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ABSTRACT
Background: Lung adenocarcinoma (LUAD) is characterized by early recurrence
and poor prognosis. Autophagy is a double-edged sword in tumor development and
anti-tumor therapy resistance. However, the prediction of relapse and therapeutic
response in LUAD patients with stage I based on the signature of autophagy remains
unclear.
Methods: Gene expression data were obtained from the Gene Expression Omnibus
(GEO) and The Cancer Genome Atlas (TCGA) database. Autophagy-associated
genes were extracted from the Human Autophagy Moderator Database. The
autophagy score was established by Least Absolute Shrinkage and Selection Operator
(LASSO) regression. Real-time PCR was used to detect gene expression of hub genes
in LUAD patients. Protein-protein interaction (PPI) was analyzed to identify crucial
genes. Gene set enrichment analysis (GSEA) was used to reveal the molecular
features of patients. ESTIMATE algorithm was applied to estimate the tumor
immune infiltration. TIDE score and Genomics of Drug Sensitivity in Cancer
(GDSC) database were used to assess therapeutic response.
Results: We established an autophagy score based on 19 autophagy genes. Among
these genes, MAP1LC3B played a crucial role in PPI network and was
down-regulated in tumor tissues both in TCGA and local cohort. Receiver operating
characteristic (ROC) curve showed that the risk model effectively predict RFS of stage
I LUAD (area under the curve (AUC) at 1, 2, 3 years = 0.701, 0.836, and 0.818,
respectively). Multivariate regression analysis indicated that the autophagy score was
an independent predictor for relapse (P < 0.001, HR = 4.8, 95% CI [3.25–7.2]). The
autophagy score also showed great predictive efficacy in the external validation GEO
cohorts. GSEA revealed gene sets significantly enriched in immunity, cell cycle, and
adhesion, etc. Meanwhile, we found the autophagy score was negatively related to
KRAS mutation (P = 0.017) but positively associated with TP53 mutation (P = 6.4e
−11). The autophagy score had a negative relationship with CD8+, CD4+ T cell, and
dendritic cell, and positively correlated with immune checkpoint molecule CD276.
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Patients with a high autophagy score were sensitive to chemotherapy and targeted
therapy, while resistant to immune checkpoint inhibitors.
Conclusion:We constructed an effective recurrence risk predictive model for stage I
LUAD patients based on autophagy related genes. High autophagy score predicted a
higher recurrence risk and suppressing tumor immune microenvironment.

Subjects Bioinformatics, Immunology, Oncology
Keywords Lung adenocarcinoma, Autophagy, Recurrence, Tumor immune microenvironment

INTRODUCTION
A total of 85% of lung cancer is non-small cell lung cancer (NSCLC), which is one of the
highest incidences and mortality rates (Siegel et al., 2022; Sung et al., 2021). Among them,
the most frequent histological type is LUAD, which is characterized by early recurrence
and poor prognosis (Perez-Johnston et al., 2022; Xia et al., 2022). Although these patients’
prognosis has been improved with the progress of chemotherapy, targeted therapy and
immunotherapy, the overall survival (OS) is still low because of early recurrence and drug
resistance (Herbst, Morgensztern & Boshoff, 2018). Hence, it is particularly important to
timely identify patients who are prone to relapse and give them personalized treatment
strategies.

As one of the cell catabolism ways, autophagy degrades potentially harmful substances
through lysosomes, such as damaged organelles, pathogenic microorganisms and
misfolded proteins, which plays a role in protecting the homeostasis of the intracellular
environment (Russell & Guan, 2022). Autophagy has been proved to be related to the
pathogenesis of many human diseases, such as neurodegenerative disease and tumor
(Zhang et al., 2022; Fan et al., 2017; Singh et al., 2018; Gao et al., 2022). Autophagy plays a
different role in tumor development, excessive autophagy cause cell death at early stage. In
the middle and late stages of tumor development, autophagy generally increases, which
promotes the survival of tumor cells and increases the malignancy of tumors (Poillet-Perez
& White, 2019). In addition, autophagy may also act as a dual role in anti-tumor therapy
resistance (Russell & Guan, 2022; Singh et al., 2018). More and more studies are about the
roles of autophagy-related signature in different cancers. A study has reported the
autophagy-based signature could well predict the LUAD patients’ prognosis and their
immunotherapy efficiency (Li et al., 2022). Liu et al. (2019) also reported the prognostic
significance of autophagy-related signature in NSCLC. In addition, Fu et al. (2021)
identified an autophagy-associated signature can predict immune microenvironment
feature and prognosis in acute myeloid leukemia. Autophagy-related gene signatures can
also well predict the prognosis in glioblastoma and hepatocellular carcinoma (Wang et al.,
2019; Fang & Chen, 2020). However, whether autophagy related signature may become
biomarkers of tumor relapse and therapeutic response in stage I LUAD patients is still a
knowledge gap.

In this research, multiple databases, such as The Cancer Genoma Atlas (TCGA), Gene
Expression Omnibus (GEO) data and a series of bioinformatic methods were used to
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construct and validate a novel autophagy-related risk model to predict the early relapse of
stage I LUAD patients. In addition, we explored the clinical characteristics and the
immune landscape of this model. Eventually, the potential value of our model in predicting
therapeutic response has also been examined. Therefore, this study will help to promote
individualized treatment and thereby may reduce the relapse rate of LUAD patients with
stage I.

MATERIALS AND METHODS
Data source collection
In total, we obtained 269 stage I LUAD data with relevant recurrence-free survival (RFS)
and clinical features from TCGA, downloaded from the Cancer Genomics Browser of The
University of California Santa Cruz (UCSC) (http://xena.ucsc.edu/). Furthermore, all
autophagy related genes were derived from the human autophagy moderator database
(HAMdb, http://hamdb.scbdd.com/). TCGA data was assigned as a training cohort,
whereas GEO datasets (http://www.ncbi.nlm.nih.gov/geo) were used as the external
validation cohorts (GSE30219 and GSE37745). All data were shown in Table 1.

Risk model construction and validation analysis
A univariate Cox proportional analysis was used to investigate the association between
autophagy genes and RFS with P < 0.05. Next, we attempted to construct
autophagy-related genes based signatures for recurrence prediction by Least Absolute

Table 1 Clinicopathological characteristics of patients with stage I LUAD in TCGA cohort and GEO
cohort.

TCGA (N = 269) GSE30219 (N = 71) GSE37745 (N = 34) Overall (N = 374)

Age (years)

Average 65.9 61.2 63.8 64.8

Median 67.0 60.0 66.0 65.0

Unknown 7 0 0 7

Gender

Female 158 (58.7%) 16 (22.5%) 21 (61.8%) 195 (52.1%)

Male 111 (41.3%) 55 (77.5%) 13 (38.2%) 179 (47.9%)

Smoking history

No 37 (13.8%) 0 (0%) 0 (0%) 37 (9.9%)

Yes 228 (84.8%) 0 (0%) 0 (0%) 228 (61.0%)

Unknown 4 (1.4%) 71 (100%) 34 (100%) 109 (29.1%)

RFS (days)

Average 856 2,180 1,880 1,200

Median 578 1,920 1,730 652

Recurrence

No 182 (67.7%) 54 (76.1%) 19 (55.9%) 255 (68.2%)

Yes 87 (32.3%) 17 (23.9%) 15 (44.1%) 119 (31.8%)

Note:
LUAD, Lung Adenocarcinoma; RFS, Relapse Free Survival.
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Shrinkage and Selection Operator (LASSO) regression analysis and construct a risk model
containing mRNA expression levels and coefficients, named autophagy score. The LUAD
patients were divided into the high-risk and low-risk group based on the cut-off value of
the Kaplan-Meier curve. Decision curve analysis (DCA), receiver operating characteristic
(ROC) analysis, and multivariate Cox regression were applied to test the stability and
suitability of this model. Finally, GEO datasets were similarly analyzed to further verify the
significance of the model.

Biological process and pathway enrichment analysis
Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway were performed using the R GSVA package. P value < 0.05 and an
absolute value of normalized enrichment score (NES) value >1 was considered as
significant enrichment.

Tumor immune microenvironment and immune checkpoint profile
analysis
The ESTIMATE algorithm (Yoshihara et al., 2013) was applied to estimate the proportion
and distribution of tumor-infiltrating immune cells. Both gene mutation status and
immune checkpoint molecules were used to explore the association with the autophagy
score.

Risk score response to chemotherapy, targeted therapy, and
immunotherapy
Chemotherapy and targeted therapy drugs response prediction for each sample were
evaluated by the oncoPredict R package. The tumor immune dysfunction and exclusion
(TIDE) (Jiang et al., 2018) score has been applied as a biomarker of immunotherapy
response.

Ethics approval and consent to participate
This study was reviewed and approved by The Ethics Review Committee of Central South
University, The Second Xiangya Hospital (LYEC2024-0253). Written consent was
obtained from the patients.

Detect the mRNA expression levels of hub genes of the autophagy
score in normal lung tissue and LUAD tissues by qPCR
Fresh normal lung tissues and tumor tissues from LUAD patients were obtained from the
Second Xiangya Hospital. The mRNA expression level of hub genes of the autophagy score
were assessed by qPCR. The primer sequences used in this study were provided in the
Table 2.

Statistical analysis
All statistical analyses were performed on R software. The Wilcoxon test was used for
comparison between the two groups, and Spearman test was used for all correlation
analyses. P < 0.05 was considered significant.
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RESULTS
Identification of an autophagy-related risk model for the recurrence of
LUAD
Based on 269 LUAD patients with stage I from the TCGA database, we conducted
univariate Cox regression and discovered 43 autophagy genes that significantly related to
cancer recurrence. The top 10 genes were shown in Fig. 1A, such as RAB1A, MFN1 and
XPO1. Then, we performed LASSO regression analysis (Figs. 1B and 1C) and identified 19
related hub genes (Fig. 1D) related to the recurrence of LUAD patients. By integrating
these 19 genes, we developed the risk model, named as the autophagy score, including 10
protective factors (CALCOCO2, MAP1LC3B, TRIM8, PARK2, MAPT, PDK2, PTEN,
GABBR2, CXCR3 and TFEB) and nine risk factors (RAB1A, BCL2L1, PIK3CA, GOPC,
CHMP4B, VPS37D, GRID2, RPS6KB1 and GPR37). The risk score was as follows:
autophagy score = 0.4563488 � RAB1A + 0.318107141 � BCL2L1 + 0.253867908 � PIK3CA
+ 0.237767088 � GOPC + 0.18501832 � CHMP4B + 0.114654237 � VPS37D + 0.10932385
� GRID2 + 0.026645972 � RPS6KB1 + 0.00210073 � GPR37 − 0.182756828 � CALCOCO2
− 0.147361444 � MAP1LC3B − 0.133470853 � TRIM8 − 0.105113941 � PARK2 −

0.073555698 � MAPT − 0.067317524 � PDK2 − 0.060281667 � PTEN − 0.053339503 �

GABBR2 − 0.045620769 � CXCR3 − 0.026292117 � TFEB. In order to explore whether
there was interaction between these hub genes, we applied STRING database to created

Table 2 The primer sequences used in this study.

Gene name Forward sequence Reverse sequence

CALCOCO2 CCAGTTCTGCTATGTGGATGAGG GTGCTGCTCAATCTCTTCCACC

MAP1LC3B GAGAAGCAGCTTCCTGTTCTGG GTGTCCGTTCACCAACAGGAAG

TRIM8 GACGTGGAGATCCGAAGGAATG CAGCCGAACTTCCTCCTTCAGT

PARK2 CCAGAGGAAAGTCACCTGCGAA CTGAGGCTTCAAATACGGCACTG

MAPT CCAGTCCAAGTGTGGCTCAAAG GCCTAATGAGCCACACTTGGAG

PDK2 TGCCTACGACATGGCTAAGCTC GACGTAGACCATGTGAATCGGC

PTEN TGAGTTCCCTCAGCCGTTACCT GAGGTTTCCTCTGGTCCTGGTA

GABBR2 GTTGCTCAAGCACTACCAGTGG TCCTCGCCATACAGAACTCCAG

CXCR3 ACGAGAGTGACTCGTGCTGTAC GCAGAAAGAGGAGGCTGTAGAG

TFEB CCTGGAGATGACCAACAAGCAG TAGGCAGCTCCTGCTTCACCAC

GPR37 ATGTCGCGGCTACTGCTTC GCAGAACGTCTCTTGCAGAAT

RPS6KB1 TATTGGCAGCCCACGAACACCT GTCACATCCATCTGCTCTATGCC

GRID2 TCTTACACGGCAAACCTCGCTG TACCGCAGAGTCTAGGACTGTG

VPS37D ATACCAGGAGCTTCGTGAGGTG CCTCTTCTAGCTCAGCCTGCAG

CHMP4B ACCAACACCGAGGTGCTCAAGA CTGCAAGTTCTTGCTGGTCAGC

GOPC AGAAGGAGGTGGTAACCCTGGT TTGAAGCACCGTCATCTAGCGG

PIK3CA GAAGCACCTGAATAGGCAAGTCG GAGCATCCATGAAATCTGGTCGC

BCL2L1 GCCACTTACCTGAATGACCACC AACCAGCGGTTGAAGCGTTCCT

RAB1A GGGAACAAATGTGATCTGACCAC GAAAGACTGTTCTACATTCGTTGC
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PPI network. According to node degree, we identified MAP1LC3B was the core gene
(Fig. 1E). Next, in the TCGA training cohort, patients were divided into two groups
according to the above autophagy score, including low-risk and high-risk group. In
addition, Kaplan-Meier curve analysis indicated that high-risk patients had a higher
recurrence rate than low-risk patients (Fig. 2A, P < 0.0001). ROC curve analysis showed
that AUC (area under the curve) of 1, 3 and 5 years were 0.701, 0.836 and 0.818 (Fig. 2B).
The decision curve analysis for the autophagy score was presented in Fig. 2C. Moreover,
multivariate Cox regression demonstrated the autophagy score was an independent
predictor for RFS (Fig. 2D, HR = 4.8, 95% CI [3.25–7.2], P < 0.001). Also, we created a
nomogram with four variables (gender, age, smoking history and autophagy score) to
predict the patients’ recurrence rate (Fig. 2E).

Figure 1 Constructing autophagy-associated risk model to predict the recurrence in LUAD patients from TCGA database. (A) The top 10 genes
in univariate Cox regression. (B, C) LASSO analysis and cross validation identified 19 hub recurrence-associated genes. (D) 19 autophagy-associated
hub genes and their coefficients. (E) PPI core network. LUAD, Lung Adenocarcinoma; PPI, Protein-Protein Interaction; LASSO, Least Absolute
Shrinkage and Selection Operator. Full-size DOI: 10.7717/peerj.19366/fig-1

Zheng et al. (2025), PeerJ, DOI 10.7717/peerj.19366 6/23

http://dx.doi.org/10.7717/peerj.19366/fig-1
http://dx.doi.org/10.7717/peerj.19366
https://peerj.com/


External validation of the risk model
GSE30219 and GSE37745 were utilized to verify the performance of our risk model. The
survival analysis (Fig. 3) demonstrated that high-risk patients showed a worse RFS in
GSE30219 (P = 0.023) and GSE37745 (P = 0.0012). A higher AUC value suggests better
discrimination ability of the model, meaning it can more accurately distinguish between
high- and low-risk groups. A value closer to 1 indicates excellent performance, while a
value closer to 0.5 suggests a random model with no predictive power. So we performed
ROC curve analysis and found that AUC of 1, 3 and 5 years were 0.541, 0.694 and 0.706 in
GSE30219 and 0.656, 0.685 and 0.673 in GSE37745, which indicated the good performance
of the risk model.

Figure 2 Autophagy score could predict RFS. (A) High autophagy score patients showed shorter RFS (P < 0.0001). (B) AUC at 1, 3, and 5 years of
the autophagy score for RFS. (C) Decision curve analysis for the autophagy score. (D) Multivariate Cox regression showed the autophagy score was
an independent predictor for RFS (P < 0.001). (E) The nomogram for calculating RFS in LUAD patients. LUAD, Lung A denocarcinoma; RFS,
Recurrence-Free Survival; AUC, Area Under Curve. Full-size DOI: 10.7717/peerj.19366/fig-2
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Biological pathway and functional enrichment analysis
Considering the satisfactory predictive value of the autophagy score in patients with
LUAD, we further explored its potential mechanisms in the TCGA cohort by GSEA
analysis (Fig. 4). The top three up-regulated GO BP terms were those involving the
proteins that are involved in these pathways: cell cycle G2M phase transition, cell cycle G1S
phase transition and chromosome segregation, whereas the top three down-regulated GO
BP terms T cell activation, adaptive immune response and regulation of cell-cell adhesion.
In addition, the top three up-regulated GO MF terms were those involving the proteins
that are involved in these pathways: single stranded DNA binding, tubulin binding and
catalytic activity acting on DNA and the down-regulated GO MF terms were cytokine
receptor activity, passive transmembrane transporter activity, immune receptor activity
and gated channel activity. Also, the top three up-regulated GO CC terms were those
involving the proteins that are involved in these pathways: mitochondrial protein

Figure 3 External validation in different GEO cohorts. (A) In GSE30219, Kaplan-Meier curve analysis
showed patients with high-risk group had worse RFS (P = 0.023). (B) ROC curve analysis in GSE30219
cohort. (C) In GSE37745, Kaplan-Meier curve analysis showed patients with high-risk group had worse
RFS (P = 0.0012). (D) ROC curve analysis in GSE37745 cohort. ROC, Receiver Operating Characteristic
Curve; GEO, Gene Expression Omnibus; RFS, Recurrence-Free Survival.

Full-size DOI: 10.7717/peerj.19366/fig-3
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containing complex, condensed chromosome and chromosomal region, whereas the top
three down-regulated GO CC terms were external side of plasma membrane, apical plasma
membrane and receptor complex. Moreover, the KEGG pathway enrichment showed this
meaningful autophagy score was involved in spliceosome, cell cycle, cell adhesion
molecules cams and p53 signaling pathway.

The correlation between the autophagy score and clinical features
In our study, the relationship between the autophagy score and clinical features was further
analyzed. The autophagy score was not related to age, gender and smoking history (all
P > 0.05, Fig. S1). We found that there was no relationship between the autophagy score
and EGFR mutation status (P = 0.73). Interestingly, wild type KRAS patients had higher
autophagy scores (P = 0.017), while wild type TP53 patients had lower autophagy scores
(P = 6.4e−11). In addition, we constructed differential analysis between normal lung tissue
and LUAD tumor tissue in the TCGA LAUD cohort and the Second Xiangya hospital. We

Figure 4 The GSEA enrichment analysis in TCGA cohort. (A) GO BP analysis of the autophagy score. (B) GOMF analysis of the autophagy score.
(C) GO CC analysis of the autophagy score. (D) KEGG pathway enrichment of the autophagy score. KEGG, Kyoto Encyclopedia of Genes and
Genomes; CC, Cellular Component; MF, Molecular Function; BP, Biological Process; GO, GeneOntology; GSEA, Gene Set Enrichment Analysis.

Full-size DOI: 10.7717/peerj.19366/fig-4
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found that protective genes MAPT, MAP1LC3B, and CALCOCO2 were significantly
down-regulated in both cohort (Fig. 5).

The autophagy score was related to immune microenvironment
To deeply comprehend the potential contact between immune microenvironment and
recurrence risk, we explored their relationship using a series of analytical methods. First,
we analyzed the association between the autophagy score and different immune cells. In
this study, the results showed the autophagy score was positively related to pro B cell, Th1

Figure 5 Differential expression analysis of genes constructed the autophagy score. (A) In TCGA
cohort, RAB1A, CHMP4B, VPS37D, RPS6KB1, and GPR37 were significantly increased in tumor tissue.
PIK3CA, GRID2, TFEB, PTEN, PDK2, MAPT, PARK2, MAP1LC3B, and CALCOCO2 significantly
down-regulated in tumor tissue. BCL2L1, GOPC, CXCR3, GABBR2, and TRIM8 showed similar
expression level between tumor and normal tissue. (B) In LUAD patients from the Second Xiangya
hospital, CXCR3, MAPT, PARK2, TRIM8, MAP1LC3B, and CALCOCO2 showed lower expression in
tumor tissue. While other genes had similar expression level between normal and tumor tissue.
��P < 0.01; ���P < 0.001. Full-size DOI: 10.7717/peerj.19366/fig-5
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cell, Th2 cell and macrophage M1 cell, but negatively correlated with DC cell, mast cell, B
cell, CD4+ and CD8+ T cell (all P < 0.05, Fig. 6). In addition, we also examined the
association between the autophagy score and immune checkpoint molecules, such as
CD274, PDCD1LG2, ICOSLG, CD276, HHLA2, CTLA4, etc. In general, the expression of
CD276 was higher in high-risk group, while HHLA2, C10orf54 and NCR3 were higher in
low-risk group (all P < 0.05). Next, we calculated the immune score by ESTIMATE
algorithm and found that the autophagy score was negatively related to immune score
(r = −0.14, P = 0.02). In addition, the autophagy score was negatively correlated with
ESTIMATE score, but the statistical difference was weak (r = −0.11, P = 0.06). There
seemed to be a correlation between the autophagy score and stromal score, but no
statistical significance was observed (r = −0.068, P = 0.26).

Figure 6 The association between autophagy score and immune microenvironment. (A) The rela-
tionship with immune cells. (B) The relationship with immunocheckpoint molecules. (C) The autophagy
score was associated with the immune score (r = −0.14, P = 0.02). (D) The autophagy score had no
relationship with the stromal score (r = −0.068, P = 0.26). (E) The autophagy score had a weak correlation
with the ESTIMATE score (r = −0.11, P = 0.06). Full-size DOI: 10.7717/peerj.19366/fig-6
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Figure 7 Autophagy score predicted OS and treatment efficacy of chemotherapy, targeted therapy and immunotherapy. (A–C) Overall survival
analysis of the autophagy score in TCGA (P < 0.0001), GSE30219 (P = 0.00071) and GSE3774 (P = 0.0035) cohorts. (D–I) The estimated IC50 of
oxaliplatin (P = 0.044), cyclophosphamide (P = 0.023), osimertinib (P = 0.048), axitinib (P = 0.011), crizotinib (P = 0.0053) and PRIMA-1MET
(P = 2e−04) between two groups. (J) The relationship between the TIDE score and the autophagy score (P = 0.025). (K) Immunotherapy responder
rate in two groups (P = 0.03475). TIDE, Tumor Immune Dysfunction and Exclusion; OS, overall survival.

Full-size DOI: 10.7717/peerj.19366/fig-7
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The autophagy score predicted overall survival and treatment efficacy
of chemotherapy, targeted therapy and immunotherapy
In this study, autophagy signature could well predict the recurrence of LUAD patients. In
addition, we also wanted to further explore whether it could predict the patients’ overall
survival. Interestingly, high-risk patients had shorter OS time than low-risk patients both
in the TCGA, GSE30219 and GSE37745 cohorts (Fig. 7, P < 0.0001, P = 0.00071 and
P = 0.0035, respectively). Chemotherapy and targeted therapy are the most common
methods to treat LUAD patients. We used the GDSC database to explore the potential
response of some chemotherapy and targeted therapy drugs between different groups. It
was worth noting that the IC50 of oxaliplatin and cyclophosphamide was lower in
high-risk group patients, suggesting that patients in high risk group were more sensitive to
these chemotherapy drugs. In addition, we also found that high-risk group patients had
lower IC50 for osimertinib (EGFR-TKI), axitinib (VEGFR-TKI), crizotinib (EML4-ALK
fusion inhibitor) and PRIMA-1MET (mutant p53 activator), suggesting that compared to
low-risk group patients, high-risk group patients were sensitive to these targeted therapy
drugs. Recently, immunotherapy is emerging as an important treatment for LUAD
patients. We calculated the TIDE score to predict the immunotherapy response of the two
groups of patients. Intriguingly, the result showed low-risk group patients had lower TIDE
score, which suggested that these patients had better immunotherapy response.

DISCUSSION
For a long time, people have realized that the prognosis of metastatic cancers is poor, and
various tumors will eventually metastasize, which has become the basis for tumor staging
(Cserni et al., 2018). LUAD, as the most frequent histological type of lung cancer, can also
be retraced to this progression (Perez-Johnston et al., 2022; Xia et al., 2022; Cserni et al.,
2018). Due to the popularity of low-dose computed tomography (LDCT) screening, the
diagnostic rate of stage I patients has been significantly improved, but these patients may
experience early recurrence. Therefore, it is particularly important to timely identify
patients who are prone to relapse and give them personalized treatment strategies.
Chemotherapy, targeted therapy and immunotherapy are common treatments for LUAD
patients, so it is also critical to identify patients who respond best to these treatments.
Autophagy is a way of cellular catabolism, which degrades potentially harmful substances
by transporting them to lysosomes. And there are three main types, known as
chaperone-mediated autophagy, microautophagy and macroautophagy. Its key role in
protecting the homeostasis of the intracellular environment is well known (Russell &
Guan, 2022; Mizushima et al., 2008). Autophagy is a double-edged sword for tumors,
because it can not only promote the survival of tumor cells through providing nutrients,
but also prevent the formation of tumors (Zada et al., 2021; Chen et al., 2019). In recent
years, more and more evidences have shown that autophagy was the key mechanism of
tumor occurrence and drug resistance, and also the key factor of recurrence and metastasis
(Auberger & Puissant, 2017; Hu et al., 2021; Smith & Macleod, 2019; Limagne et al., 2022;
Vera-Ramirez et al., 2018; Ren et al., 2022). Some studies have focused on
autophagy-related prognostic indices in different cancers (Li et al., 2022; Liu et al., 2019).
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However, whether autophagy-related signature may become the biomarkers of tumor
relapse and therapeutic response in stage I LUAD patients is still a knowledge gap.
Therefore, in this current research, we established an autophagy gene related risk model to
predict the recurrence and treatment response.

Compared to traditional biostatistical methods, machine learning (LASSO and Cox
regression analysis are the most common) has great advantages in analyzing large sample
datasets (Ngiam & Khor, 2019). In this research, we identified 19 autophagy related hub
genes by LASSO analysis and created a risk model to calculate the autophagy score. Cox
regression indicated the autophagy score was an independent risk factor for relapse of
LUAD patients with stage I. The external validation of GEO dataset further proved the
accuracy of the autophagy score model. This was the first time to establish an autophagy
related risk model that could predict the relapse risk of LUAD patients with stage I. In
addition, we further investigated the overall survival prognostic value of this risk model.
We found it could also well predict LUAD patients’ overall survival and high autophagy
score patients had poor OS. To further promote the clinical application of this autophagy
score model, we developed a nomograph to predict the RFS of LUAD patients by combing
the autophagy score, age, gender and smoking history. Of these 19 hub genes, nine were
risk factors (RAB1A, BCL2L1, PIK3CA, GOPC, CHMP4B, VPS37D, GRID2, RPS6KB1
and GRP37), and 10 were protective factors (CALCOCO2, MAP1LC3B, TRIM8, PARK2,
MAPT, PDK2, PTEN, GABBR2, CXCR3 and TFEB). Among them, MAP1LC3B
(microtubule associated protein 1 light chain 3 beta) was the core gene, which is one of the
most famous autophagy related proteins (Racanelli et al., 2018). When macroautophagy is
activated, MAP1LC3B, coupled with phosphatidyl-ethanolamine, targets to autophagic
membranes (Mizumura et al., 2012). It has been shown that MAP1LC3B-II is positively
related to ferroptosis sensitivity in ovarian cancer cells (Li et al., 2021). Moreover,
overexpression of MAP1LC3B in vitro can prevent the development of Hermansky-
Pudlak syndrome correlated with pulmonary fibrosis (Ahuja et al., 2016). Interestingly,
MAP1LC3B has different roles in prognosis and clinicopathological features of distinct
cancers (Liu et al., 2018). In this study, MAP1LC3B was a protective factor for the
recurrence of stage I LUAD. MAP1LC3B exhibited the highest weight coefficient in PPI
network. In addition, MAP1LC3B was down-regulated in tumor tissue both in TCGA and
local cohort. These results suggested that MAP1LC3B may function as a crucial autophagy
regulating and tumor development in LUAD.

PTEN (phosphatase and tensin homolog) is known as a tumor suppressor, which is
mutated with a high frequency in human cancer (Song, Salmena & Pandolfi, 2012). PTEN
tumor-suppressor activity mainly depends on its ability to inhibit the activation of PI3K/
AKT, which controls various biological processes, including cell proliferation, migration
and metabolism (Song, Salmena & Pandolfi, 2012;Worby & Dixon, 2014). PTEN promotes
the induction of autophagy by facilitating the production of LC3-II (Boosani, Gunasekar &
Agrawal, 2019). Studies showed that PTEN nuclear translocation promotes autophagy of
cancer cells in response to DNA-damaging agents (Chen et al., 2015). BCL2L1, also known
as Bcl-extra (Bcl-x), is an important member of the B-cell lymphoma 2 (Bcl-2) family and
regulates cell fate (Dou et al., 2021). It has two antagonistic isoforms, Bcl-xL (blocking
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apoptosis) and Bcl-xS (promoting apoptosis) (Boise et al., 1993). Apart from apoptosis,
Bcl-xL is also considered to be involved in autophagy (Zhang et al., 2018). Specifically,
Bcl-xL is identified to inhibit class III PI3K pathway-mediated macroautophagy (Li, He &
Ma, 2020; Zhou, Yang & Xing, 2011). Recent studies have shown ectopic expression of
Bcl-x isoforms is related to a variety of hallmarks of cancers (Keitel et al., 2014; Li et al.,
2020). In the current study, BCL2L1 was identified as a risk factor for the recurrence of
stage I LUAD. PARK2 encodes Parkin and is a pathogenic gene for cancers and
neurodegenerative diseases (Zhang et al., 2020). Under stress conditions, Parkin can
transfer to damaged mitochondria, promote mitochondrial proteins ubiquitination, and
trigger mitophagy (Harper, Ordureau & Heo, 2018). Interestingly, recent studies have
shown that Parkin can also act as a tumor suppressor, and somatic and germ line
mutations in PARK2 is linked to multiple human cancers, including lung cancer (Zhang
et al., 2020). RAB1A encodes GTPases and has been identified as mediating vesicular
transport between the Golgi apparatus and endoplasmic reticulum (ER) (Hutagalung &
Novick, 2011). In addition to its role in vesicular trafficking, Rab1A protein also has other
functions, including cell migration, nutrient sensing and autophagy regulation (Zoppino
et al., 2010; Thomas et al., 2014;Wang et al., 2010). Rab1A overexpression is related to poor
prognosis and activates the mTORC1 pathway to promote tumor progression in
hepatocellular carcinoma and colorectal cancer (Thomas et al., 2014).

CALCOCO2 (calcium binding and coiled-coil domain 2), a well-known xenophagy
receptor, has been shown to regulate autophagosome maturation containing pathogen.
And it may play a role in the organization of actin cytoskeleton and ruffle formation
(Morriswood et al., 2007; Boyle, Ravenhill & Randow, 2019; Cui et al., 2021). Notably, many
researches have shown CALCOCO2 may be correlated with cancer progression through
interacting with tumor-associated signaling pathways such as NF-κB signaling pathway
(Leymarie et al., 2017). In this study, CALCOCO2 showed the highest coefficient in
protective factor of autophagy score. Differential analysis also reveled that CALCOCO2
significantly decreased in tumor tissue, suggesting that CALCOCO2 has the potential value
as a predictive factor.

TRIM8 (tripartite motif containing 8) is identified as an E3 ubiquitin ligase protein, also
named as GERP (glioblastoma expressed RING-finger protein). Recent researches showed
that TRIM8 plays a dual role as an oncogene and a tumor suppressor gene, and produces a
marked effect in the interaction between innate immunity and cancer (Bhaduri & Merla,
2020). In addition, under genotoxic stress conditions, TRIM8 has been reported to
enhance autophagy flow through lysosomal biogenesis, thus degrading the cleaved
Caspase-3 subunit and promoting cancer cell survival (Roy et al., 2018). CHMP4B
(charged multivesicular body protein 4B) is a subunit of the ESCRT (endosomal sorting
complex required for transport)-III complex, which produces a marked effect in mitotic
cell division and the abscission of cytokinetic membrane (Wollert et al., 2009; Elia et al.,
2011). A recent study reported that CHMP4B could be involved in autophagolysosomal
degradation of micronuclei (Sagona, Nezis & Stenmark, 2014). CHMP4B with Vps4A
mediates beta-catenin localization and exosome release to inhibit EMT (epithelial-
mesenchymal transition) in liver cancer (Han et al., 2019). PDK2 (pyruvate dehydrogenase
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kinase 2) is related to mitochondrial metabolism and its overexpression may play a key role
in both cancer and diabetes (Kitamura et al., 2021). It has been shown that PDK2 regulates
the PINK1/PARKIN-mediated mitophagy by modulating PARL β cleavage (Shi &
McQuibban, 2017).

Next, we further investigated the molecular features of different risk groups by GSEA.
GO and KEGG enrichment analysis showed significant enrichment of cell cycle, immunity
and cell adhesion, including cell cycle checkpoint, adaptive immune response, T cell
activation, activation of immune response, immune receptor activity and p53 signaling
pathway. In addition, we further explored the association between the autophagy score and
clinical characteristics, as well as driver gene mutation. Although the autophagy score was
not correlated with clinical characteristics, it was significantly correlated with TP53 and
KRAS gene mutation status. KRAS (kirsten rat sarcoma viral oncogene homolog) encodes
a protein, which belongs to the small GTPase superfamily and its mutation is a genetic
driver of NSCLC and many other cancers (Zhu et al., 2022). The activation of KRAS
activates multiple downstream pathway (such as PI3K and MAPK), which is correlated
with tumorigenesis and poor prognosis (Zhu et al., 2022; Drosten et al., 2010). In the
present research, we found KRAS mutation patients had a lower autophagy score. TP53, a
tumor suppressor gene, is found to have mutation in 50% cancers. Loss of TP53 function
not only leads to tumor progression, but also affects the response to anticancer drugs,
especially those that cause DNA damage (Wang, Strasser & Kelly, 2022). We found that
TP53 mutation patients had a higher autophagy score, which provides some clues to
further study the relationship between autophagy and TP53 gene mutation.

Tumor immune microenvironment (TIME) is quite complex and consists of tumor
cells, tumor infiltrating immune cells and cytokines. Tumor infiltrating immune cells
mainly contain dendritic cells (DC), M1-polarized macrophages, effector T cells (cytotoxic
CD8+ T cells and effector CD4+ T cells), Tregs, MDSCs, M2-polarized macrophages, etc.
More and more researches have indicated that tumor infiltrating immune cells play a
pivotal role in the development and therapeutic response of many cancers (Lv et al., 2022;
Al-Shibli et al., 2008). In the present study, we found the autophagy score was negatively
related to DC, CD8+ and CD4+ T cells. Moreover, we discovered a positive relationship
between the autophagy score and immune checkpoint molecule CD276. CD276, also
named as B7-H3, belongs to B7 family and plays an immunosuppressive role in the tumor
microenvironment (Zhang et al., 2018). Moreover, we also applied the ESTIMATEmethod
to calculate the ESTIMATE score, stromal score and immune score. Interestingly, the
autophagy score was negatively related to immune score, which was in accordance with the
result of tumor infiltrating immune cells. Taken together, these findings not only
supported the fact that high-risk patients had a higher probability of recurrence, but also
suggested that they had a strong immunosuppressive microenvironment and might have
poor effect on immunotherapy.

Additionally, we used the GDSC database to explore the potential response of patients
to some targeted therapy and chemotherapy drugs. We found high-risk group patients had
a lower IC50 for oxaliplatin and cyclophosphamide, suggesting that they might respond
better to these chemotherapy drugs. Of note, high-risk group patients also had a lower
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IC50 for mutant TP53 activator PRIMA-1MET, indicating a better response to PRIMA-
1MET, which was consistent with the result of TP53 gene mutation. Also, high-risk group
patients had a better response to crizotinib, which was an inhibitor for EML4-ALK fusion
(Park et al., 2022). Intriguingly, high-risk group patients also had a better response to
osimertinib (belonging to EGFR-TKI) and axitinib (belonging to VEGFR-TKI) than
low-risk patients. Recently, immunotherapy is emerging as an important treatment for
LUAD patients. Therefore, the efficacy of immunotherapy was evaluated by calculating the
TIDE score. Unexpectedly, the result showed high-risk group patients had a worse
response to immunotherapy.

By assessing autophagy-related markers, the model can help identify patients at higher
risk, guiding more personalized and tailored treatment plans. This would enable clinicians
to prioritize interventions and monitor patients more closely for disease progression.
There are several limitations in this study, primarily due to its retrospective design.
Retrospective studies rely on previously collected data, which limits our ability to establish
causal relationships. We can only infer correlations between variables rather than confirm
causality. Another limitation is the potential for selection bias. Since we relied on specific
inclusion criteria, and there may be risks of data omissions or biases towards certain
groups, our sample may not fully represent the target population.

CONCLUSION
In summary, we established an autophagy gene related risk model for predicting relapse of
stage I LUAD patients and further demonstrated its accuracy through external validation
cohorts. In addition, we also found its significance in predicting overall survival and
preliminarily explored its potential molecular mechanisms. More importantly, we found
that this risk model could provide guidance for chemotherapy, targeted therapy and
immunotherapy, thereby bringing clinical benefits to LUAD patients.
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