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ABSTRACT
Heart rate variability (HRV) measures the variation in the time interval between
successive heartbeats, reflecting the influence of the autonomic nervous system (ANS)
on heart rate (HR) changes. This review provides an extensive overview of HRV
measurement techniques, their applications, and their limitations in healthcare,
exploring their potential for prognosis and condition assessment. A scoping review
was conducted, gathering literature reviews on HRV spanning the past fifty years using
PubMed, Scopus, and Web of Science databases. Our findings identified significant
research gaps, including contradictions in the literature and the absence of standardized
protocols for HRV measurements, which complicate the establishment of consistent
baseline values. Additionally, the lack of protocols for pulse rate variability (PRV) in
the context of advanced sensor technology hinders progress in HRV research. Despite
these challenges, HRV remains significant in assessing cardiac autonomic function and
its potential clinical applications. However, barriers such as device unfamiliarity, data
accuracy concerns, and a lack of clinical trials limit its adoption. Further research is
required to elucidate the relationship between abnormal HRV and health problems
and to establish consistent baseline values for advancing HRV applications.

Subjects Cardiology, Sports Medicine
Keywords Heart rate variability, Autonomic nervous system, Wearable devices,
Electrocardiogram, Photoplethysmography, PPG, ECG

INTRODUCTION
Heart rate variability (HRV) refers to the variation in the time interval between successive
heartbeats. It is a measure of the naturally occurring fluctuations in the timing of each
heartbeat and is controlled by the autonomic nervous system (ANS). HRV is a measure
that helps us understand how our heart rate (HR) changes over time. If you calculate the
average time between consecutive heartbeats, you obtain the resting beat-to-beat interval.
HRV describes the variations in this resting beat-to-beat interval. There may be variations
in the range of 10% to 30% in the beat-to-beat timing interval even when the HR per
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Figure 1 Overview of the scoping review process using PRISMA 2020 flow diagram guidelines.
Full-size DOI: 10.7717/peerj.19347/fig-1

minute does not change. We conducted a scoping review (see Fig. 1) of the field to identify
the measurement methods used in past and current research into HRV.

Our understanding begins with the autonomic nervous system (ANS), which is mainly
composed of two branches: the parasympathetic nervous system (PNS) and the sympathetic
nervous system (SNS). The SNS, also called the fight-or-flight system, activates in stressful
situations leading to increasing HR, constricting blood vessels, and elevating blood pressure
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among others. Conversely, the PNS, known as the rest-and-digest mechanism, opposes
the SNS by decreasing the HR and lowering blood pressure. Both the SNS and PNS work
in harmony to maintain a sympathovagal balance, ensuring overall well-being (Gabella,
2012). An imbalance between these systems can signify heart-related irregularities (Ishaque,
Khan & Krishnan, 2021). The heart is innervated by both the SNS and PNS at the sinoatrial
(SA) node, often referred to as the heart’s pacemaker. This node orchestrates the rhythm
of our heartbeats, subject to the influence of the PNS and SNS. The PNS can lower HR by
as much as 50 beats per minute, whereas the SNS can elevate HR to 200 beats per minute.
In the absence of PNS and SNS influence, the heart maintains an intrinsic HR of 100-110
beats per minute (Alugubelli, Abuissa & Roka, 2022). Furthermore, our resting HR typically
hovers between 60 and 70 beats per minute, signifying a predominance of PNS mediation
at rest. The two limbs of the ANS constantly interact to keep the body’s cardiac output
at an adequate level to suit its demands. Therefore, measuring HRV can indirectly aid in
understanding autonomic function (Tiwari et al., 2021; Peltola, 2012).

The idea that a healthy HR must have variations was established a century ago (Draghici
& Taylor, 2016). As HR is largely mediated by both the PNS and SNS, HRV is considered a
more sensitive index of the ANS function than simple HR analysis (Routledge, Chowdhary
& Townend, 2002). Resting HR is predominantly regulated by the PNS through the vagus
nerve, which modulates HR in synchrony with the respiratory cycle, as evidenced by the
physiological respiratory sinus arrhythmia (RSA). The SA node receives input from both
the PNS and the SNS, with the vagal effects occurring more rapidly than the slower-acting
sympathetic effects. HRV reflects primarily vagal modulation of the heart (Routledge,
Chowdhary & Townend, 2002; Draghici & Taylor, 2016).

The complexity of heart function is highlighted by the beat-to-beat variability in
cardiovascular signals such as HR, arterial blood pressure, and stroke volume. These
fluctuations arise from a dynamic interplay of physiological processes, influenced by
both external factors and internal regulatory mechanisms. For example, Kreibig (2010)
emphasized that emotional stimuli, such as joy and anxiety, do not produce uniform
HR or HRV responses, as these are shaped by the complex interplay between emotional
context, individual interpretation, and physiological processes. The ANS plays a critical role
in modulating these processes, particularly through the baroreceptor reflex. Additionally,
variations in ECG morphology reflect mechanical influences and can indicate cardiac
stability or arrhythmia susceptibility. Understanding these dynamics is essential for
assessing cardiovascular health, as diminished variability is linked to increased mortality
risk (Appel et al., 1989).

HRV can be assessed through two primary methods: electrocardiogram (ECG) or
photoplethysmogram (PPG) sensors. Figure 2 illustrates the time between consecutive
heartbeats using both ECG and PPG signals, providing a visual representation of these
measurement techniques. ECG is a widely employed non-invasive diagnostic technique
due to its ease of measuring electrical activity and strong correlation with the heart’s
mechanical and metabolic activity. Most clinical and commercial ECG-based HRmonitors
use algorithms to recognize the QRS complex on an electrocardiogram (see Fig. 2). On the
other hand, PPG relies on measuring changes in microvascular blood volumes (Alugubelli,
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Figure 2 Heart rate variability, as presented in electrocardiogram (ECG) and photoplethysmogram
(PPG) signals. The ECG signal is composed of the P, Q, R, S, and T waves; where P shows atrial depo-
larization, Q, R, and S are termed together as the QRS complex and show ventricular depolarization of
the heart and the T wave shows ventricular repolarization. The distance between R peaks is measured
in milliseconds as the RR interval. Similarly in the PPG signal, the SP (systolic peak) represents the max-
imum point of blood volume increase following a heartbeat. The DN (dicrotic notch) is a small dip fol-
lowing the SP, which corresponds to the closure of the aortic valve. The DP (diastolic peak) follows the di-
crotic notch and indicates the secondary increase in blood volume. The PP (pulse interval) is the time be-
tween successive systolic peaks, measured in milliseconds. PAT (pulse arrival time) is the interval between
the R-peak of the ECG signal and the SP of the corresponding PPG signal.

Full-size DOI: 10.7717/peerj.19347/fig-2

Abuissa & Roka, 2022; Hinde, White & Armstrong, 2021). When HRV is determined using
the PPG method, it is often called pulse rate variability (PRV) (Yuda et al., 2020). PRV
is commonly integrated into smartwatches, fitness bands, and various portable devices,
making it more accessible for continuous monitoring and health tracking. Data from
both ECG and PPG methods can be transformed into a tachogram recording for further
analysis. Indeed since the introduction of the first pulse measuring device by Anastasios
Filadelfeus in the nineteenth century, besides ECG as a measurement method, there are
other methodological approaches in HR and HRV research, such as measurement with
a chest strap or light-based technology for measuring blood volume pulse. Although
ECG is still the most common method used to measure HRV, PPG sensors are becoming
increasingly common. Innovative methods such as smart watches or clothing, chest straps,
and ear-canal sensors can be used to measure HRV with PPG’s assistance. The advantage
is increased data collection convenience and accuracy (Stangl & Riedl, 2022).

The RR intervals of the QRS complex in the ECG are modulated at different frequencies
by the differential rhythmic contributions from sympathetic and parasympathetic
autonomic activity. This modulation forms the basis for HRV analysis, which can
be performed using three main techniques: time-domain, frequency-domain, and
nonlinear methods, each offering unique insights into cardiac rhythms. One of the most
significant advantages of HRV analysis is its ability to distinguish between sympathetic and
parasympathetic influences on HR since it has significant implications for understanding
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ANS function and its impact on cardiovascular health. Power spectrum analysis of
HRV offers a sensitive, quantitative, and noninvasive method for assessing short-term
cardiovascular control (Akselrod et al., 1981). This differentiation can provide valuable
information in various clinical and research contexts, from assessing stress levels to
evaluating the risk of cardiac events. As technology continues to advance, the integration of
these sophisticated HRV analysis techniques into wearable devices and healthcare systems
is expanding our capacity to monitor and interpret the activity of the ANS in real time
and in everyday settings. This progress holds promise for improving early detection of
cardiovascular problems, personalizing treatment approaches, and enhancing our overall
understanding of heart-brain interactions and their impact on health and well-being.

This review article presents an analysis of the literature published in the field of HRV
and its applications in the past 50 years, guided by the research question: What are the
primary measurement methods for HRV, how have they evolved over the past 50 years,
and what are the key challenges and opportunities in their application for clinical and
technological advancements? This paper is for researchers and healthcare professionals
interested in HRV and its role in health. It also speaks to those looking into improving
HRV measurement methods and wearable technology for practical use. Moreover, it is
relevant for professionals developing standardized protocols and improving measurement
accuracy in HRV research and technology. We have addressed the relevant aspects of
the area, including the identification of the main research gaps—such as the lack of
standardized measurement protocols, challenges in data interpretation, and the need
for further validation of wearable HRV measurement devices—as well as the search
for appropriate outcome metrics, and current methodological techniques, all aimed at
presenting a comprehensive overview of state-of-the-art HRV measurement techniques.
This includes their applications across various fields of healthcare and the challenges faced
by engineers in utilizing HRV values, alongside discussions on the potential of HRV data
for patient prognosis and condition assessment, as well as the opportunities presented by
wearable HRV and PRV measuring devices.

SURVEY METHODOLOGY
Given the extensive body of literature on HRV, we crafted a comprehensive scoping
review of reviews to provide a holistic overview of HRV measurement techniques, their
varied applications, and the associated limitations in utilizing HRV values. The reason for
choosing a scoping review was to synthesize a broad and diverse body of literature, map
key concepts, and identify research gaps in HRV research. Unlike systematic reviews, this
method is especially well-suited for offering an exploratory overview of complex topics
without concentrating only on predetermined outcomes. Scoping reviews are not only
about summarizing existing literature but also about critically assessing it to uncover areas
that require more research and help researchers understand the landscape of a particular
field (Schryen et al., 2020). To assemble our dataset, we conducted an initial screening
process using three core databases: PubMed, Web of Science (WOS), and Scopus. Our
search criteria were precise, focusing on the English language, human studies, and full-text

Sundas et al. (2025), PeerJ, DOI 10.7717/peerj.19347 5/32

https://peerj.com
http://dx.doi.org/10.7717/peerj.19347


reviews with no time limit on the search and exclusively related to HRV. These reviews
had to specifically address the clinical relevance of HRV, its history and its integration with
wearable technology. The study selection process, summarized in Fig. 1, was a critical phase
that involved scrutinizing and refining the initial pool of articles based on strict criteria
that cover the following:

• Initial count: The initial search yielded a total of 1,992 reviews that met the basic search
criteria. Search terms included: (‘‘heart rate variability’’ OR ‘‘HRV’’).
• Duplicate removal: To streamline the dataset, we utilized Bibliometrix to identify and
remove 334 duplicate entries.
• Exclusion criteria: Articles were excluded from consideration if they fell into the
following categories: therapeutic studies, gene/genetic studies, detailed neurological
reviews, reviews exclusive to a specific disease, psychological biofeedback studies, as
well as those focused on food, medicine, and environmental pollution. The exclusion of
these articles was done to narrow the scope of the review and keep the focus on HRV
measurement techniques, clinical relevance, and applications, ensuring that the findings
are broadly applicable.
• Second screening: 83 articles were downloaded, which were free from duplicates, and
subjected to a more in-depth evaluation through a full-article reading.
• Final selection: After the second screening, 39 articles emerged as the select few that
fulfilled our rigorous criteria and were included in our scoping review, enabling us to
provide an indepth overview of HRV research developments over the years. We also
included device information from their respective websites, which might be updated
over time. In addition, the scoping review method allowed us to explore HRV literature
comprehensively and identify trends and gaps across a broad spectrum of research. This
methodology prioritizes breadth and exploratory analysis, making it ideal for addressing
the study objectives (Schryen et al., 2020). Figure 1 shows the PRISMA methodology
flow diagram.

RESULTS
The results section consists of seven main subsections. The first subsection captures the
history of HRV in the literature and explains the evolution of HRVmeasuring devices in the
last fifty years. The second and third subsections find existing methodological approaches
to measuring and analyzing HRV, which help in understanding HRV terminologies used
in the literature. We then started to identify research gaps and determine appropriate and
consistent HRV terminologies. The fourth one explores the confounding factors that affect
the value of HRV, the fifth subsection explains the clinical uses of HRV values, the sixth
subsection explains some of the contradictions in the literature about HRV parameters and
the seventh subsection elaborates on the potential of using HRV parameters.

HRV through the decades
The history of HRV captured in the articles reviewed reveals a fascinating evolution in
our understanding of this physiological phenomenon. In 1733, Stephen Hales made
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a groundbreaking discovery by identifying HRV in animals. Hales’ experiments on
arterial blood pressure variations during respiration introduced systematic measurement
techniques. Later, Carl Ludwig used a kymograph to study the frequency and pulse waves
in dogs and reported a connection between variations in heartbeat and breathing (RSA)
(Ernst, 2017). Ludwig’s use of the kymograph advanced the understanding of heartbeat
fluctuations. Despite significant challenges in earlyHRV studies, such asmanual RR interval
measurements, inadequate sampling rates, and lack of standardized protocols, their work
laid the groundwork formodern advancements. Ludwig’s is also creditedwith describing the
link between heartbeat fluctuations and respiration (RSA). This approach was innovative
for its time and contributed to the foundational understanding of cardiovascular physiology
(Ernst, 2017). Advancements continued with the development and widespread adoption of
electrocardiograms (ECGs) by Willem Einthoven in the early 1900s, allowing for precise
heart rhythm recording. This was followed by the introduction of Holter monitors in the
1950s, providing the capability for continuous monitoring of cardiac activities. In 1961,
scientists initiated time-domain analysis of beat-to-beat variations, setting the stage for
more comprehensive investigations (Billman, 2011).

It was in 1965 when Hon and Lee made a pivotal discovery by linking reduced HRV
around delivery time to increased fetal distress, highlighting the clinical relevance of HRV
(De Maria et al., 2021; Stys & Stys, 1998). They identified alterations in the beat-to-beat
interval as the earliest indicators of fetal distress, preceding changes in HR itself. The term
‘heart rate variability’ was later popularized by their findings and subsequent research
(Stys & Stys, 1998). Early studies from 1967 revived clinical research interests in obstetrics,
gynaecology, and cardiology, emphasizing its importance in assessing neurological function
and brain-vagal-heart communication (Stein et al., 1994).

As far back as the 1970s, physiologists began uncovering crucial factors linked to HRV.
They discovered that several factors interact with one another to influence HRV. Notably,
they identified key factors such as the control centres in the brainstem that regulate the
ANS, the baroreceptors responsible for stabilizing blood pressure, and the impact of
breathing patterns. Since the early 1970s, changes in HRV were accepted as a marker of
disease when the initial research connecting HRV to diabetic autonomic neuropathy was
published (Kautzner & John Camm, 1997). Eight disparate time-domain parameters were
introduced by Luczak and Laurig and 26 indices for the time-domain were proposed by
Opmeer (Kobayashi, Ishibashi & Noguchi, 1999). Significant changes occurred in the late
1970s when researchers began focusing on RR intervals for amore in-depth analysis of HRV
using ECG. This led to the creation of time-domain metrics like the standard deviation of
all NN intervals (SDNN) or the root mean squared value of the successive differences of
the interbeat interval(RMSSD) (Ishaque, Khan & Krishnan, 2021). A detailed explanation
of these terms can be found in ‘HRV analysis techniques’.

In 1981, a study found that analyzing RR interval variability provides physiological
insights into cardiac autonomic control (Ishaque, Khan & Krishnan, 2021). It was observed
that HRV disappeared after high-dose atropine blockade, confirming its relationship
with autonomic control. By the 1990s, RR intervals were considered less efficient than
spectral analysis methods, leading to an increase in studies centred on power spectral
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density metrics such as low frequency (LF), high frequency (HF), and the LF/HF ratio
related to ANS impairment caused by heart problems (Ishaque, Khan & Krishnan, 2021).
In the 1990s, Holter systems had already modified their equipment with options for
the assessment of HRV (Malik & Camm, 1990). The 1996 consensus report by the Task
Force of the North American Society of Pacing and Electrocardiology and the European
Society of Cardiology (NASPE/ESC) established standards for measuring, interpreting, and
usage of HRV measurements for clinical applications (Task Force of the European Society of
Cardiology the North American Society of Pacing Electrophysiology, 1996).

Since the early 2000s, HRV has become a promising physiological indicator for tracking
athletic performance and adaptations to exercise (Dobbs et al., 2019). HRV, traditionally
determined through medical ECG recordings and specialized software, has been limited
to laboratory or clinical settings due to high costs and technical knowledge. However,
advances in technology and portable monitoring devices have led to many commercial
systems now including HRV as a feature, which was validated as early as 2003. In 2006,
Poincaré plots were introduced to visually represent non-linear scatter plots linked to heart
conditions and reduced HRV (Ishaque, Khan & Krishnan, 2021). Today, in the 2020s, HRV
knowledge is considered essential by athletes and technology entrepreneurs for monitoring
body recovery, optimizing exercise routines, gauging sleep quality, and managing stress.

The history of HRV is reflected in Fig. 3, which shows the trends in scientific publications
on this topic over the last five decades. This figure provides valuable insight into the
evolution of perspectives on HRV and shows how it has become a fundamental tool for
understanding and improving human health and performance. In the 1970s and 1980s, a
significant percentage of HRV studies were focused on gynecology, particularly on fetal
HR monitoring, which became a standard of care and contributed to reduced morbidity.
This period marked the emergence of HRV’s first clinical applications, with its utility in
monitoring fetal and maternal health being widely recognized. By the 1980s, evidence
of complex non-linear dynamics in HRV further expanded the understanding of HRV’s
physiological significance.

With a growing interest in cardiovascular health in the 1990s, HRV research began
to shift toward physiology and sports sciences, emphasizing its role in autonomic
regulation and cardiovascular conditions. The standardization of HRV measurement
and calculation methods in 1996 played a crucial role in facilitating this expansion,
making investigations more comparable and enabling meta-analyses across various studies
(Task Force of the European Society of Cardiology the North American Society of Pacing
Electrophysiology, 1996). HRV research shifted from a focus on gynecology, particularly in
fetal HRV monitoring, to cardiovascular health and physiology in the 1990s was driven by
advancements in ECG technology and growing recognition of HRV’s role in autonomic
regulation (Billman, 2011). This period also saw an exponential growth in HRV research,
with over 14,000 articles mentioning HRV and more than 2,000 clinical trials exploring its
applications (Ernst, 2017).

By the late 2000s, HRV research had diversified further, with most studies focusing
on sports sciences, biomedical engineering, and physiology. With the innovations like
introducing HR monitoring and oxygen saturation through watches in mid 2000s
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Figure 3 Evolution of HRV research over five decades, reflecting its growing interdisciplinary impor-
tance.

Full-size DOI: 10.7717/peerj.19347/fig-3

led to explosion in the consumer wearables (Alugubelli, Abuissa & Roka, 2022). The
interdisciplinary nature ofHRV research becamemore evident as it was increasingly applied
to areas such as optimizing athletic performance, understanding autonomic regulation,
and advancing wearable technologies. This progression underscores the continued growth
and broadening scope of HRV research, which has become a critical tool in understanding
and improving human health and performance.

HRV measurement and devices
Progress in the adoption and analysis of HRV has been coupled with corresponding
progress in HRV measuring device technology. Historically, auscultation has been used
by doctors for many hundred years to identify cardiac tones and heartbeat rhythms, and
medical professionals have long been aware of changes in the beat-to-beat rhythm brought
on by age, sickness, and psychological conditions. The scientific study of beat-to-beat
HR rhythms was postponed until certain technological developments made it possible to
precisely and consistently measure the electrical activity of the heart. The invention of
four devices led to the advancement of this field: galvanometers, kymographs, ink-writing
polygraphs, and ECGs. Therefore, the age of scientific examination of HRV was dependent
on the availability of the electrocardiograph for physiological and clinical research. Accurate
timing of beat-to-beat variability was dependent upon the detection of features of the ECG
(i.e., the peak of the R-wave). Engineers used electrical circuits and clocks that later became
tachometers to locate the peak of R-waves. Timing improved with the introduction of
laboratory computers, and computer algorithms were able to recognize R-waves and other
ECG components (Ernst, 2017; Billman, 2011).

The early iterations of ambulatory cardiac monitors were relatively basic. These
devices were primarily focused on capturing and transmitting data related to a patient’s
cardiac activity without much onboard processing. A significant advancement came
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with the introduction of Holter monitors, which allowed for local data storage. Holter
monitors utilized cassette recorders to store the recorded cardiac data, enabling healthcare
professionals to review and analyze the patient’s heart rhythms at a later time. This was a
crucial development as it offered a way to capture long-term data, which was essential for
diagnosing irregular heart rhythms and other cardiac conditions. The heart rhythms were
evaluated using ECG recordings from a Holter monitor to offer a sensitive, noninvasive
evaluation of autonomic input to the heart (van Ravenswaaij-Arts et al., 1993; Stein et al.,
1994). By assessing HRV on 24-hour Holter recordings, autonomic function during the
day and at night was evaluated (Kristal-Boneh et al., 1995). The analysis was typically based
on either long-term Holter ECG recordings or short-term ECG recordings (Cygankiewicz
& Zareba, 2013).

In the 1960s, portable Holter devices were introduced, enabling semiautomatic
electrocardiogram analysis. The 1970smarked the beginning of computer-based automated
pattern recognition for ECG analysis. Until the 1980s, cardiotachometers were commonly
employed to capture a person’s electrical signal and record their HR for HRV studies.
During the 1980s, 2-lead ECGs were typically utilized in HRV research. Starting in the
1990s, HRV research expanded to include diverse methods. PPG and thoracic belts
were utilized to analyze HRV by measuring blood pressure and respiration. The 1990s
brought about increased storage capacity with digital storage and the standardization
of data formats. The introduction of twelve-lead ECGs in 2000 enabled more effective
analysis of various heart conditions by researchers collaborating with clinicians (Ishaque,
Khan & Krishnan, 2021). The next major leap in technology was the miniaturization of
computers. Ambulatory cardiac monitors have evolved from simple wireless transmitters
to sophisticated devices capable of local data storage, signal processing, and analysis. The
integration of telecommunication services has further revolutionized the field, enabling
real-time data transmission and advanced computational analysis, ultimately enhancing
the monitoring and diagnosis of cardiac conditions (Alugubelli, Abuissa & Roka, 2022). By
the 2010s, consumer-grade remote monitoring became accessible to the general public, and
in the 2020s, technology is advancing towards cloud-based solutions and the integration
of machine learning and artificial intelligence for signal analysis and interpretation.

Nowadays, HRV is predominantly measured using two techniques: the ECG-based
technique and the PPG-based techniques both of which utilize various types of HR
monitors. Since the 1920s, surface electrodes have been used in clinical practice to directly
measure cardiac electrical activity. The electrode-skin interface greatly influences the
quality of the signal. Medical-grade wearable ECG-based sensors typically record data
from multiple channels and enable more in-depth analyses, such as assessing conduction
problems, the location of premature beats, and ischemia. Initially, HRV was quantified
manually using computations of the mean RR interval and its short-term standard
deviation, or SDNN. However, in the 1990s, improvements in recording methods,
computing power accessibility, and inventive microprocessor technology made it possible
to analyze long-term records. ECG sensors are still considered the best technology for
measuring HR and HRV.
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PPG was developed in the 1930s. In a tachogram recording of PPG, the duration from
one peak of the blood volume curve to the next peak on the PPG signal represents the
beat-to-beat interval (Faust et al., 2022). PPG has been reintroduced due to advancements
in semiconductor technology, optoelectronics, and digital signal processing. Current PPG
sensors use low-cost optoelectronic components in red and/or near-infrared wavelengths.
PPG technology is versatile and useful in various clinical applications. It offers advantages
over ECG-based HRV analysis, especially in clinical situations where a pulse oximeter
is already present. This allows HRV analysis to be included without requiring an ECG,
providing a significant advantage (Schäfer & Vagedes, 2013). Consumer-grade devices that
use PPG have a good association with ECG readings. However, PPG-based medical-grade
devices are more accurate (Alugubelli, Abuissa & Roka, 2022; Dobbs et al., 2019; Hinde,
White & Armstrong, 2021).

As discussed above, the majority of commercial monitoring devices employ either
PPG or ECG sensors. The use of PPG-based monitors has increased in wearable devices
such as smartwatches, fitness bands, and other portable devices (Alugubelli, Abuissa &
Roka, 2022; Hinde, White & Armstrong, 2021). The data collected by these devices is then
analyzed using various techniques. The accessibility of high-quality sensors and the slow
data rate of HR signals contribute to the ease of measuring, communicating, storing, and
processing HRV data. However, compared to HRV values obtained from an ECGmachine,
there has been a percentage of error associated with HRV measurements obtained from
portable devices. Not all portable devices, whether PPG-based or single lead ECG, report
a similar error measurement to that of an ECG machine but the literature also showed
that this error is independent of the type of device and is primarily affected by the metric,
position, and biological sex. Some metrics obtained through spectral analysis have shown
poor agreement with the gold standard ECG machine metrics specifically the LF metric.
Although time-domain measurements obtained through portable devices, like RMSSD,
have been found to have good agreement with the gold standard ECG measurements. The
use of these portable devices seems to be a sensible choice in terms of the usability of HRV
measurements since it lowers the cost of the measurement and makes it simpler and easier
to use (Dobbs et al., 2019).

Regarding sampling, some HRVmeasurement devices take spot measurements, whereas
others only take measurements during periods of rest and/or sleep. Few devices are capable
of measuring HRV continuously for 24 h. Wearable technology includes armbands,
PPG wristwatches, and single-channel ECG chest wraps that measure PRV and HRV,
respectively. Although some of these devices’ accuracy is validated against the gold standard
ECG values, others still require additional validation.

A few of the devices that have been examined are included in Table S1. The table also
specifies which devices have been approved by the FDA and have been tested against the
gold standard ECGmeasurements. Table S1 contains information related to contemporary
wearable devices with HRV measuring technology. The information on the manufacturing
year, if the device is tested against the gold standard and FDA approval is taken from their
respective sites. Although wearable HRV measuring technology has become popular, there
is only a small amount of independent clinical data available on it. However, not all of
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these wearable devices are officially approved for use by healthcare professionals. In 2021,
out of 45 different devices available in the American market, only 13 had been given the
‘‘green light’’ by the Food and Drug Administration (FDA) (Alugubelli, Abuissa & Roka,
2022).

HRV measurement preparation involves determining the duration, ranging from 5 min
for basic parameters to longer for long-term fluctuations and non-linear parameters.
Individuals with high ectopic beats (beats originating outside of the sinoatrial node),
exceeding 20–30%, are generally not suitable for HRV analysis, except in cases where HR
turbulence analysis is being conducted. It is essential to address artefacts and identify and
manage ectopic beats during the measurement process (Johnston et al., 2020). Moreover,
maintaining a sample rate of at least 250 to 500 Hz, as recommended in the consensus
report published in 1996, is vital to avoid significant distortion in HRV data (Ernst,
2017; Task Force of the European Society of Cardiology the North American Society of Pacing
Electrophysiology, 1996).

To ensure consistency in physiological and clinical studies, the ESC/NASPE recommends
two types of recordings: short-term recordings of 5 min under stable physiological
conditions processed using frequency-domain methods, and nominal 24-hour recordings
processed by time-domain methods. Both methods yield correlated data, but the time-
domain analysis is considered technically simpler and less susceptible to interference,
making it more practical for routine clinical use (Stys & Stys, 1998).

The analysis is obtained under controlled standardized conditions (Cygankiewicz &
Zareba, 2013). Short-term HRV measurements come from two different but connected
systems in our body. The first one involves how our PNS and SNS work together and
constantly change. The second source is a combination of various mechanisms like the
control of blood pressure through feedback, RSA, and rhythmic changes in how our blood
vessels behave, all of which help control our HR (Shaffer & Ginsberg, 2017).

HRV analysis techniques
This section describes the techniques used to analyze HRV in the existing literature. The
two most widely used types of analysis carried out in HRV are time-domain analysis and
frequency-domain analysis. These indices offer insights into the autonomic control of
the heart and whether measured in time or frequency-domains, are interconnected and
reveal the influence on heart modulation of the parasympathetic, combined sympathetic-
parasympathetic, and circadian rhythms (Stein & Kleiger, 1999). Additionally to these
techniques, other non-linear analysis techniques are being used by the experts. Furthermore,
many studies combine time-domain and frequency-domain analyses to obtain a more
comprehensive assessment of autonomic function. Table S2 links these HRV metrics to
specific studies. The following subsections discuss the main characteristics of these analysis
techniques and touch upon their physiological sources.

Time-domain analysis
Time-domain methods encompass both statistical and geometric techniques. Seven
statistical and four geometrical indices are mentioned in the consensus report by
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Table 1 Time-domain metrics for HRV analysis.

Variable Units Description

Statistical measures
SDNN ms Standard deviation of all NN intervals
SDANN ms Standard deviation of the averages of NN intervals in all 5-

min segments of the entire recording
SDRR ms Standard deviation of all RR intervals
RMSSD ms Root mean square of the successive differences between

adjacent NN intervals
SDNN index ms Mean of the standard deviations of all NN intervals for all

5-min segments of the entire recording
SDSD ms Standard deviation of differences between adjacent NN

intervals
NN50 count – Number of pairs of adjacent NN intervals differing by more

than 50 ms in the entire recording
pNN50 % NN50 count divided by the total number of all NN intervals

Geometric measures
HRV triangular index – Total number of all NN intervals divided by the height of

the histogram of all NN intervals measured on a discrete
scale with bins of 1/128s

TINN ms Baseline width of the minimum square difference triangular
interpolation of the highest peak of the histogram of all NN
intervals

Differential index ms Difference between the widths of the histogram of
differences between adjacent NN intervals measured at
selected heights

Logarithmic index ms−1 Coefficient φ of the exponential curve, which is the best
approximation of the histogram of absolute differences
between adjacent NN intervals

the NASPE/ESC. The following four measures for time-domain HRV analysis are
recommended by NASPE/ESC: SDNN, standard deviation of the averages of NN intervals
(SDANN), RMSSD, andHRV triangular index (Cygankiewicz & Zareba, 2013; Task Force of
the European Society of Cardiology the North American Society of Pacing Electrophysiology,
1996). Table 1 shows the details of these time-domain metrics.

The measurement of these time-domain metrics was made possible by the development
of computerized data storage and signal processing. Employing advanced signal processing
techniques, the removal of ectopic beats from the ECG signal is made possible. An ECG
signal consists of threemain segments: the P segment, the QRS complex, and the T segment.
In this type of filtration, the P segment of the ECG signal is inspected. The absence of the
P segment indicates that the heartbeat did not originate at the sinoatrial (SA) node, and
therefore, does not convey information about the ANS (Draghici & Taylor, 2016). Such
beats are referred to as the ectopic beats. After performing ectopic filtration from the output
ECG signal, RR intervals are converted into NN intervals (Peltola, 2012; Cygankiewicz &
Zareba, 2013; Johnston et al., 2020). This filtering process ensures that HRV analysis only
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Table 2 Frequency-domain metrics for HRV analysis.

Variable Units Description Frequency range

Analysis of short-term recordings (5 min)
Total power ms2 The variance of NN intervals over the temporal segment ≈≤0.4 Hz
VLF ms2 Power in very low frequency range ≤0.04 Hz
LF ms2 Power in low frequency range 0.04–0.15 Hz
LF norm nu Relative low frequency power in normalized units LF/(total

power-VLF)× 100
n/a

HF ms2 Power in high frequency range 0.15–0.4 Hz
HF norm nu Relative high frequency power in normalized units

HF/(total power-VLF)× 100
n/a

LF/HF % Ratio LF (ms2)/HF(ms2) n/a

Analysis of entire 24 hours
Total power ms2 Variance of all NN intervals ≈≤0.4 Hz
ULF ms2 Absolute power in the ultra-low frequency band range ≤0.003 Hz
VLF ms2 Absolute power in the very low frequency range 0.003–0.04 Hz
LF ms2 Absolute power in the low frequency range 0.04–0.15 Hz
HF ms2 Absolute power in the high frequency range 0.15–0.4 Hz

considers heartbeats originating from the SA node (Li, Rüdiger & Ziemssen, 2019; Stys &
Stys, 1998).

The choice of analysis duration also plays a crucial role in determining the physiological
processes that a matric predominantly correlates with. Each of the time-domain metrics
shown in Table 2 requires a specific time frame for measurement and reflects different
aspects of HRV accordingly. Five-minute and twenty-four-hour recordings are suggested as
standards for short-term and long-term measurements because the value of time-domain
parameters strongly depends on the length of the analyzed time interval (Hejjel & Gál,
2001). RMSSD and NN50 count divided by the total number of all NN intervals (pNN50),
for instance, are capable of capturing changes in HRV over relatively short periods, typically
up to 5 min.

Regarding long-term measurements of SDNN, as evidenced by a substantial body of
literature, often demand data collected over a more extended duration, such as 24 h. For
example, over a two-minute interval, the SDNN primarily reflects RSA or PNS activity
but for a 24-hour SDNN measurement slower processes, such as circadian rhythms or
hormonal fluctuations, take centre stage. SDANN is the best measurement to reflect
circadian variations in HRV.

In essence, the analysis of successive differences in NN intervals targets the faster
components of heart rhythm, including high-frequency HRV and RSA, which are
predominantly parasympathetic in nature. SDNN is thought to represent overall variability.
There is not a single time-domain HRV parameter that could be said to primarily represent
sympathetic heart modulation (Cygankiewicz & Zareba, 2013).

Although the strength of the correlation varies, the time-domain indices are positively
correlated with one another (Cowan, 1995). The SDNN is found to be highly correlated
with frequency-domain parameters such as ultra-low frequency (ULF) and total power.
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Figure 4 Power spectral density of RR interval signal indicating ULF and VLF bands (≤0.04 Hz), LF
Band (0.04–0.15 Hz), and HF Band (0.15–0.4 Hz).

Full-size DOI: 10.7717/peerj.19347/fig-4

Highly correlated time-domain metrics are SDNN and SDANN to RMSSD and pNN50,
respectively (Stein & Kleiger, 1999; Cowan, 1995).

Frequency-domain analysis
As early as the 1960s, investigators began to apply spectral analysis approaches to the
RR series by using fast Fourier transform and autoregressive modelling. Similar to a
prism dispersing white light into various colours of different wavelengths, one can think
of the frequency-domain analysis as analogous to placing a photosensor in front of the
dispersed light, which measures the strength of individual light components (Bilchick &
Berger, 2006). Using frequency-domain analysis, we can quantify the spectral power for
each frequency range. This spectral power is distributed according to frequency, and the
higher the frequency, the faster the cycle. These frequency ranges are typically divided into
several categories: high-frequency (HF), low-frequency (LF), very-low frequency (VLF),
and ultra-low frequency (ULF). The specific frequency ranges are detailed in Table 2, and
the power spectral density of an RR interval showing different frequency ranges is shown
in Fig. 4.

HF is associated with RSA, whereas LF is linked to baroreflex activity and vascular
sympathetic nerves (known as Mayer waves) (Reyes del Paso et al., 2013; Kobayashi,
Ishibashi & Noguchi, 1999; Kleiger, Stein & Bigger Jr, 2005; Draghici & Taylor, 2016). VLF
pertains to slower physiological systems, including temperature regulation and hormone
activity. Furthermore, the heart itself possesses an intrinsic nervous system believed to
operate in the VLF range (referred to as the heart’s intrinsic nervous system) (Kleiger,
Stein & Bigger Jr, 2005). Lastly, ULF involves processes such as thermoregulation and
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the secretion of hormones like cortisol and growth hormones, which follow a circadian
rhythm. The exact physiological mechanisms responsible for ULF and VLF have not yet
been established (Draghici & Taylor, 2016). The physiological basis of ULF is debated, with
strong correlations between it and vagal HRVmarkers and no correlations with sympathetic
markers. HF reflects parasympathetic activity, whereas LF denotes both (Hinde, White &
Armstrong, 2021). The LF/HF ratio is used to measure autonomic balance, with a low
ratio indicating PNS dominance and a high ratio indicating SNS dominance. However,
the precision of this ratio is debated and is discussed in detail in the contradiction section
below (Reyes del Paso et al., 2013; Nayak et al., 2023; Hayano & Yuda, 2021).

Moreover, before conducting spectral analysis of HRV, a thorough examination of
the ECG data is essential to detect and address potential problems such as artefacts,
ectopic beats, and arrhythmic events. For short-term HRV analysis, it is advisable to select
recordings free from such irregularities. However, if the data include technical artefacts
like missed beats or electrical noise, these can be rectified through proper interpolation
techniques based on the surrounding RR intervals. Managing ectopic beats is a more
complex challenge, with various approaches available, including deletion or interpolation.
Nevertheless, simply deleting ectopic beats is discouraged as it results in a loss of valuable
ECG information and distorted LF and HF power. The choice of interpolation methods
should be determined based on the specific nature of the ectopic beat, data quality, and the
study population (Li, Rüdiger & Ziemssen, 2019; Johnston et al., 2020).

By breaking down the frequency into its components, one can learn more about the
overall variability. This procedure allows for the quantification of the sympathovagal
balance that regulates sinus node pacemaker activity under a variety of physiological
and pathophysiological circumstances. Although changes in sympathovagal balance can
frequently be detected under basal conditions, the most prevalent trait that distinguishes
many pathophysiological states is a decreased responsiveness to an excitatory stimulus.
Additionally, a diminished oscillatory pattern or one that is less responsive to a specific
stimulus may also indicate a changed target function, providing intriguing prognostic
indicators (Montano et al., 2009). The autorhythmicity of the sinoatrial node is influenced
by various factors, adding variability to the HR signal (Task Force of the European Society
of Cardiology the North American Society of Pacing Electrophysiology, 1996).

Spectral analysis of HRV in both short-term and long-term recordings also has
advantages and disadvantages. In the case of short-term analysis, it is relatively easy to
perform and offers convenient control over potential confounding factors. It requires
less time for data processing and can effectively capture dynamic HRV changes within a
short time frame. However, its disadvantage lies in its lack of stability due to the constant
fluctuation of HR intervals, and it cannot analyze ULF power. On the other hand, long-
term HRV measurement provides a stable platform for HRV analysis and the capacity to
analyze ULF power. However, it comes with the drawback of being more expensive and
time-consuming. Long-term recordings tend to include more noise and are influenced to
a greater extent by various activities and environmental factors (Li, Rüdiger & Ziemssen,
2019).
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Additionally, each of the 24-hour spectral metrics correlates to a time-based metric
that is strongly connected to it. This correlation arises because both types of measures are
affected by the same physiological factors and share mathematical relationships. The choice
between using time-domain-based metrics like SDNN and frequency-domain metrics in
a study depends on personal preference and available tools. Because some HRV data has
an uneven distribution, it is common to use log transformations when doing statistical
analyses. pNN50 and RMSSD are correlated with HF power (Kleiger, Stein & Bigger Jr,
2005; Xhyheri et al., 2012). In addition, SDNN correlates with total power (TP), SDANN
with ULF, and SDNN index with both VLF and LF (Stein & Kleiger, 1999; Cowan, 1995).

Non-linear analysis
Nonlinear methods are highly effective for analyzing HRV due to their ability to capture
the complex, dynamic, and nonstationary nature of HR signals, which are influenced
by various physiological factors. They provide a more accurate representation of HR
dynamics compared to traditional linear approaches, particularly in the presence of noise
and nonstationarity (Rajendra Acharya et al., 2006). Non-linear measurements explore the
unpredictability of a time series, arising from the intricate and multifaceted mechanisms
governing HRV. Nonlinear indices have particular relevance when they correlate with
frequency-domain and time-domainmetrics that stem from the same underlying processes.
These non-linear approaches provide fresh and innovative perspectives for scrutinizing
HRV data. Although they offer novel insights, it is worth noting that non-linear methods
are not as commonly employed as time and frequency-domain analyses (Ernst, 2017).
However, unlike time-domain and frequency-domain approaches, which have limitations
such as an inability to differentiate sympathetic and parasympathetic activity or issues like
spectral leakage, nonlinear methods overcome these shortcomings (Rajendra Acharya et
al., 2006).

A few popular non-linear analysis methods include the Poincaré plot, detrended
fluctuation analysis (DFA), entropy analysis, and recurrence plots (Nayak et al., 2023).
Poincaré plots (scatter plots) are visual graphs displaying HRV by plotting each RR interval
against the previous one. These plots help analyze HRV data by fitting an ellipse to the
plotted points and deriving three non-linear measures: SD, SD1, and SD2. These measures
represent the variability within the data. DFA assesses fluctuations in RR intervals across
different time scales, distinguishing short-term from long-term fluctuations. DFA addresses
signal non-stationarity by removing extrinsic fluctuations, but it requires extensive data.
Poincaré plots and DFA reveals short- and long-term variability, offering insights into
autonomic regulation over different time scales. Entropy analysis measures irregularity
or randomness within RR interval series, calculating the probability of interval sequence
repetition. This approaches helps in identifying complex patterns that may not be evident
through linear analysis. Lower entropy values often correlatewith health problems (Johnston
et al., 2020; Bilchick & Berger, 2006; Nayak et al., 2023).

Approximate entropy (ApEN)was introduced in the early 1990s as a significant algorithm
forHRV analysis. It evaluates data sets for repeating structures and the probability of finding
similar patterns in different time periods. ApEN returns values between 0 and around 1,
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where lower values indicate higher regularity. Sample entropy (SampEn) was developed
as an alternative to ApEN due to concerns about the latter’s internal consistency. SampEn
calculates the predictability of finding specific matches in short time-series and requires
fewer data points, making it applicable for shorter HRV measurements. Non-linear
algorithms, including ApEN and SampEn, have been successfully applied in various
clinical studies, such as examining HRV behavior in patients with depression or respiratory
disorders. These methods are particularly valuable for detecting unknown relationships
between seemingly unrelated systems (Ernst, 2017). For clinical applications, research
suggests that nonlinear methods like ApEn and SampEn improve diagnostic capabilities
by detecting subtle HR pattern changes often overlooked by traditional methods. They
provide insights into autonomic dysfunction in depression and respiratory disorders and
revealed complex physiological relationships, such as disrupted circadian rhythms. In
athletic applications, nonlinear methods are used to monitor recovery, training status, and
stress response, providing predictive insights into fatigue and overtraining to optimize
performance and prevent injuries (Nayak et al., 2023).

Recurrence analysis helps identify repeating patterns in cardiac rhythms, providing
measures like recurrence rate and determinism to assess heart stability and predictabil-
ity.Recurrence plot quantification analysis (RQA) is a nonlinear analysis method that
works well with short, noisy, and non stationary time series like HRV. It is based on the
study of textures seen in recurrence plots. From each HRV time series’ recurrence plot,
the complexity measures laminarity (LAM) and determinism(DET) were computed. The
ratio of recurrence points that create diagonal structures is known as DET. Laminar states
in the system are represented by LAM, which is defined as the ratio between the total
set of recurrence points and the recurrence points that constitute the vertical structures.
By incorporating principles from chaos theory, nonlinear methods allow researchers to
examine the chaotic nature of heart rhythms, enhancing the understanding of physiological
complexity and health status. These methods improve diagnostic potential for conditions
like cardiac arrhythmias and other cardiovascular diseases (Nayak et al., 2023). Table 3
shows details about non-linear metrics for HRV analysis.

Confounding factors
It is important to recognize that HRV is influenced by a multitude of confounding factors,
which can be categorized into various groups: physiological factors, pathological factors,
environmental factors, lifestyle factors, psychological factors and non-modifiable factors.
Physiological factors comprise aspects such as age, sex, circadian rhythms, physical activity,
and respiration patterns, all of which play a significant role in HRV regulation (Li, Rüdiger
& Ziemssen, 2019). Pathological factors involve conditions like inflammation, infection,
and sepsis, which can disrupt HRV patterns. Environmental factors include elements like
social stressors, noise pollution, and exposure to toxins like carbon monoxide. Lifestyle
factors encompass choices such as diet, alcohol consumption, and cigarette smoking,
which can impact HRV. Lastly, psychological factors, such as mental stress, depression,
and anxiety disorders, have a considerable influence on HRV patterns. Understanding the
intricate interplay of these factors is crucial for accurately interpreting HRV data and its
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Table 3 Non-linear metrics for HRV analysis.

Non-Linear HRV analysis Parameters Units Description

Poincaré analysis S ms Area of the ellipse, representing total variability
SD1 ms Standard deviation perpendicular to the line

of identity
SD2 ms Standard deviation along the line of identity
SD1/SD2 % Ratio of SD1 to SD2

Entropy analysis ApEn n/a Approximate entropy, measures the regularity
and complexity associated with a time series

SampEn n/a Sample entropy, measures the regularity and
complexity associated with a time series

Detrended fluctuation
analysis

DFA α1 n/a Describes short-term fluctuations (less than
11 beats)

DFA α2 n/a Describes long-term fluctuations (more than
10 beats)

D2 n/a Estimates the minimum number of variables
required to model system dynamics

implications for overall health and well-being (Tiwari et al., 2021). In future studies, in
addition to ethnic variances and lifestyle elements, it is crucial to consistently consider
factors like age, sex, body posture, and respiratory patterns when assessing HR and HRV
(Parati & Di Rienzo, 2003).

Figure 5 displays various confounding factors categorized into their respective groups.
This figure draws inspiration from the influence diagram in Fatisson, Oswald & Lalonde
(2016). The diagram uses different colours to indicate the type of effect on HRV values: red
signifies harmful effects, green and blue indicate beneficial effects (with blue being specific
to the heart coherence state), purple can be either beneficial or harmful depending on
the environment, grey represents factors for which statistical significance has not yet been
established and white shows the factors for which according to the best of our knowledge
statistical significance has not been proven. Additionally, the figure illustrates indirect
effects and influences through dotted lines, such as the impact of posture, sex, and age on
the respiration rate, and the connections between the central nervous system and both
physiological and neuro-psychological factors. These categories of confounding factors are
shown to be interdependent.

A fundamental relationship exists betweenHRVandHRwhich can be both physiological
and mathematical. The physiological HRV-HR relationship is determined by ANS activity.
Higher PNS activity slows down HR, thus HRV increases and vice versa. The mathematical
HRV-HR relationship is the nonlinear (inverse) relationship between RR interval and HR.
HR and RR intervals are reciprocals of each other, or, to be exact, HR = 60,000/RR, where
HR has units of beats per minute (bpm), and RR has units of milliseconds (ms) (Bilchick &
Berger, 2006). Essentially, HRV is intricately linked to HR, where HRV tends to increase as
the RR interval lengthens, signifying a slower HR. Conversely, as the RR interval shortens,
indicating a quicker HR, HRV tends to decrease.
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Figure 5 Influence diagram of confounding factors linked with HRV, inspired from Fig. 1 in the study
by Fatisson, Oswald & Lalonde (2016).

Full-size DOI: 10.7717/peerj.19347/fig-5

Another prominent contributor to HRV is the RSA, which manifests as fluctuations
in HR during the respiratory cycle. During inhalation, the HR increases, and during
exhalation, it decreases. This rhythmic pattern aligns with the typical respiratory cycle,
spanning approximately 3 to 7 s per breath or about 9 to 24 cycles per minute. One more
pivotal physiological factor impacting HRV is the baroreflex, a vital regulatory mechanism
for maintaining blood pressure stability. The baroreflex operates on a slightly longer time
scale, spanning approximately 3 to 20 s, or roughly 6 cycles per minute, equating to one
adjustment every 10 s. When the PNS activates and the SNS inhibits, blood pressure
increases, leading to a decrease in HR. Conversely, a decrease in blood pressure triggers
PNS inhibition and SNS activation, increasing HR. RSA, and the baroreflex, are integral to
understanding the dynamics of HRV, offering insights into the complex interplay between
the respiratory cycle, blood pressure regulation, and HR variations (Johnston et al., 2020).

HRV in clinical medicine
HRV faces challenges in gaining widespread acceptance in modern clinical medicine.
Early ECG devices were heavy, and even wearable monitors in the late 1990s and 2000s
posed inconveniences. A further constraint on HRV spectral analysis was the absence
of standardization among the many computer approaches used by commercial Holter
systems (this hinders relevant data comparisons Lombardi, 2002; Stys & Stys, 1998).
However, recent advancements in wearable technology have improved data collection.
Despite these advances, integrating ECG data into electronic medical records remains
complex due to the diversity of record systems. HRV’s focus on overall health rather than
disease-specific diagnosis further complicates its fit within conventional healthcare models.
Insurance coverage for HRV-related services is also often lacking, and the complexity of
data interpretation adds to this challenge (Gupta, Mahmoud & Massoomi, 2022).
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One of the main reasons why HRV is not being used in a clinical setting seems to be
because the HRV data can be too messy and has several confounding factors. Another
reason is that HRV is thought to have low specificity, sensitivity, and a low positive
predictive value (Kleiger, Stein & Bigger Jr, 2005). Also, HRV does not have a reliable value
for reference; it is sort of a positive health marker. Even in the late 1990s, there was no
consensus about the best available index of HRV for clinical use (Huikuri et al., 1999).
HRV analysis is widely studied in cardiac and non-cardiac diseases, but it has not been
routinely integrated into diagnostic and prognostic processes due to the lack of accredited
reference values for normal subjects and the changing profiles of patients, necessitating
continuous updates of pathological thresholds. Establishing a clear distinction between
what is considered normal and abnormal in HRV values can be subjective, making it
demanding to effectively apply HRV in clinical practice (Xhyheri et al., 2012).

Even so, although HRV has been applied to a wide range of cardiovascular diseases,
a consensus has only been reached so far concerning two clinical conditions. The 1996
consensus report identified two distinct clinical scenarios in which HRV analysis should
be carried out: to identify early signs of cardiac autonomic neuropathy in diabetic
patients and to assess mortality risk in post-myocardial infarction patients (Task Force of
the European Society of Cardiology the North American Society of Pacing Electrophysiology,
1996). Studies have demonstrated that HRV is a predictor of post-myocardial infarction
mortality, showing that reduced SDNN values are associated with a significantly higher
risk of death. Similarly, HRV is useful in detecting diabetic autonomic neuropathy, as
spectral analysis reveals autonomic dysfunction even before clinical symptoms appear
(Van Ravenswaaij-Arts et al., 1993; Bilchick & Berger, 2006; Johnston et al., 2020). However,
clinical use of HRV is still limited (Cygankiewicz & Zareba, 2013; Ernst, 2017; Xhyheri
et al., 2012; Task Force of the European Society of Cardiology the North American Society of
Pacing Electrophysiology, 1996). Before improved criteria can be defined for current and
future therapeutic applications, more research must be done to determine the precise
sensitivity, specificity, and predictive value of HRV as well as the normal levels of standard
measurements in the general population (Stys & Stys, 1998). Because of the complicated
methodology and lack of standardization, its clinical usefulness remains limited.

Additionally, when clinicians adopt pharmacological interventions for patients suffering
from ischemic cardiac diseases, as these drugs often modify the heart rhythm, HRV is even
more difficult to interpret. However, we can count on research that has shown that HRV
can help predict outcomes in different clinical settings (Lombardi, 2002). On the other
hand, while physiological studies primarily suggest recording heart rhythm under tightly
controlled circumstances to reduce any potential interfering variables, this is challenging to
perform in clinical practice (Kautzner & John Camm, 1997). Several steps and precautions
are to be taken into account during measuring HRV clinically, specifically a 24-hour
ECG reading. According to the study (Catai et al., 2020), before collecting HRV, a clinical
evaluation of the subjects is necessary, accompanied by a basal electrocardiogram and
a careful interpretation of it. Precautionary measures include a 30-question checklist,
alongside checking data and analyzing demographic factors such as body mass, height, age,
and sex. A careful recording of any drug used at that time is also mandatory.
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Moreover, it involves setting up the data collection environment by assessing noise
levels, temperature, humidity, and the time of day, as well as monitoring the flow of
individuals entering or exiting the environment. It is important to ensure that the patient is
aware of his/her surroundings and the HRV measurement apparatus. Patient preparation
also includes refraining from consuming stimulant beverages, alcohol intake, smoking or
engaging in high-intensity physical activity before the session, as well as abstaining from
mobile phone usage. During HRV measurement, factors such as the patient’s activity state
(resting, exercising, sitting, or lying down) should be documented, and both the patient
and observer must not speak during recording any instances of sneezing or coughing.
Additionally, monitoring breathing rate, blood pressure, and HR is essential for the
accuracy of the process.

In the 1990s, even though there was a large body of literature concerning HRV in
cardiology and medical journals as shown in Fig. 3, its measurement from the Holter
recordings had not yet become a routine clinical tool (Huikuri et al., 1999). This decade
also saw increased interest in studying the ANS and its connection to cardiovascular health.
This heightened attention was due to the noninvasive nature of HRV measurement for
assessing the ANS. Unfortunately, the increased availability of HRV metrics led some
researchers to use them extensively without a focused research plan. This lack of specificity
can result in the identification of false patterns or leads that may not have real significance,
requiring additional effort to correct and interpret the findings accurately. Consequently,
it became challenging for clinicians to navigate this field and grasp the clinical significance
of HRV, highlighting the importance of more targeted and hypothesis-driven research in
its application (Kautzner & John Camm, 1997). A lack of complete understanding of the
physiological significance of HRV parameters has hindered the wider and clearer use of
this method (Lombardi, 2002).

Moreover, physicians encounter various obstacles when considering the integration
of PPG-based wearable/device data into clinical practice. Firstly, their lack of familiarity
with these devices, due to limited formal training, hampers their confidence in utilizing
and interpreting the data. Second, concerns about data accuracy, including measurements
such as HR or sleep patterns, contribute to scepticism regarding clinical decision-making
based on this information. Also, the scarcity of robust clinical trials validating PPG-based
wearable/device data for improving patient outcomes is a significant challenge for evidence-
based medical practices. Time constraints during clinical encounters further impede the
incorporation of PPG-based wearable/device data analysis, potentially disrupting workflow
and patient interaction. Additionally, the multitude of available devices and varied health
metrics they collect pose standardization challenges, compounded by the lack of consensus
on interpreting HRV data derived from these devices, which adds complexity to clinical
utilization. Overcoming these obstacles will require ongoing education, research, and
standardization efforts to ensure that smartwatch and commercially-available device data
can be effectively integrated into clinical practice in a meaningful way (Gupta, Mahmoud
& Massoomi, 2022; Tiwari et al., 2021).

AI-driven tools, especially deep learning models like artificial neural network (ANNs)
and convolution neural networks (CNNs), have increasingly been applied since 2018,
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demonstrating high accuracy in HRV analysis, with CNNs achieving over 99.4% accuracy.
While cardiology applications show strong predictive performance with low variance,
fields like addiction and mental health require further validation due to high variability.
Future research should focus on standardization efforts, refining AI methodologies, and
conducting large-scale clinical trials to validate wearable technology for broader clinical
adoption (Faust et al., 2022).

Contradictions in the literature
When reading the literature, we also came across some contradictions with the HRV
frequency-domain values like the LF values, or the ratio between HF and LF being the
sympathovagal balance. Although it might be tempting to think of the ANS as a simple
on/off switch, the reality is far more intricate. The ANS functions as a dynamic system; it
does not operate in a binary manner. Instead, imagine it as a dial that can be turned up
or down. The SNS and PNS are in a constant dance with each other within our bodies,
modifying their influence based on our physiological and psychological needs. Rarely does
one entirely dominate the other; a delicate balance is maintained.

The frequency-domain metric LF/HF ratio was initially thought to reflect the balance
between parasympathetic and sympathetic activity but has been questioned. This ratio has
been traditionally viewed as a representative measure of the balance between the PNS and
the SNS (Hinde, White & Armstrong, 2021). It assumes that the PNS creates HF power,
whereas the SNS might produce LF power. When the LF/HF ratio is low, it suggests that
the PNS is in control, which is linked to relaxation. Conversely, when we experience stress
or a fight-or-flight response, the LF/HF ratio is high, indicating that the SNS is dominant
(Lombardi et al., 1996). However, this idea is debated for a couple of reasons. First, LF
power does not only represent SNS activity; the PNS also plays a significant role in this
frequency range, and there are some unknown factors involved. Second, the interactions
between the PNS and SNS are very complex, nonlinear, and not always balanced, making
it challenging to rely solely on this ratio for a complete understanding of our body’s
responses (Shaffer & Ginsberg, 2017; Reyes del Paso et al., 2013; Nayak et al., 2023; Hayano
& Yuda, 2021; Cygankiewicz & Zareba, 2013; Stein & Kleiger, 1999). There is controversy
in the literature about the physiological source of LF. In the beginning, it was recorded
that there is more LF when there is more physical activity or more sympathetic response,
so it became a way to measure or visualize the sympathetic response, but when they did
short-term resting recordings of HRV, it showed no significant sympathetic activity. It
may still provide useful insights in specific contexts, such as when subjects are at rest,
in controlled settings, or when used for preliminary assessments in defined populations
(Schäfer & Vagedes, 2013).

Another contradiction arose when the use of wearable devices with PPG sensors made it
easier to measure HRV in everyday life. Many studies try to use PRV as a replacement for
HRV (Schäfer & Vagedes, 2013). However, there are challenges in applying the traditional
approach to PRV in daily activities. PRV is not just a copy of HRV; it is a different marker.
The process from the heart’s electrical signal (ECG R wave) to the pulse wave (PPG wave)
involves many steps, and various factors can affect each step. Evidence shows differences
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Table 4 Summary of contradictions in HRV research and their implications.

Contradiction Summary Practical implications

LF/HF ratio Does it reflect sympathovagal
balance?

Useful in controlled settings but limited by
nonlinear ANS interactions and requires
cautious interpretation.

PRV vs.HRV Can PRV replace HRV? PRV is practical for daily monitoring but may
overestimate HRV in some contexts.

HR-HRV relationship Hyperbolic vs. negative
exponential models.

Impacts interpretation of HRV metrics,
especially in clinical applications.

HRV terminology Should HRV be called
‘‘heart period variability’’?

Highlights the need for precise terminology
to avoid confusion in research.

between PRV and HRV, like PRV being present even when HRV is not. Additionally, there
are variations in HRV and PRV values depending on the position of the sensor/electrodes,
as well as different effects due to posture and exercise. Also, the PPG approach overestimates
the HRV in comparison to the ECG. Understanding these differences is essential for using
these measures accurately in real-life situations (Hayano & Yuda, 2021; Alugubelli, Abuissa
& Roka, 2022).

Another phenomenon currently under debate is related to the relationship betweenHRV
and HR. The literature is divided regarding the mathematical nature of this relationship,
with some proposing it behaves like a hyperbolic function, whereas others suggest it
resembles a negative exponential relationship. The hyperbolic model suggests that HRV
decreases proportionally with increasing HR, while the negative exponential model implies
a more rapid decline in HRV at higher HR levels (Draghici & Taylor, 2016; De Geus et
al., 2019). In addition, there is another complaint that technically, HRV should be called
heart period variability because it measures the time between heartbeats, not the number
of heartbeats per minute(HR) (De Geus et al., 2019). Table 4 provides a summary of
contradictions in HRV research and their implications.

Potential of HRV
Although it is not yet widely used in the medical community, athletes and entrepreneurs
in the technology sector who are seeking to optimize physical and cognitive performance
have found HRV increasingly relevant. Recent studies have revealed that wearable devices
reported small error rates when compared to ECG, and the practicality and accessibility of
the wearable devices outweigh these negligible errors (Yuda et al., 2020; Schäfer & Vagedes,
2013; Hinde, White & Armstrong, 2021; Dobbs et al., 2019). Devices like the Apple Watch,
Fitbit Charge, Garmin VivoSmart, and Polar A360 wrist monitors are finding utility not
only in cardiology, sleep medicine, and diabetes detection and management but also in
the rising interest of individuals using remote HR monitors. There are currently over
1,000 clinical trials underway in this field. As more data becomes available, the validity
of consumer-grade wearable monitors for HRV-based applications will become clearer
(Alugubelli, Abuissa & Roka, 2022).

Furthermore, HRV’s uniqueness to each individual makes it an excellent candidate
for personalized models (Hinde, White & Armstrong, 2021). Monitoring HRV can aid
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in prescribing individualized training regimens, helping determine training session
intensity based on an individual’s PNS activity compared to their previous measurements.
HRV-guided training has proven to be a beneficial tool for enhancing endurance
running performance (Singh et al., 2018; Alugubelli, Abuissa & Roka, 2022; Hinde, White &
Armstrong, 2021).

The realm of mHealth, involving the use of mobile devices to support medical care and
public health, is evolving rapidly and can be challenging to navigate. This encompasses
mobile applications, wearable sensors, and communication technologies. Numerous
studies support the validity of PRV compared to the ECG gold standard, which applies
to both healthy adults and athletes. Establishing normal and abnormal values is complex,
requiring consideration of age and sex, and current studies lack established norms.
However, device manufacturers provide data indicating average values among users.
The widespread adoption of PPG-based wearable devices by patients without clinician
consultation underscores the need for healthcare professionals to embrace and leverage
the valuable data offered by these commonly encountered devices (Gupta, Mahmoud &
Massoomi, 2022). Also, integrating HRV assessment into trauma care has the potential to
enhance the precision and effectiveness of patient management strategies, contributing to
improved outcomes in critical injury cases (Tiwari et al., 2021).

The evidence supporting machine learning-based HR and HRV analysis is rapidly
accumulating, with a surge in the number of studies utilizing artificial intelligence in recent
years. Several promisingmachine learning and deep learning algorithms have demonstrated
their potential for HR/HRV analysis. Prospective studies will play a crucial role in assessing
the clinical and non-clinical utility of these approaches. Additionally, machine learning-
based analysis offers the potential to alleviate the burden on healthcare systems (Alugubelli,
Abuissa & Roka, 2022; Ishaque, Khan & Krishnan, 2021). Early applications of machine
learning in HRV analysis have been tailored for specific diagnostic purposes, such as the
detection of obstructive sleep apnea (achieving 93%accuracy using support vectormachines
(SVM)), congestive heart failure (achieving up to 99% accuracy using SVM), and diabetes
mellitus (with an average accuracy of 90% using adaBoost, decision trees, feature selection,
k-nearest neighbors, probabilistic neural networks, and SVM).Mobile applications now use
machine learning algorithms to provide real-time HRV insights, enabling users to monitor
their autonomic health dynamically. AI-driven apps can detect anomalies in HRV patterns,
offering personalized recommendations for stress management or recovery. Exploring
these intersections between mHealth and AI can significantly enhance real-time HRV
analysis by improving accuracy, user engagement, and accessibility, while also enabling
automated and personalized health insights in real time (Alugubelli, Abuissa & Roka, 2022).

Medical decision support can be used to transfer the analytical work from humans
to computers, thereby enhancing healthcare systems. HRV-based medical decision
support can be delivered through three methods: directly tracking patient health using
extracted features, combining multiple features with machine learning algorithms to
enhance decision quality, and using deep learning for automatic labelling of HR signal
samples without explicit feature engineering, thereby providing a direct and independent
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information pathway for decision support from the patient to the physician (Faust et al.,
2022; Alugubelli, Abuissa & Roka, 2022).

DISCUSSION
The difficulty in comprehending how the heart operates and its interconnectedness with
the brain and other parts of the body is a challenging task. HRV is described as ‘‘one of the
most complex and variable terms’’ associated with the heart. This implies that HRV is not
a single static measurement but rather a multifaceted parameter influenced by numerous
factors. The generation of each heartbeat involves various complex components of the heart
and connections from the brain. Both the physical state and mental state of an individual,
as well as environmental factors, can impact HRV. All these convoluted factors interact
with each other and collectively contribute to variations in the intervals between heartbeats.
Since HR and HRV values can be measured, they provide a means to gain insight into the
complex environment surrounding the human heart. In other words, by quantifying HRV,
researchers and healthcare professionals can attempt to understand the interplay of these
complex factors

Recently, there has been a surge in the manufacturing of consumer-grade devices for
measuring HRV. To understand whether these consumer-grade heart monitoring devices
are good for tasks like measuring HRV, we need more information and research. As more
studies are done and more data is collected, we will have a better idea of how reliable and
useful these devices are for healthcare purposes.

As technology improves, it is becoming easier to keep an eye on people’s health,
especially their hearts, from a distance. Apart from combining PPG with accelerometry,
advancements in artificial intelligence,machine learning, and deep learning algorithms, and
high-performance miniature electronic sensors have enabled the development of modern
wearable technology (Chiang & Khosla, 2023). Newer sensors and electrodes are less
intrusive and can be integrated into clothing. Although consumer-grade wearable devices
have shown accurate HR measurements, there is still a lack of robust data supporting their
use for clinical HRV analysis. Further studies are essential to identify optimal software
and techniques for artefact correction in RR signals, ensuring accurate HRV-derived
parameters.

Data security remains a significant concern, especially regarding data storage and
transmission. Remote monitoring can ease logistical burdens and detect potential
problems, but it requires careful data management and patient-healthcare provider
communication. Incorporating artificial intelligence into data processing shows potential
but needs validation through large-scale studies. While machine learning-based HRV
analysis holds promise, more prospective research is needed to fully understand its clinical
implications. Further studies on sensor technologies and methodology for large-scale
trials will clarify the strengths and limitations of these evolving technologies in real-world
applications (Alugubelli, Abuissa & Roka, 2022).

Standardized recommendations are crucial for both clinicians and researchers. To
adequately quantify and interpret HRV-derived parameters from short-term recordings
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under resting conditions, attention to methodological details is imperative (Plaza-Florido,
Sacha & Alcantara, 2021). Establishing standardized procedures will enhance the reliability
and consistency of HRV assessments, benefiting both clinical practice and research
endeavours.

Also, the ongoing contradictions surrounding HRV metrics, such as the controversy
surrounding the LF/HF ratio, has significant implications for research and clinical use.
In research, the lack of standardization of the LF/HF interpretation as an index of
sympathovagal balance has contributed to inconsistencies in study results to the point
that standardized conclusions are no longer easily transferrable across populations and
conditions. In clinical practice, this lack of consensus poses challenges in integrating
HRV into routine patient assessments. Physicians may be hesitant to use HRV measures in
clinical decisionmaking due to uncertainty about data reliability, whichmeans inconsistent
application of HRV-based risk stratification. Additionally, differences in methodologies
can affect the reproducibility of HRV-based research results, limiting their applicability to
evidence-based medicine. The resolution of these disparities with standardized protocols,
optimized measurement guidelines, and validation in diverse clinical populations is
necessary to improve the validity and utility of HRV analysis for clinical and research use.

Exploring these reviews revealed significant gaps in HRV research. We discovered a
lack of literature providing consistent HRV values across all HRV matrices, highlighting
the need for further studies to establish these baseline values. The future studies of HRV
will benefit research and clinical use in the establishment of baseline values in more
diverse populations, considering age, sex, and health conditions for better standardization.
Additionally, given the significant changes in environmental factors and overall health
since the 1990s, it is crucial to establish a protocol to account for potential confounding
factors. For this future longitudinal research should look into how these changes affect
HRV and PRV metrics. Similarly, as advanced sensor technology has evolved, there is a
need for a protocol to define PRV values. Further research is necessary to understand the
physiological reasons behind the discrepancies between HRV and PRV values. Addressing
these research gaps will enable the determination of appropriate HRV metrics, potentially
leading to the development of a new consensus report on HRV and PRV. Finally, research
should concentrate on identifying specific HRV indicators with the most clinical utility,
especially for risk stratification, stress monitoring, and cardiovascular health evaluation.

CONCLUSIONS
This literature review aims to provide an understanding of HRV by presenting the
evolutionary journey of this physiological quantity over the last five decades and an
assessment of our current knowledge of the potential reasons why abnormal HRV may
alleviate health problems. A better understanding of the mechanisms linking abnormal
HRV to increased health problems might lead to specific therapeutic strategies that may
reduce the risk of future complications for people with health problems. Moreover, an
appraisal of the clinical applicability of the latest HRVmeasurement tools and the proposal
of future directions for HRV research is part of this review. Understanding the physiological
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discrepancies between HRV and PRV values is crucial for determining appropriate metrics
and consensus reports. It is concluded that further research into the clinical applications
and potential of wearable technology with advanced artificial intelligence-based signal
processing for HRV is needed.
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