidimensional scaling (nMDS) ordination plots were created based on
Bray–Curtis similarity matrices. Statistical differences were determined using CLUSTER
analysis with similarity profile (SIMPROF) tests (α= 0.05). To further visually compare
amphipod assemblages in the pH treatments, bootstrap averages and bootstrap regions
were calculated within a metric multidimensional scaling (mMDS) ordination plot created
on Bray–Curtis similarity matrices.

RESULTS
Seawater parameters during the experiment are summarized in Table 1. Mean (± SD) pH
values of the lowered pH treatments were close to their target pH. Data for each parameter
(pH, total alkalinity, salinity, DIC, etc.) on each day of the experiment are available at the
US Antarctic Program Data Center (see Details of Data Deposit statement, below). Total
alkalinity, temperature, and salinity remained similar between the pH treatments.

No significant differences between the amphipod assemblages at different pH was
revealed by an ANOSIM. This type of test produces an R-statistic that ranges from −1
and 1 with values close to 0 indicating no difference between the groups. The data in the
present study produced an R-statistic of −0.02, demonstrating that assemblages between
the pH treatments were very similar to each other. The nMDS analyses also did not show
a significant difference in the pH treated assemblages but did show a significant difference
(SIMPROF test) between the initial samples and treatment groups (Fig. 1). However, the
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Table 1 Carbonate chemistry of the ambient and lowered pH treatments (mean± SD). Seawater pa-
rameters (n = 8) calculated from TA (µmol kg−1 SW), spectrophotometric pHT (mean± SD), tempera-
ture (◦ C), and salinity (ppt). Calculated parameters included p CO2 (µatm) and saturation states of arag-
onite (�arg) and calcite (�cal).

Ambient pH 7.7 pH 7.3

pHT 8.07± 0.07 7.69± 0.11 7.32± 0.08
TA 2,284± 78 2,261± 42 2,245± 64
Temp 2.45± 0.34 2.46± 0.34 2.46± 0.33
Salinity 32.97± 0.29 32.96± 0.29 32.96± 0.29
p CO2 367± 48 947± 221 2,245± 409
DIC 2,145± 56 2,243± 41 2,343± 72
�arg 1.62± 0.37 0.73± 0.21 0.32± 0.07
�cal 2.59± 0.58 1.17± 0.33 0.50± 0.11

bootstrap analysis of the mMDS data (Fig. 2, Video S1) did reveal that the amphipod
assemblages were beginning to separate into distinct pH groups when analyzed at the
completion of the 52-day experiment. The total abundance of all mesograzers and total
abundance of amphipods were found to be normally distributed, indicating parametric
tests could be utilized. The abundance of each taxon was not normally distributed. As a
result, the non-parametric PERMANOVA was utilized to analyze these data. The total
abundance of all mesograzers and total abundance of amphipods both generally decreased
with decreased pH but neither trend was significant (Fig. 3, F2,21 = 0.549, p= 0.59,
F2,21= 2.241, p= 0.13).

The proportions of amphipods in the initial assemblages (Fig. 4, p< 0.05 SIMPROF
test) were significantly different compared to all of the treatment groups. The relative
proportions of each taxon across the pH treatments were not found to be significantly
different (Fig. 5, PERMANOVA: F2,21 = 0.825, p= 0.62). However, some general,
nonsignificant trends were observed.Djerboa furcipes Chevreux, 1906 and Bovallia gigantea
both showed resilience to decreased pH. Bovallia gigantea had a similar abundance across
the pH treatments while D. furcipes generally increased in proportion with decreasing
pH. Gondogeneia antarctica Chevreux, 1906 and Metaleptamphopus pectinatus Chevreux,
1912 both fell into an intermediate group. Gondogeneia antarctica experienced a decrease
in its relative abundance from ambient pH to pH 7.7. However, its relative abundance
was similar between the pH 7.7 and pH 7.3 treatments. Metaleptamphopus pectinatus, in
comparison, initially increased in relative abundance as pH decreased to 7.7, but its relative
abundance decreased to a similar level as in the ambient treatment at pH 7.3. Finally, both
Oradarea spp. and Prostebbingia gracilis Chevreux, 1912 slightly decreased in abundance
with decreased pH.

DISCUSSION
Macroalgal-associated mesograzer assemblages were exposed to three pH treatments
simulating current ambient conditions (pH 8.1), end of the century conditions (pH 7.7,
IPCC, 2022), and distant future conditions (pH 7.3, IPCC, 2022) for 52 days. There was a
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Figure 1 Nonmetric multidimensional scaling (nMDS) plot based on Bray–Curtis similarity matrix
for mesograzer assemblages without copepods or ostracods maintained at pH 8.1, pH 7.7, and pH 7.3
for a 52-day exposure period and initial samples. The green circles represent groups that are not signifi-
cantly different (p> 0.05) in a SIMPROF test following CLUSTER analysis.

Full-size DOI: 10.7717/peerj.19368/fig-1

significant difference between the initial assemblages and the treatment assemblages. This
difference was likely due to the large amount of mortality of the amphipod M. pectinatus
during the experiment. In the initial assemblages,M. pectinatus constituted approximately
65% of the initial amphipod assemblage (Fig. 4). However, M. pectinatus constituted
between 11–19% of the treatment assemblages. There was also a large amount of variation
observed in the initial samples (see Table S1 for species counts in each initial sample). For
example, the number of M. pectinatus ranged between 176–388 individuals and Oradarea
spp. counts ranged from 25–80 individuals depending on the initial sample. While efforts
were made to make the initial assemblages as similar as possible, these variations in the
assemblages could have had an impact on the experiment’s results.

Although all experimental treatments were significantly different from the initial
assemblages, there was no significant difference in total abundance or species proportion
between any of the pH treatments. However, since the amphipod assemblages among the
treatments had become somewhat divergent in a bootstrap analysis, it is possible that they
could have become significantly different under a longer exposure time if the experiment
had not been prematurely ended due to the COVID-19 pandemic. Some trends in relative
amphipod abundances were noted, but many of these trends were not consistent with
the findings of a similar study by Schram et al. (2016a). Both our study and Schram et al.
(2016a) found that the abundance of B. gigantea stayed consistent across the pH treatments.
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Figure 2 Three different 3-D perspectives of a metric multidimensional scaling (mMDS) bootstrap
analysis for amphipod assemblages maintained at pH 8.1, pH 7.7, and pH 7.3 for a 52-day exposure pe-
riod. The black markers indicate average values for each pH treatment. The colored markers do not repre-
sent data points but rather bootstrap regions, analogous to error bars on plots of univariate data. See also
Video S1 of the plot being rotated in space.

Full-size DOI: 10.7717/peerj.19368/fig-2

A decrease in the abundance of Oradarea spp. between the ambient and pH 7.3 treatment
was also found in both studies. The proportion of M. pectinatus in this study increased in
the pH 7.7 treatment but was similar between the ambient and pH 7.3 treatments. Schram
et al. (2016a), however, found a significant decrease of M. pectinatus with decreased pH.
Opposite trends were found in P. gracilis with the species decreasing with decreased pH in
our study but increasing with decreased pH in Schram et al. (2016a).

One possible explanation for the discrepancy between the two studies is the starting
assemblage organization. Although both studies sampled in similar locations using the
same methods, species compositions varied. For example, D. furcipes constituted a large
proportion of our assemblages, approximately 11% in the ambient treatment, but was not
present in Schram et al. (2016a). Furthermore,M. pectinatus andOradarea spp. abundances
were found to be ten-fold and two-fold higher, respectively, in the assemblages of Schram
et al. (2016a) compared to this study. The starting assemblage composition could have
had an impact on the final assemblage composition in the experimental treatments.
Collection times varied between the two studies with collections occurring in January 2020
in the present study and in March 2013 in Schram et al. (2016a). Seasonal or interannual
differences in species abundances could explain why the starting assemblage composition
varied between the two studies.

Another possible explanation for these varied results could be the length of the
experiment. The experiment in Schram et al. (2016a) ran for 30 days while our experiment
ran for 52 days. This difference in experiment time could explain why some species, like
M. pectinatus, were so comparatively low in our experiment. Our initial samples contained,
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Figure 3 Total assemblage and amphipod counts (mean± SE) maintained at pH 8.1, pH 7.7, and pH
7.3 for a 52-day exposure period (n= 8).

Full-size DOI: 10.7717/peerj.19368/fig-3

on average, over 300 M. pectinatus. However, most of the final assemblages across each
of the experimental treatments contained less than fifteen M. pectinatus, demonstrating
a massive amount of mortality from being held in the experiment. Part of this mortality
could be due to the size of M. pectinatus. This species is generally small in size, making
it vulnerable to predation by the small number of B. gigantea in the experiment. Final
assemblage composition could have been impacted by increased mortality from being held
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Bovallia gigantea

Djerboa furcipes

Gondogeneia antarctica

Metaleptamphopus pectinatus

Oradarea spp.

Other

Unidentifiable

Stenothoidae

Prostebbingia gracilis

Figure 4 Relative abundance of amphipods from the initial assemblages (n = 8). The group labeled
‘other’ consisted of species that constituted less than 1% of the assemblage. This group included Jassa sp.,
Prothaumatelson nasutum, Paraphimedia integricauda, Gnathiphimedia sp., Lysianasidae, and Probolisca
ovata.

Full-size DOI: 10.7717/peerj.19368/fig-4

in the experiment for a longer period of time. This reduction in M. pectinatus could also
partially explain why our results differed from Schram et al. (2016a) since a majority of the
dissimilarity of the pH 7.3 assemblage in their experiment was driven by lowM. pectinatus
abundance.

Our results indicate that amphipod assemblages associated with D. menziesii exhibit
resistance to long-term exposure to near future and distant future OA conditions. These
results are in contrast to the reduction in species richness and abundance of crustacean
assemblages with decreased pH (Hale et al., 2011;Kroeker et al., 2011; Fabricius et al., 2014).
However, mesocosm experiments have been found to be less sensitive in detecting species
replacements, community reshuffling, or biodiversity changes in response to OA compared
to natural systems (Nagelkerken & Connell, 2022). Our results indicate thatWAP amphipod
communities could be protected by the insurance effect by the preservation of biodiversity
within their assemblages (Yachi & Loreau, 1999; Rastelli et al., 2020).

A longer experiment is likely necessary to gain a better understanding of howOA impacts
macroalgal-associated amphipod assemblages. Originally, we planned on having a longer
exposure period for the amphipod assemblages. The unexpected COVID-19 pandemic
forced us to end the experiment prematurely. Even with this shortened experiment time,
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Figure 5 Relative abundance of amphipods maintained at pH 8.1, pH 7.7, and pH 7.3 for a 52-day ex-
posure period (n= 8).

Full-size DOI: 10.7717/peerj.19368/fig-5

bootstrap nMDS data (Fig. 2) show that the assemblages were beginning to separate into
separate groups, even if this result was not significant. A significant increase in mortality of
the amphipods G. antarctica and P. fissicauda has been found after a three-month exposure
to OA conditions (Schram et al., 2016b). The mortality of G. antarctica in this longer
experiment was higher than the mortality reported in Schram et al. (2016a), demonstrating
that exposure time has an impact of the severity of OA affects for these assemblages.
Furthermore, peaks in mortality in Schram et al. (2016b) coincided with peaks in molt
frequency which could indicate that OA impacts on other physiological processes, like
molting, likely impact overall survival.

While the results of this experiment show that amphipod assemblages were not impacted
in relative mortality, this does not mean that the assemblages were completely unaffected
to OA conditions. For example, adult Antarctic krill can maintain their survival, growth,
and respiration rate under 2,000 µatm pCO2 exposure (Ericson et al., 2018). However,
hatch rates and embryo survival of Antarctic krill decreases by over 90% under the
same CO2 conditions (Kawaguchi et al., 2011), demonstrating there may be unforeseen
long-term impacts on species that are identified as more resistant to OA in shorter studies.
Hypothetically, amphipod assemblages could also become more susceptible to other
environmental changes, such as ocean warming. Although the current experiment only
controlled pH and let temperature and salinity change naturally, these two factors did vary
over the course of the experiment. It is conceivable that stress fromdecreased pH could leave
the amphipods more sensitive to temperature variations. For example, warming can have
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an additive effect on the consumption rate of the amphipod P. fissicauda with decreased
pH and a nonsignificant additive increase on the mortality of P. fissicauda andG. antarctica
(Schram et al., 2016b). The temperature difference in Schram et al. (2016b) was larger
than the variability in the present experiment, but there was variability throughout the
experiment.

In some cases, the severity of OA effects is reliant on the amount of time an organism
has to acclimate. The sea urchin Strongylocentrotus droebachiensis experiences a 4.5-fold
decrease in fecundity and a 5–9-fold decrease in offspring reaching the juvenile stage
when exposed to four months of decreased pH. However, there was no difference in
either fecundity or offspring survival when the sea urchins are exposed to decreased pH
for sixteen months compared to ambient conditions (Dupont et al., 2013). In addition to
longer exposure across one individual’s life, transgenerational exposure can have positive
and negative effects on a species. Lopes et al. (2019) found that exposure to OA conditions
decreased the amphipod Gammarus locusta parental generation’s survivability and caused
DNA damage in their offspring. Furthermore, the offspring that could survive OA were
incapable of returning to ambient conditions without experiencing an increase in lipid
damage and death. In some cases, transgenerational exposure increases an organism’s
ability to withstand decreased pH. Some invertebrates can experience better extracellular
pH regulation, have larger eggs, and have more resilient offspring when exposed to OA
conditions for multiple generations (Parker et al., 2015; Zhao et al., 2018; Zhao et al., 2019).
Most Antarctic amphipods are relatively long lived (Bone, 1972; Thurston, 1972; Brown,
King & Harrison, 2015), making any differences observed in the present study more likely
due to differences in survival rather than reproduction. Although 52 days can be a large
portion of the lifespan of many lower latitude amphipods, this is not true for Antarctic
species, which commonly live for several years (Bone, 1972; Thurston, 1972; Bluhm, Brey &
Klages, 2001; Brown, King & Harrison, 2015). Because of this, the results from the present
study cannot illuminate how OA will impact amphipod assemblages on generational time
scales.

Mesograzer assemblages along the WAP may be preconditioned to tolerate decreases in
pH. Seawater pH along the WAP can fluctuate up to 0.6 pH units annually, ranging from
approximately 8.6 in December to 8.0 in May (Schram et al., 2015). There is a growing
theoretical framework for how organisms will respond to climate change based on the
magnitude and predictability of environmental fluctuations. Phenotypic plasticity and
bet-hedging are the two most common adaptations that arise from fluctuating selection,
but the type of adaptation that evolves is dependent on the timescale of fluctuations (Tufto,
2015). Frequent and predictable environmental change supports the development of plastic
adaptations (Botero et al., 2015). This concept has also been seen experimentally in mites
and mussels to predictable fluctuations in temperature and pH, respectively (Deere et al.,
2006; Bitter et al., 2021). The amphipod assemblages examined in the present study may
have high tolerances to pH fluctuations because they are found in environments that are
known to have large pH fluctuations throughout the year (Schram et al., 2015).

Amphipods may be benefiting from their close relationship with macroalgae. Seaweeds
have boundary layers that can range from 0.1 to 10.2 mm thick depending on the species
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and surrounding water flow (Raven & Hurd, 2012). These boundary layers can serve as a
refuge for calcifying species during the day by buffering seawater pH (Hurd et al., 2011).
The pH within the boundary layers is controlled by seaweed metabolism. During the day,
pH tends to increase in the boundary layer as photosynthesis occurs. At night, pH decreases
as algae continue to undergo respiration (Hurd, 2015). The pH within the boundary layers
of macroalgae and seagrasses can be 0.07 to 1.2 pH units higher than surrounding seawater
during the day (Jones, Eaton & Hardwick, 2000; Krause-Jensen et al., 2015; Hendriks et al.,
2017). Experimentally, macroalgae have been found to mitigate some negative effects of
OA on associated calcifiers. The addition of the green alga Ulva in high CO2 treatments
was found to increase saturation states of aragonite and calcite and increased the growth
rates of clams, scallops, and oysters (Young & Gobler, 2018). Wahl et al. (2018) found that
the brown alga Fucus vesiculosus can act as a temporal refuge from OA conditions to
the mussel Mytilus edulis. The mussels were able to maintain high calcification in low
pH treatments by shifting a majority of their calcification process to the daytime when
algal photosynthesis was occurring, and pH and calcite saturation were higher. In the
present experiment, D. menziesii could have been acting as a refuge for the amphipods.
Live D. menziesii thalli were maintained with 24-hour constant light consistent with the
time of collection throughout the experiment. Photosynthesis should have been occurring
continuously throughout the entire exposure period. The amphipod assemblages could
have been benefiting from a possible increase in pH in the alga’s boundary layer, possibly
explaining why no significant difference in mortality was found for the total assemblage or
within a species between the different pH treatments.

CONCLUSIONS
The results of the present study show that invertebrate mortality of a macroalgal-associated
assemblage is not negatively impacted by OA. The assemblages between the pH treatments
were similar in total assemblage number and assemblage composition. These results differ
from previous studies (Schram et al., 2016a) and demonstrate that starting assemblage
composition or exposure time could impact assemblage resistance to OA. Furthermore,
the close association with these assemblages to D. menziesii could be mitigating some of
the direct negative impacts of OA. Overall, our results suggest that D. menziesii-associated
amphipod assemblages may be resistant to long-term OA exposure.
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