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ABSTRACT

The family Acrididae characterized by a remarkable genome size and a significant
proportion of repetitive sequences. In this study, we find a considerable
characteristics by examining the Sinopodisma ginlingensis, which has an average
genome size within the range observed in Acrididae. The genome size of

S. ginlingensis was determined to be 11.37 pg for females and 10.95 pg for males using
flow cytometry. The analysis of low-coverage sequencing data revealed that the total
repeat content of the genome was 63.58%, with long terminal repeat (LTR) elements
accounting for 17.74% of the genome contents. Phylogenetic analysis of the reverse
transcriptase (RT) domains, which are found within LTR and LINE sequences with
consistent conserved motifs, showed that LTR elements belong to multipl within a
monophyletic branch. This finging suggests that LTR elements did not originate
independently, but rather shared a common evolutionary history. Additionally, the
content of Ty3-Gypsy sequences within LTR elements was found to be significantly
increased. Fluorescence in situ hybridisation (FISH) showed that most satellite DNA
and LTR elements exhibited an aggregated distribution pattern on the chromosome.
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INTRODUCTION

Repetitive sequences are widely regarded as the primary driving force of genome
evolution, with the capacity to influence a range of biological processes including
genome rearrangement (Brosius, 2003; Dolezel, Greilhuber ¢» Suda, 2007), replication
(Bailey, Liu ¢ Eichler, 2003), and transfer, which can result in the emergence of new
functions (Cabral-de-Mello ¢ Palacios-Gimenez, 2025; Palacios-Gimenez et al., 2020). The
integration of repetitive sequences into genomes can potentially disrupt gene

function, thereby presenting a significant challenge to genome sequencing and analysis.
Consequently, a more profound comprehension of the structural and dynamic
characteristics of repetitive sequences is imperative for genome-related research

(Liu, 2007). Whole genome sequencing has demonstrated a positive correlation between
genome size and repeated sequences (Du et al., 2016; Gregory, 2005, 2002). Such
variations in repetitive sequences are considered a significant factor contributing to the
variation in genome size among eukaryotes (Ruiz-Ruano et al., 2018), with the relative
frequency of their insertions and deletions playing a pivotal role in the evolution of
genome size (Alfsnes, Leinaas & Hessen, 2017; Carta & Peruzzi, 2016; Dolezalova et al.,
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2024). The significance of repetitive sequences in genome evolution has been extensively
acknowledged in Orthoptera, a taxon characterised by a substantially enlarged genome
among insect taxa (Zhao et al., 2025). Nevertheless, the mechanism of continuous genome
enlargement during the evolution of Caelifera insects (belonging to Orthoptera) and its
relationship, content and distribution pattern of repetitive sequences remain to be
elucidated.

The advent of next-generation sequencing technologies has had a significant impact on
the study of repetitive DNA, which, due to its rapid evolutionary rate, has become an
important tool for the study of genome evolution (Li et al., 2023). This has enabled the
tracing of common ancestry across species and facilitated chromosome identification and
differential analyses (Huber, Voith von Voithenberg ¢ Kaigala, 2018). Consequently,
highly complex repetitive DNA has been successfully employed in the study of insect taxa.
In Orthoptera insects, studies of repetitive DNA have revealed unique organisational and
evolutionary characteristics (Camacho et al., 2015; Ferretti et al., 2020; Yuan et al., 2021).
Satellite DNA is a class of DNA that exhibits a specific distribution on chromosomes,
consisting of short repetitive units (Majid et al., 2024; Zhongying et al., 2020). The
distribution of satellite DNA on chromosomes can be localised using various techniques,
among which FISH is one of the commonly used methods. The FISH technique employs
the use of labelled probes, which hybridise with specific DNA sequences on a chromosome,
thereby facilitating the determination of the distribution of satellite DNA on the
chromosome (Navarro-Dominguez et al., 2023; Ruiz-Ruano et al., 2015). Orthoptera is the
only known group in the insect class with significant genome expansion. A recent study of
59 insects in the family Acrididae demonstrated that the genome size ranged from 6.60 pg
to 19.35 pg, with repetitive sequences accounting for 83.58% of the gigantic genome. The
Sinopodisma has experienced genome gigantism, with an average genome size exceeding
11 pg. The genus Sinopodisma is endemic to China, with its distribution restricted to the
country. This genus is characterized by small body size and degenerated wings, and it
predominantly inhabits mountainous regions at elevations exceeding 850 m (Zhongying
et al., 2020). The large genome and unique morphology of Sinopodisma make the analysis
of its genomic “dark matter” a key focus for researchers.

The Acrididae family has been observed to exhibit gigantism in genome size, with an
average genome size that exceeds 11.91 Gb (Li et al., 2022; Qiu et al., 2024a; Sun et al., 2023;
Ye, Shi & Yin, 2017), the genome of S. ginlingensis is significantly larger than that of
Locusta migratoria manilensis, which has been previously described. This suggests that
S. ginlingensis may be considered a medium to large Orthoptera (Huang et al., 2013;
Verlinden et al., 2020). Consequently, this article focuses on S. ginlingensis (Huang et al.,
2013; Zheng, 1996) as the research subject, employing genetic techniques such as genome
exploration sequencing and flow cytometry (Yuan et al., 2021), and fluorescence in situ
hybridization (FISH) to investigate the genome size (Tao et al., 2023; Chen ¢ Song, 2023),
repeat sequence types, content, and chromosome localization (Dolezel et al., 2003) of
S. ginlingensis. This investigation provides valuable resources for the study of genome size
and repeat sequences in Orthoptera insects.
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In order to better understand the content of repeats and their molecular distribution
characteristics in the evolutionary process of S. ginlingensis and verify the role of repeats in
genome size variation, fluorescent hybridization technology is used to test the evolutionary
hypothesis, thereby reflecting its evolutionary mechanism and pathway. The application of
these research methods provides comprehensive and in-depth insights for the genome
study of S. ginlingensis, and offers a new perspective for the study of its evolution and
genetic diversity. It also provides valuable data and references for the genomics study of
medium and large insects in the Acrididae family.

MATERIALS AND METHODS

Sample collection, genome size, and next-generation sequencing
The research subject S. ginlingensis was collected from Xunyangba Township, Ningshan
County, Ankang City, Shaanxi Province, China (Longitude 108°33'0.310"E, Latitude
33°32'56.778"N). Live samples were subjected to genome size estimation using flow
cytometry (FCM). The rest of the samples were treated with liquid nitrogen and stored in
a —80 °C refrigerator for sequencing and subsequent experiments.

Genome size was measured using flow cytometry (Hen et al., 2021; Robinson et al.,
2023), with the reference standard sample being male L. migratoria manilensis (Verlinden
et al., 2020). The genome size of S. ginlingensis was calculated using the following formula:

X = AX x C
~ac " P8
where:

X represents the nuclear DNA content of S. ginlingensis (in pg);

AX represents the fluorescence intensity of S. ginlingensis,

AC represents the fluorescence intensity of male L. migratoria manilensis;

C is the nuclear genome size of male L. migratoria manilensis which is 6.20pg.

The sequencing process employed Illumina sequencing technology (Blair ¢ Durrance,
2024; Haendiges et al., 2021; Stoeck et al., 2024) to construct a 350 bp insertion fragment
library and performed sequencing with paired-end 150 bp reads (PE-150).

Analysis of repetitive sequence and construction of phylogenetic tree
of repetitive elements
We used FastQC software to perform checks on the 150 bp paired-end read data generated
by whole-genome sequencing (WGS). Random sampling was conducted using the SeqTK
tool, repeated three times, and three selected samples of S. ginlingensis second-generation
data (0.1X) were analyzed for total repeatitive sequence content and type. Subsequently, we
then used the RepeatExplorer_Ultilities tool to merge the paired-end data to meet the
requirements of the RepeatExplorer software (Hag et al., 2022). Finally, we analyzed the
repetitive sequences using the RepeatExplorer2 software on the Galaxy platform (re-
characterized by dnaPipeTE software annotations).

The contigs file from the aforementioned analysis were analysed using DANTE on the
Galaxy platform, with the following output parameters specified: min_length = 100,
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max_length = 10,000, and similarity_threshold = 0.8. This process yielded the LINE
information, and the Genome Browser software was subsequently used to extract the target
sequences. MEGA10.0 (Molecular Evolutionary Genetics Analysis) (Tamura, Stecher &
Kumar, 2021) was then employed to construct separate phylogenetic trees for LTR and
LINE repetitive sequences of S. ginlingensis using the maximum likelihood (ML) method
(Myung, 2003). The optimal partitioning model of proteins, recommended by Model
Selection (an inbuilt tool of MEGA 10.0), was utilised to construct the phylogenetic tree,
which was then refined using Figtree software (Mohammadi, 2017).

Fluorescence in situ hybridization localization of repetitive sequence
positions in the S. ginlingensis
Preparation of films and probes
A solution of 0.05% colchicine at a volume of 6-8 pL was injected. A total of 6-8 h later,
the testes of S. ginlingensis grasshoppers were dissected and placed in 0.075 mol/L
hypotonic potassium chloride solution for 15 min, followed by fixation, squashing,
staining with a 5% Giemsa staining solution, and storage at —20 °C for later use.

The PCR labeling method (Buchner, 2024; Serpieri & Franchi, 2024; Weidner et al.,
2024) was employed for amplification to generate the probes. Genomic DNA from
S. ginlingensis was successfully extracted and served as the template. Biotin-labeled
nucleotides (biotin-11-dUTP) were incorporated into the reaction (Milani et al., 2021).
Details of the PCR reaction system and parameters are provided in the Appendix
(Tables S1 and S2). Genomic DNA was extracted from the S. ginlingensis genome, and its
concentration was S. ginlingensis genome DNA was 360.141 pg/ml with an OD
value of 1.899, and the OD value was within the requirement of 1.8-2.0. Subsequently,
DNA was 360.141 pg/ml with an OD value of 1.899, and the OD value was within the
requirement of 1.8-2.0. The genomic DNA was fragmented to a length of
approximately 500 bp to meet the requirements for subsequent sequencing. The
fragmented DNA underwent end repair, and sequencing adapters were added at each end
of the DNA fragments to ensure compatibility with the sequencing platform. The
libraries were purified using agarose gel electrophoresis to remove DNA fragments
lacking adapters.

Finally, the libraries were quantified using quantitative PCR to ensure that their
concentrations met the requirements for sequencing. Primers derived from
five satDNAs and five LTR repeats that satisfied the experimental conditions were screened
through pre-testing for PCR amplification, and the amplified products were the desired
probes. The amplification products were analyzed via electrophoresis and exhibited the
correct size of the target bands along with clear, single bands. Electropherograms of
the amplified products from satDNA PCR are shown in Figs. S1A and S1B. We observed
the target bands in the expected locations, which appeared thicker and brighter. The
concentration of the probes was measured using an ultra-micro UV-visible
spectrophotometer, and the concentration of the 10 probes was found to range of
700-900 pg/ml.
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Table 1 Repetitive sequence types and contents of S. ginlingensis (three samples).

Types Sample 1 Sample 2 Sample 3 Average value SD

45S_rDNA 0.36% 0.42% 0.35% 0.38% 0.04
Satellite 2.62% 4.24% 2.05% 2.97% 1.14
LTR 18.72% 16.64% 17.87% 17.74% 1.05
Penelope 1.98% 2.91% 1.77% 2.22% 0.61
LINE 9.79% 9.48% 9.84% 9.70% 0.20
Maverick 9.55% 17.22% 7.56% 11.44% 5.10
Helitron 0.56% 0.21% 0.23% 0.33% 0.20
Plastid 0.01% 0.01% 0.02% 0.01% 0.01
Mitochondria 0.10% 0.09% 0.10% 0.10% 0.01
Unclassified mobile_element 7.00% 0.65% 7.64% 5.10% 3.86
Unclassified repeat 13.15% 11.87% 15.74% 13.59% 1.97
Total 63.84% 63.74% 63.17% 63.58% 0.36

Fluorescence in situ hybridization verification

To validate the 10 repetitive sequences, we performed FISH experiments (Qiu et al,
2024b). Among them, five satellite DNA probes were labelled with biotin and hybridised to
S. ginlingensis chromosomes, separately. Finally, we estimated the percentage abundance
of repetitive sequences and their copy number in S. ginlingensis using the RepeatMasker
software (Tempel, 2012).

RESULTS

Determination of the genome size of S. ginlingensis

The genome size of S. ginlingensis was measured by means of flow cytometry, with the
experiment requiring a coefficient of variation (CV) of less than 5% in order to ensure that
the quality control was up to standard. The DNA content of the S. ginlingensis samples was
calculated using formulas based on the fluorescence intensity data obtained by flow
cytometry. This ensures the accuracy and reproducibility of the experimental results
(Fig. S2). To ensure the reliability of the experimental results, all experiments were
repeated thrice, and the mean value of the results from the three experiments was
calculated. This calculation yielded a genome size of 11.3677 pg for females and 10.9455 pg
for males, with a difference of 0.4222 pg between the two (Table S3).

Results of repeated sequences of S. ginlingensis

Using RepeatExplorer2 and dnaPipeTE to compare the analysis results, we
comprehensively analyzed the type and content of repetitive sequences in the

S. ginlingensis genome. Table 1 lists the results of RepeatExplorer2 analysis of the three
0.1X second-generation data samples, and Fig. 1 illustrates the type and content of
repetitive sequences in the S. ginlingensis genome resulting from the final analysis.
Figure S3 shows the type and content of repetitive sequences in the genome of

S. ginlingensis as analyzed by dnaPipeTE.
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RepeatExplorer2 analysis showed that the total content of repetitive sequences of
S. ginlingensis was 63.58%. The types and relative contents of repetitive sequences were as
follows: 45S rDNA 0.38%, Satellite DNA 2.97%, LTR 17.74%, Penelope 2.22%, LINE
9.70%, Maverick 11.44%, Helitron 0.33%, Plasmid 0.01%, Mitochondrion 0.10%,
Unclassified mobile element 5.10%, Unclassified repeat 13.59%. dnaPipeTE software
analysis showed that the total content of repetitive sequences of S. ginlingensis was 63.65%,
which was more consistent with the results of RepeatExplorer2 analysis, LTR 10.99%,
LINE 14.12%, SINE 1.59%, DNA 16.55%, Helitron 0.33%, rRNA 0.38%, Low_Complexity
5.10% Simple_repeat 13.59%, This shows that the results of the two software programs are
more consistent regarding the total content of repetitive sequences, but the TEs analyzed
by dnaPipeTE are obviously not as good as the results of RepeatExplorer2.

The RepeatExplorer2 software (Novak, Neumann & Macas, 2020) was utilized to
analyse the repetitive sequences of three S. ginlingensis samples, The findings
demonstrated that the repeat sequence types obtained from the three experiments were
consistent, with a total of nine annotated types and some unannotated sequences. The
standard deviation of the three samples was calculated, and the results indicated that the
content of the majority of repetitive sequences exhibited minimal variation. However, the
content of unclassified mobile elements and maverick sequences demonstrated greater
variability. The total content of repetitive sequences was found to be similar for the three
samples, with only minor differences observed between 63% and 64%.

Although dnaPipeTE has superior performance in terms of runtime and transposon
annotation, and is able to complete efficient analyses in a short time, RepeatExplorer2
software shows more obvious advantages when dealing with complex genomes, as it is able
not only to automatically annotate transposable elements, but also to concatenate
repetitive sequences to provide more intuitive results, RepeatExplorer2 not only
automatically annotates transposable elements, but also tandem repeats, providing more
intuitive analysis results, making it even more powerful in analyzing repeat composition
and distribution patterns.

Construction of phylogenetic tree for repetitive components

The LTR sequences obtained from RepeatExplorer2 analysis were utilised for the
construction of phylogenetic tree (Zhou et al., 2021; Zou et al., 2024) with the results
presented in Fig. 2.

RepeatExplorer2 analyzed a total of 65 LTR repeat sequences, including nine from the
Bel-Pao superfamily, 5 Tyl-copia superfamily, 45 Ty3-gypsy superfamily, and six
unclassified LTRs. Phylogenetic analysis revealed that the Ty3-gypsy superfamily was the
more predominant among the LTR elements and appearing prinarily in clusters, indicating
a high degree of homology. This finding is consistent with the evolutionary hypothesis, as
LTR elements typically spread and amplify in the genome through reverse transcription
and transposition mechanisms reflecting their shared evolutionary histories. Additionally,
a small number of sequences from the Ty3-gypsy, Bel-Pao, and Ty1-copia superfamilies, as
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Figure 2 Phylogenetic tree of LTR in S. ginlingensis. Full-size K] DOT: 10.7717/peerj.19358/fig-2

well as unclassified LTRs, clustered into another group, possibly reflecting genetic
exchange or common evolutionary pathways among these superfamilies.

LINE sequences identified through DANTE analysis were subjected to phylogenetic
analysis, resulting in the phylogenetic tree shown in Fig. S4. A total of 253 LINE repeats
were identified through DANTE analysis. The phylogenetic tree revealed that the majority
of LINE sequences exhibited a high degree of homology, suggesting a common ancestral
origin. Except for a few LINE sequences (marked in red in Fig. S4), the remaining
sequences underwent similar evolutionary changes. This finding suggests that the majority
of LINE sequences likely followed analogous evolutionary pathways within the genome,
indicating that they may have been subject to similar evolutionary pressures. These
observations are consistent with the evolutionary hypothesis, as the homology of LTR and
LINE elements reflects their diffusion and amplification processes in the genome, as well as
their exposure to similar selective pressures during evolution. This homology not only
reveals the mechanisms by which these elements spread within the genome but also
suggests that they have undergone complex dynamic changes during genome evolution,
influencing genome size, structure, and function.
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Fluorescence in situ hybridization
Karyotyping of S. ginlingensis
We used the spermathecae of the S. ginlingensis for chromosome preparation, which were
stained with 5% Giemsa’s stain and imaged in the microscope to image the resultant figure,
and then the autosomes were paired and arranged from largest to smallest as in Fig. 3.
We performed chromosome counts on 10 well-dispersed cells, which showed a
chromosome number of 2nd = 20 + XO, with an XO type of sex determination
mechanism. The grouping of chromosomes was 3L + 6M + S + X. Relative length RL values
greater than 10% were large chromosomes, and S. ginlingensis had three pairs (L1-L3);
relative length RL values within 5-10% were medium-sized chromosomes, and
S. ginlingensis had six pairs (M4-M9); relative length RL values less than 5% were small
chromosomes, and S. ginlingensis has one pair (510); sex chromosome X is a
medium-sized chromosome, with a relative length RL value of 8.41%, and the length of sex
chromosome X is ranked 6th in the whole chromosome group, see Table 2.

Fluorescence in situ hybridization verification

In this study, FISH experiments were conducted to validate the aforementioned repetitive
sequence elements. Five satellite DNA probes and five biotin-labeled LTR probes were
used to hybridize with the chromosomes of the S. ginlingensis bungee locust, respectively.
The signals were clearly observable under a fluorescence microscope, and the distributions
of the five satellite DNA and LTRs (Xu ¢ Wang, 2007) on the chromosomes of the

S. ginlingensis were successfully detected. The relevant parameters the karyotypic analysis
were used to plot the karyotypic patterns.

Five satellite DNA distribution patterns were analysed by FISH technique, and the
results demonstrated a clustered distribution, but there were significant differences in the
number of loci and signal strength:

For satDNA-01, two loci were identified on chromosome L2 at the third position, one
locus was detected on chromosome M4 at the proximal midend, and two loci were
identified on chromosome M8 at the midend. For satDNA-02, a total of four FISH loci
were detected on chromosomes L2, L3, and M6, all exhibiting strong signals. Chromosome
L2 exhibited one locus at its terminus; chromosome L3 displayed two loci at the 1/4 and
3/4 positions, respectively; and chromosome M6 possessed a single locus at its extremity.
For satDNA-03, a total of 11 FISH loci were detected on chromosomes L3, M5, M6, M7,
MS8, S10, and X, exhibiting varying signal strengths. The signals on chromosome L3 were
weaker, while the remaining chromosomes exhibited stronger signals, with loci
predominantly distributed in the terminal or medial regions. For satDNA-04, a total of
three FISH loci were detected on chromosomes L1, L3, and M5, all exhibiting weak signals.
For satDNA-05, a total of five FISH loci were detected on chromosomes L1, M4, M5, M8,
and M9, all exhibiting strong signals. The loci were located at the chromosome extremities,
specifically at the one-quarter position or within the intermediate region (Figs. 4 and 5).

The distribution pattern of long terminal repeat sequences (LTRs) on chromosomes is
consistent with the of satellite DNA, exhibiting an aggregated distribution. For LTR-01, A
total of four FISH sites were detected on chromosomes L3 and M4. For LTR-02, two FISH

Yin et al. (2025), PeerdJ, DOI 10.7717/peerj.19358 9/22


http://dx.doi.org/10.7717/peerj.19358
https://peerj.com/

Peer/

~ : 10 X
Figure 3 Karyotype of S. ginlingensis. Full-size K&] DOT: 10.7717/peerj.19358/fig-3
Table 2 Statistic of karyotypic data of S. ginlingensis.
Chromosome number Group Chromosome relative length (%)
1 L, 15.70 = 0.37
2 L, 13.83 £ 0.32
3 L 11.07 £ 0.19
4 M, 9.63 + 0.06
5 M; 8.99 +0.12
6 M, 7.74 + 0.22
7 M, 6.99 + 0.25
8 Mg 6.51 £ 0.17
9 M, 6.03 £ 0.10
10 S0 4.83 + 0.36
X X 8.41 £0.17

sites were detected on chromosomes L1 and M6, all exhibiting strong signals. For LTR-03,
one FISH site was detected near the end of chromosome L1. For LTR-04, one site was
detected at the 1/4 position of chromosome L2 and one site in the middle of chromosome
S10. For LTR-05, one site was detected at the end of chromosome L3 and one site in the
middle of chromosome M7, all exhibiting weak signals (Figs. 6 and 7).

The results of the chromosomal FISH of S. ginlingensis are summarized in Table 3. The
results demonstrated that, most of the five satellite DNA and five LTR sequences were
localized on autosomes, with only satDNA-03 localized on sex chromosomes.

As illustrated in Table 4, the estimated abundance percentage and copy number of
S. ginlingensis were determined using RepeatMasker software. In addition, the percentage
of A+T for each satellite DNA family is indicated.
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The abundance of the satellite DNA families ranged from 0.015% (Sat-04) to 0.054%
(Sat-02), with the total cumulative abundance of the five satellite DNA families in the
genome being 0.144%. Among these, Sat-02 (0.054%) and Sat-03 (0.028%) exhibited the
highest abundance levels, accounting for more than half of the total satellite DNA content
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Figure 5 FISH result of S. ginlingensis with SatDNA04-05 as probe. SatDNA04-05: FISH photo;
SatDNA04-05B: Karyotype diagram. Full-size Kal DOI: 10.7717/peerj.19358/fig-5

in the S. ginlingensis genome. In contrast, Sat-05 (0.026%) and Sat-01 (0.021%) showed
lower abundance levels, while Sat-04 (0.015%) was the least abundant family. Among all
five satellite DNA families, Sat-02 and Sat-03 not only showed the highest abundance but
also exhibited single-copy numbers of 4,213.22 and 1,0979.18, respectively, significantly
higher than those of the other families.

DISCUSSION

The genomes of Orthoptera insects have demonstrated substantial expansion, with the
largest reaching 21.48 Gb. The large genomes of Acrididae insects are primarily attributed
to the high content of repetitive sequences. Currently, the highest repetitive sequence
content is observed in the Angaracris rhodopa genome, which is of a mega-sized genome
(16 Gb), where repetitive sequences account for 75.17% of the genome, indicating a
significant increase in repetitive sequence content (Liu et al., 2022). Compared to

A. rhodopa, the genome size of S. ginlingensis is 11.36 pg, with repetitive sequences
constituting 63.58% of the genome. In contrast, the smallest genome among Acrididae
insects is that of L. migratoria manilensis, with a genome size of 6.60 pg and its repetitive
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Figure 6 FISH result of S. ginlingensis with LTR-01-03 as probe. LTR-01-03: FISH photo; LTR-01-
03B: Karyotype diagram. Full-size Kal DOI: 10.7717/peerj.19358/fig-6

sequences accounting for 56.83% of the genome (Cong et al., 2022). This finding suggests
that, compared to the two Acrididae species mentioned, S. ginlingensis represents a
medium-sized insects within Acrididae. Furthermore, these studies indicate that the
proportion of repetitive sequences in the genome continues to increase during the process
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of genome expansion. The expansion of transposable elements (TEs) is considered as
potential cause of genome gigantism in Acrididae insects (Ferretti et al., 2020). In

S. ginlingensis, TEs constitute 41.43% of the genome, whereas in the smaller genome of
L. migratoria manilensis, TEs account for 49.47% of the genome. This discrepancy may be
attributed to a bias in the TE database annotation for L. migratoria manilensis, as Repbase
incorporates consensus sequences of TEs identified using the L. migratoria manilensis
genome. It is noteworthy that S. ginlingensis, harbors a substantial proportion of
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Table 3 The distribution of 5 satellite DNAs and 5 LTRs on chromosomes.

Repetitive sequence

L L

L;

M,

M;

M,

M,

Ms

M,

SatDNA-01
SatDNA-02
SatDNA-03
SatDNA-04
SatDNA-05
LTR-01
LTR-02
LTR-03

Note:

Fluorescence signals with repeated sequences on chromosomes.

- Fluorescence signals without repeated sequences on chromosomes.

Table 4 The estimated abundance percentage and copy number of S. ginlingensis using
RepeatMasker software, as well as the percentage of A+T for each satellite DNA family.

Satellite name Monomer length Avg. A+T % Avg.% Abundance Avg. copy_number
Sat-01 905 48.39 0.021 2,583.96
Sat-02 1,372 47.59 0.054 4,213.22
Sat-03 273 60.81 0.028 10,979.18
Sat-04 925 52.65 0.015 1,735.90
Sat-05 1,147 47.34 0.026 2,424.41

unclassified repetitive sequences (13.59% of the genome), which may signify the

emergence of novel TE sequences or even subfamilies during the process of genome

expansion. It is particularly noteworthy how transposable elements (TEs) evolve at a

significantly faster rate than other parts of the genome. In fact, even among closely related

Acrididae species, shared TE sequences are relatively rare.

In contrast tandem repeat sequences, they tend to remain more conerved over time.

Studies of Acrididae insects have shown that in two species, Oedaleus decorus and

L. migratoria, the satDNA libraries are still 61% taxonomically incomplete, or

approximately 39% taxonomically complete (1.7% per Ma), after about 23 million years of
independent evolution (Camacho et al., 2022; Cong et al., 2022). Notably, the monomers of

the satDNAs in these grasshoppers don’t have any conserved functional motifs, which is

different to other satDNAs such as human centromeric satDNA. This suggests that the

satellite DNA in Acrididae insects may be evolving at an accelerated rate. Research on four

types of chromosome in the morabine grasshopper Vandiemenella viatica suggests that

certain satellite DNA families expand in some types, while others contract or are lost
(Palacios-Gimenez et al., 2020). This supports the hypothesis that satellite DNA
in Acrididae genomes has undergone rapid changes in recent evolutionary times

(Liu et al., 2024).

In this study, the distribution of different probes on chromosomes was determined

through the analysis of FISH results. Furthermore, RepeatExplorer2 analysis was used to
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characterize their in S. ginlingensis, revealing the types and abundance of these repetitive
sequences. A comparative analysis indicated that sample selection had a minimal impact
on the overall content of repetitive sequences, with only a small proportion of repetitive
sequence types being affected. This finding reinforces the conclusion that random
sampling had a negligible influence on the repetitive sequences in this study. Analysis of
LTR retrotransposons revealed that the Ty3-gypsy family is the most abundant among
LTRs, a finding consistent with earlier studies on the prevalence of the Ty3-gypsy family in
insects (Palacios-Gimenez et al., 2020). The distribution of Ty3-gypsy on the LTR
phylogenetic tree suggests that the Ty3-gypsy, Ty3-gypsy and Bel-Pao superfamilies.
However, the Ty3-gypsy superfamily does not form a single clade, indicating internal
diversity within the superfamily (Ferretti et al., 2020). This divergence may be attributed to
variations in the activity of the superfamily at different evolutionary time points, which
could also explain the predominance of the Ty3-gypsy superfamily. Compared to

L. migratoria manilensis, the LTR phylogenetic results for S. ginlingensis demonstrate the
absence of SINE elements, which may be due to evolutionary selection pressure. The
integration of SINEs has the potential to compromise the functionality of genes or
regulatory regions, resulting in genomic instability and subsequent purging to maintain
genomic stability. This underscores the potential involvement of DNA and LTR sequences
in genome evolution.

The results from FISH and RepeatExplorer2 analyses reveal that satDNA is mainly
localized on autosomes, with more fluorescent signals observed on chromosomes than on
LTRs. However, the SatDNA content detected by RepeatExplorer2 is relatively low,
indicating that the number of fluorescent signals does not necessarily correlate with the
abundance of repetitive sequences.

The present study investigates the distribution characteristics of repetitive sequences in
the genome of S. ginlingensis, to elucidate their roles in genome evolution. The results
indicate that TEs and satDNA play key roles in genome expansion and chromosome
structure evolution. Notably the high content and diversity of TEs may be an important
factor leading to genome gigantism in Acrididae insects. Furthermore, the enrichment of
satDNAs in chromosomal mitotic regions supports their potential role in genome stability
and function, thus providing significant insights into the evolutionary history of large
genomes in the family Acrididae. Concurrently, this study offers valuable data for
understanding genomic variation and evolution in Acrididae insects. These findings
provide novel insights into the genome evolution of Orthoptera Caelifera insects and
establish a crucial foundation for future studies of genome size variation and repetitive
sequence function.

CONCLUSIONS

The genome size of S. ginlingensis was determined by flow cytometry (Yuan et al., 2021) as
11.3677 pg in females and 10.9455 pg in males, with a difference of 0.4222 pg. The
relatively large genome size is consistent with the genomic characteristics of the Acrididae
family, which is known for its large genomes. The total content of repeats was 63.58% in
three 0.1X S. ginlingensis genome data samples analyzed using RepeatExplorer2, of which
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the LTR of LTR retrotransposons accounted for 17.74% of the genome. This is a common
feature of the genome of Acrididae and other Orthoptera insects, and these sequences play
an important role in genome evolution and structure (Nie ef al., 2024). Phylogenetic
analysis of LTR elements has shown that these elements belong to multiple families within
a monophyletic clade, suggesting that these elements share a common evolutionary history
and are not of independent origin. In particular, the significant increase in the Ty3-Gypsy
sequence in the LTR element highlights a specific trend in the evolution of this genome.
These studies imply that the rapid evolution and diversification of transposable elements in
the genome of Orthoptera insects can drive genome expansion and increase genetic
diversity.

Despite the prevalence of TEs in the genome, certain TE signals were not detected in
FISH experiments. This phenomenon may be attributed to various factors, including the
dispersion of TEs and the variability of probes, which result in weak or discontinuous
signals on chromosomes, that are challenging to detect in FISH experiments. Furthermore,
the high diversity of TEs, the potential inadequacy of probes to fully cover all types, and the
rapid rate of evolution of TEs may contribute to the fading of some TE sequences in the
genome or their replacement by others, thereby preventing the detection of corresponding
signals in FISH experiments.

The chromosome number of S. ginlingensis is 2nJ = 20 + XO, and the X chromosome is
of a medium-sized. The distribution of five satellite DNA sequences and three LTR
sequences on the chromosome was determined by FISH, and all of their sequences showed
a cluster-type distribution. The majority of these sequences were concentrated on
autosomes, with only satDNA-03 localised on the sex chromosomes. This distribution
pattern is consistent with the general organization of repetitive sequences in the genomes
of Orthoptera insects, which are usually concentrated in heterochromatin regions. The
aggregation and distribution of repetitive sequences may have an impact on chromosome
structure and function, thereby affecting the recombination and regulation of genes. The
results of the FISH experiments demonstrated that the number of fluorescence signals
from satellite DNA exceeded that of LTR, yet the content was lower than that of LTR. This
finding suggests that the number of fluorescence signals does not directly correspond to
the sequence content.
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