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Drought is a critical abiotic stress significantly reducing global wheat production, in
particular under climate fluctuations. Investigating wheat genetic variability using
physiological and agronomic characteristics is essential for advancing breeding to enhance
drought resilience and ensure sustainable production in light of global population growth.
The genetic diversity and associations among traits of fourteen diverse genotypes of bread
wheat in drought-stressed and well-watered conditions were studied focusing on
physiological and agronomic responses. Significant variations were detected among
irrigation regimes, genotypes, and their interactions for all assessed characteristics.
Drought stress substantially declined chlorophyll a, and b, net photosynthetic rate,
transpiration rate, stomatal conductance, membrane stability index, relative water
content, plant height, yield-related attributes and grain yield. Conversely, it significantly
increased malondialdehyde content, proline content, and activities of antioxidant
enzymes, including catalase, ascorbate peroxidase and superoxide dismutase. The
evaluated wheat genotypes exhibited significant variations in physiological, biochemical,
and agronomic performance under well watered and drought conditions. The heatmap and
cluster analyses distinctly separated the genotypes based on their performance under
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water deficit conditions into different groups representing a gradient from drought
sensitivity to tolerance. Genotypes G3, G8, and G12 exhibited the highest drought
tolerance indices, identifying them as promising candidates for future breeding efforts to
develop drought-resilient and high-yielding wheat genotypes. Principal component and
correlation analyses identified chlorophyll content, relative water content, membrane
stability index, photosynthetic efficiency, and antioxidant enzyme activities as critical
traits associated with drought resilience and grain yield. The direct and indirect path
analysis emphasized the importance of these characters as significant contributors to
grain yield. Moreover, these traits demonstrated high heritability under drought stress,
suggesting the feasibility of effective indirect selection in water-limited environments.
Therefore, these characteristics could be identified as key selection indirect criteria for
breeding drought-resilient wheat. This study depicted the potential of exploring genetic
variability and key physiological traits to improve drought tolerance in bread wheat and
ensure sustainable agricultural productivity under water-limited environments.
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Abstract

Drought is a critical abiotic stress significantly reducing global wheat production, in particular
under climate fluctuations. Investigating wheat genetic variability using physiological and
agronomic characteristics is essential for advancing breeding to enhance drought resilience and
ensure sustainable production in light of global population growth. The genetic diversity and
associations among traits of fourteen diverse genotypes of bread wheat in-drought-stressed and
well-watered conditions were studied focusing on physiological and agronomic responses.
Significant variations were detected among irrigation regimes, genotypes, and their interactions
for all assessed characteristics. Drought stress substantially declined chlorophyll @, and b, net
photosynthetic rate, transpiration rate, stomatal conductance, membrane stability index, relative
water content, plant height, yield-related attributes and grain yield. Conversely, it significantly
increased malondialdehyde content, proline content, and activities of antioxidant enzymes,
including catalase, ascorbate peroxidase and superoxide dismutase. The evaluated wheat
genotypes exhibited significant variations in physiological, biochemical, and agronomic
performance under well watered and drought conditions. The heatmap and cluster analyses
distinctly separated the genotypes based on their performance under water deficit conditions into
different groups representing a gradient from drought sensitivity to tolerance. Genotypes G3, G8,
and G12 exhibited the highest drought tolerance indices, identifying them as promising candidates
for future breeding efforts to develop drought-resilient and high-yielding wheat genotypes.
Principal component and correlation analyses identified chlorophyll content, relative water
content, membrane stability index, photosynthetic efficiency, and antioxidant enzyme activities as
critical traits associated with drought resilience and grain yield. The direct and indirect path
analysis emphasized the importance of these characters as significant contributors to grain yield.
Moreover, these traits demonstrated high heritability under drought stress, suggesting the
feasibility of effective indirect selection in water-limited environments. Therefore, these
characteristics could be identified as key selection indirect criteria for breeding drought-resilient
wheat. This study depicted the potential of exploring genetic variability and key physiological
traits to improve drought tolerance in bread wheat and ensure sustainable agricultural productivity

under water-limited environments.
Keywords: Climate resilience; genetic variability; wheat genotypes; selective breeding; drought

tolerance; multivariate analyses; agronomic performance; physiological traits.
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Introduction

Wheat (Triticum aestivum L) is one of the most commercially significant and widely
cultivated crops in the world (Mokhtari et al. 2024). 1t is cultivated on 220.4 million hectares,
producing approximately 798.9 million tons annually (FAOSTAT. 2023). 1t is a dietary staple in
many countries, primarily used for bread, and various baked products (Mesta-Corral et al. 2024).
Furthermore, its straw is utilized for animal feed and in the manufacturing of diverse industrial
products (Kamara et al. 2021). Wheat grains are distinguished by their high carbohydrate content,
which is a vital source of energy. Wheat grains-alse-provide-dietary fiber, fats, essential minerals
and vitamins (Moustafa et al. 2021). Its adaptability and nutritional advantages are fundamental
components of global diets, contributing to food security and economic resilience. Wheat
production should be improved to meet the dietary needs of growing global population (Gahlaut
et al. 2017; Neupane et al. 2022). Nevertheless, current yield improvements, especially in dry-
land farming systems, are limited (Lopes et al. 2012; Thungo et al. 2020).

Climate fluctuations pose a significant challenge to global wheat production (4sseng et al.
2013, Rezaei et al. 2023). Increasing temperatures and frequent variations in precipitation are
expected to increase drought severity worldwide (Bracho-Mujica et al. 2024, Cramer et al. 2018,
Hou et al. 2024). The-water deficit is a severe environmental challenge that significantly impacts
wheat production (Leng & Hall 2019; Mao et al. 2023). It induces biochemical, physiological, and
morphological alterations in the plants, disrupting their growth and development (Farooq et al.
2024). The duration, intensity, and timing of the water deficit relative to-plant stage-determine the
severity of the destructive effects of drought stress (Wang et al. 2022). Specifically, cell
dehydration caused by water scarcity restricts cell elongation, induces stomatal closure, reduces
photosynthetic efficiency, and restricts overall plant growth and development (Farooq et al. 2009,
McAusland et al. 2020). The primary way that plants respond to water scarcity is through closing
their stomata that reduces water loss fremplant leaves (Qiao et al. 2024). However, this adaptation

limits CO; assimilation, reducing photosynthetic efficiency (Li et al. 2017). Moreover, reactive
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oxygen species (ROS) are produced by imbalanced photochemical reactions in chloroplasts, which
result in surplus light energy that is not effectively used in photosynthesis. The oxidative stress
damages cellular structures, including membranes, through lipid peroxidation (Sachdev et al.
2021). This damage impairs growth, disrupts mineral uptake, and compromises photosynthetic
activity. To reduce ROS production, the plants activate antioxidant defense systems. In order to
deactivate ROS and preserve cellular integrity, enzymes involving superoxide dismutase (SOD),
catalase (CAT) and ascorbate peroxidase (APX) are essential. SOD serves as the first line of
defense by producing hydrogen peroxide (H20,) and oxygen (O,) from superoxide radicals (O, 7).
Subsequently, CAT and APX detoxify H,O,, preventing oxidative damage (Gill & Tuteja 2010).
Additionally, drought stress often leads to increased accumulation of proline, a key osmoprotectant
(Zia et al. 2021). Proline stabilizes cell membranes, mitigates oxidative damage, and supports plant

ability to tolerate water scarcity (Shafi et al. 2019).

Developing high-yielding, drought-tolerant cultivars is a critical and effective strategy to
alleviate the deleterious effects of water scarcity. This approach involves utilizing new genetic
resources that exhibit favorable physiological and agronomic traits strongly correlated with grain
yield. These traits are essential for enhancing selection efficiency, particularly in water-limited
environments. Traditional wheat breeding methods often rely on univariate statistical approaches
(Gilmour et al. 1997). While applicable, these methods are limited in addressing the complex
interactions among traits, stress factors, and the need to evaluate multiple attributes simultaneously
for optimal selection. In contrast, advanced statistical models, particularly multivariate analyses
like principal component analysis (PCA) and cluster analysis have significantly improved the
reliability and efficiency of the selection process (Galal et al. 2023). Understanding the
relationships between grain yield and various physiological parameters can significantly enhance
effectiveness of breeding programs. Breeders can develop more targeted and efficient screening
methods by identifying key traits that are reliable selection tools under drought-stressed and

normal conditions. Characteristics including proline accumulation, antioxidant activity, relative
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water content, and chlorophyll concentration are beneficial as secondary markers for determining
drought-tolerant genotypes (4hmed et al. 2020). Integrating these agronomic and physiological
traits into breeding programs provides a comprehensive approach to addressing drought stress.
This ensures that the resulting genotypes not only achieve high grain yields/but also exhibit robust
resilience to water scarcity (Sallam et al. 2024). This work aimed to evaluate physiological and
agronomic responses of diverse wheat genotypes under drought and well watered conditions.
Additionally, the study aimed to identify wheat genotypes demonstrating consistent high-yield
potential and strong drought tolerance and analyze the associations among the studied parameters

in normal and water-deficit conditions.

MATERIALS &METHODS

Experimental site

Field experiment was conducted during two growing seasons of 2021-2022 and 2022-2023 at
the Experimental Filed, Kafr EI-Sheikh governorate, located at north Egypt (31° 6'N, 30° 56'E).
The climate at the experimental location is arid, with an average of about 40 mm of rainfall per
year. Figure S1 displays meteorological information for both growth seasons. The soil was
characterized as clay (49% clay, 14.5% sand, and 36.5 silt) throughout the profile. In addition, the
soil water parameters included a permanent wilting threshold of 20.3%, a field capacitance of

37.2%, and an accessible water content of 16.4% (Table S1).

Plant materials

Fourteen diverse bread wheat genotypes, selected for their variability in yield and drought
tolerance, were evaluated in this study. The Egyptian Agricultural Research Center and the
International Maize and Wheat Improvement Center (CIMMYT) provided these genotypes. The
genotypes included six advanced breeding lines, five exotic genotypes from CIMMYT, and three
high-yielding commercial cultivars featured on the Egyptian recommended list. Detailed

information on the pedigrees and origins of these genotypes is provided in Table S2.
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Experimental design and agronomic practices

Two different irrigation treatments were used to evaluate the studied wheat genotypes. The
first treatment was well-watered conditions, which applied 4448 m’/ha of water over five
irrigations during the growing season. With a total water application of 2865 m?/ha, the second
one, which simulated drought stress conditions, only received two irrigations over the season. This
study applied split-plot design in three replicates in a randomized block arrangement. The
irrigation treatments were assigned to the main plots, while the wheat genotypes were allocated in
the sub-plots. Six rows in each plot, each three meters long with 20-cm between rows. Before
sowing, a single dose of 35 kg P ha™ phosphorus fertilizer was applied. Three separate applications
of nitrogen fertilizer were added at sowing, 30 days following sowing and the tillering stage, with

a total amount of 180 kg N/ha.

Measured traits
Chlorophyll content and photosynthetic efficiency

Chlorophyll a and b were measured by centrifuging 0.5 g of leaf samples homogenized in 5
mL of 85% cold acetone. Following Lichtenthaler (1987), the optical density was measured using
spectrophotometry at 663 and 647 nm after the resulting extract were diluted to the appropriate
volume. A portable steady-state parameter (LI-1600, LICOR, Lincoln, NE, USA) was utilized to
determine photosynthetic parameters; net photosynthesis rate (NPR), transpiration rate (Tr), and
stomata conductance (gs). To ensure the precision ef-gs was recorded on a fully inflated flag leaf
using three replicates per leaf. The formula A=Amaxxf(PAR), where Amax is the maximum
theoretical photosynthetic rate and f(PAR) is a function of photosynthetically active radiation
(PAR) recorded using a calibrated quantum sensor at three different times (morning, noon, and
afternoon), was utilized to calculate NPR (Sicher & Barnaby 2012). The same leaves were used to

measure Tr, considering both the adaxial and abaxial surfaces directly.

Water relations and malondialdehyde
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177 Proline and enzymatic antioxidants activities

178 Proline content was caleulated utilizing the procedure outlined in Bates et al. (1973). The
179  procedure involved extracting 0.5 g of plant tissue in 5% sulfosalicylic acid and centrifuging it for
180 7 minutes at 10,000xg. The resultant supernatant was boiled for 30 minutes at 94°C after being
181 diluted with water and combined with 2% ninhydrin reagent. Toluene was added to the mixture
182  after it had cooled, and the upper organic phase was examined using spectrophotometry at 520 nm.
183 To determine antioxidant enzyme activity, 200 mg of leaf samples were quickly frozen in liquid
184 nitrogen and then crushed in 2.0 mL of an extraction buffer that contained 10 mM ascorbic acid,
185 100 mM potassium phosphate (pH 7.8) and 0.1 mM ethylenediaminetetraacetic acid (EDTA). The
186  final homogenate was centrifuged for 15 minutes at 4 °C at 13,000 X g. Protein content and enzyme
187  activity were then measured using the supernatant left over after centrifugation. According to Aebi
188  (1984) CAT activity was measured in the supernatant at 240 nm based on H,O, consumption.

189  Monitoring the drop in absorbance at 290 nm allowed for measuring APX activity following Ma
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& Cheng (2004). Using the approach of Giannopolitis & Ries (1977), the SOD activity was
determined at 560 nm.
Agronomic traits

The vertical distance from soil to spike tip (omitting awns) was used to calculate the plant
height (cm). Ten spikes were chosen randomly from each plot to determine number of grains/spike.
A sample of 1000 grains was weighed to determine the thousand-grain weight (g). All harvested
plants from each plot were threshed, the grains were weighed, and the measurement was converted

to tons of ha™ to determine the grain yield (ton ha™).

Statistical analysis

The tests of Shapiro-Wilk and Bartlett were used to check the homogeneity of variances and
the normality of residuals before the ANOVA was performed (Bartlett 1937; Shapiro & Wilk
1965). To assess differences between the irrigation regime, genotype, and their interaction, the
least significant difference (LSD) test (p < 0.05 and < 0.01) was used. RStudio 4.1.1 was used to
create the figures. The FactoExtra package was employed to perform Principal Component
Analysis (PCA), and the Com-plexHeatmap package was utilized to create a heatmap. Using the
procedures outlined by Burton & De Vane (1953), the genotypic and phenotypic variance
components and their coefficients of variation were calculated. The methods given by Allard
(1999) were used to estimate genetic advancement and broad-sense heritability. Drought tolerance
indices (Table S3) were computed to classify the genotypes according to their drought tolerance,

also cluster analysis was carried out using these indicators.
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Results

Analysis of variance

Combined variance analysis revealed that genotypes and irrigation exhibited highly
significant effects on all physiological and agronomic characteristics, highlighting the substantial
role of genetic makeup and environmental factors on these traits (Table 1). Significant interactions
between genotypes and irrigation were detected across all evaluated characters, underscoring the
necessity of studying genotype-by-environment interactions when developing strategies for crop
improvement. The three-way interaction between genotypes, irrigation, and growing seasons was

insignificant for grain yield and most assessed characters.

Physiological and agronomic performance

Sixteen physiological and agronomic characters were studied under normal and drought-
stressed conditions. Significant variations were observed across all traits between irrigation
treatments. Under drought conditions, a substantial reduction was observed in Chla, Chlb, Tr,
NPR, gs, RWC, MSI, PH, NGPS, and GY (Figure 1). In contrast, traits such as MDA, Proc, CAT,
APX, and SOD showed significant increases under water deficit conditions, suggesting their role
in drought tolerance mechanisms. The genotypes exhibited substantial differences in all characters
under drought and well-watered conditions, emphasizing genetic variability and its potential for

breeding programs.

Physio-biochemical attributes

The physio-biochemical attributes of the evaluated fourteen wheat genotypes are illustrated
in Figures 2-4. Under normal conditions, chlorophyll a (Chla) ranged from 3.48 to 3.77 mg/g FW,
with genotype G3 showing the highest value, followed by G8, G4 and G11 (Figure 2A). While
under drought conditions, Chla values decreased significantly, ranging from 2.36 to 2.81 mg/g

FW, with G10, G11, G12 and G8 performing the best. In normal conditions, Chlb ranged between
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1.49 and 2.65 mg/g FW, with G11, G12, G3 and G9 demonstrating the highest value (Figure 2B).
Under drought stress, Chlb values were reduced to 1.32 to 1.88 mg/g FW, with G12, G13, G11,
G8 and G3 performing best. Net photosynthetic rate (NPR) ranged from 16.48 to 25.75 g/m? under
normal conditions, with genotypes G3, G9, G1 and G4 recording the highest rate (Figure 2C).
Under drought stress, NPR declined to 12.02 to 17.44 g/m?, where genotypes G1, G8, G6 and G9
exhibited the best performance. Transpiration rate (Tr) ranged from 3.57 to 4.56 umol CO,/m?/s
in normal conditions, with G6, G5, G2, and G1 recording the highest value, and decreased to 2.17
to 4.04 pmol CO,/m?/s under drought, where G2, G14, G5, and G7 exhibited the highest rate
(Figure 2D). Stomatal conductance (gs) fluctuated from 0.48 to 0.90 cm?/S in normal conditions,
with G8, G11, G12, G1, and G3 performing best, and reduced to 0.34 to 0.66 cm?/S under drought,
where G3, G11, G6, and G8 excelled (Figure 2E). Relative water content (RWC) varied between
69.94% and 86.35% in normal conditions, with G3, G6, G5, and G11 achieving the highest value
and declined to 54.76% to 64.54% under drought, with G8, G3, G12, and G13 showing superior
performance (Figure 2F). Membrane stability index (MSI) ranged from 46.50% to 60.94% in
normal conditions, with G1, G8, G9, and G3 excelling, and dropped to 32.83% to 51.96% under
drought, where G3, G4, G112, and G8 demonstrated the best stability (Figure 3A).
Malondialdehyde (MDA) content ranged from 23.19 to 46.89 umol/g FW in normal conditions,
with G6, G5 and G4 showing the highest, while G3, G10, and G13 had the lowest content (Figure
3B). Under drought, MDA increased significantly to 49.93 to 60.09 umol/g FW, with G5, G14,
and G13 recording the highest while G1, G8 and G9 recorded the lowest values. Proline content
(Proc) ranged from 0.58 to 0.73 pmol/g DW in normal conditions, with G3, G7, G11, and G6
performing best, and increased to 1.54 to 2.15 umol/g DW under drought, with G8, G3, G10, G13,
and G12 exhibiting the highest content (Figure 3C). Catalase activity (CAT) ranged from 7.63 to
12.03 units/mg protein in normal conditions, with G6, G13, G7, and G8 performing best, and
increased to 10.79 to 18.69 units/mg protein under drought, where G5, G6, G8, and G12 showed

the highest activity (Figure 3D). Ascorbate peroxidase (APX) activity ranged from 4.88 to 9.62
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units/mg protein in normal conditions, with G6, G14, G5, and G3 recording the highest activity
and increased to 7.73 to 18.72 units/mg protein under drought, where G8, G12, G6, and G2
excelled (Figure 3E). Superoxide dismutase (SOD) activity ranged from 33.29 to 40.20 units/mg
protein in normal conditions, with G14, G3, G10, G1, and G8 performing best, and increased to
53.90 to 68.59 units mg™! protein under drought, where G8, G10, G3, and G2 demonstrated

superior activity (Figure 3F).

Agronomic traits

Plant height (PH) ranged from 79.21 to 108.17 cm in normal conditions, with G3, G8, G4 and
G6 produced the tallest plants and decreased to 62.29 to 90.02 cm under drought, where G3, G4,
G8 and G1 performed best, while G14, G13, and G11 had the shortest plants (Figure 4A). Number
of grains/spike (NGPS) fluctuated from 53.86 to 74.72 in normal conditions, with G4, G3, G11,
and G8 achieving the highest value, and dropped to 40.74 to 61.02 under drought, with G3, G8,
G6, and G10 showing the best performance (Figure 4B). Thousand kernel weight (TKW) varied
from 40.92 to 54.55 g in normal conditions, with G4, G8, G6, G5, and G12 producing the heaviest
kernels, and decreased to 31.89 to 41.67 g under drought, where G8, G3, and G1 exhibited
superiority (Figure 4C). Grain yield (GY) ranged from 5.14 to 8.22 tons/ha in normal conditions,
with G3, G4, G8, and G1 achieving the highest yield and reduced to 3.51 to 6.32 tons/ha under

drought, where G8, G12, G3, and G6 outperformed other genotypes (Figure 4D).

Genotypic classification

The heatmap analysis displayed distinct patterns in the performance of 14 bread wheat
genotypes (G1-G14) based on physio-biochemical attributes and agronomic characters under
water deficit conditions (Figure 5). The genotypes are clustered into three groups. Cluster 1 (G5,
G7, G2, and G14) demonstrated high levels of transpiration rate and malondialdehyde content.
Cluster 2 (G3, G8, G12) is characterized by high chlorophyll content and photosynthetic rate

indicating strong photosynthetic efficiency, also high proline levels and antioxidant enzyme
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activities (APX, CAT, SOD), making these genotypes highly resilient to drought conditions.
Besides, this cluster displayed high grain yield and its contributing traits. Cluster 3 (G1, G4, G6,
G9, G13, G10, G11) showed moderate levels across most traits. These groupings highlight the
genotypes varying capacities to balance stress resilience and yield performance. Genotypes such
as G3, G8 and G12 are ideal candidates for breeding drought-tolerant wheat due to their superior
physiological, biochemical and agronomic responses, while G2, G5, G7, and G4 require
favorable conditions to exhibit their yield potential. Grouping the assessed traits emphasized their
importance in genotype differentiation. Chlorophyll content (Chl @ and Chl b), antioxidant
enzymes (CAT, APX, SOD), and RWC were associated under drought stress. The attributes of
photosynthetic parameters, water-retention traits and antioxidant enzymes are critical for
maintaining growth under environmental stresses. Yield traits (GY, NGPS, TKW) were grouped
together and were associated with certain physiological traits as RWC, MSI, NPR, SOD and

Proc.

Drought tolerance indices

The assessed genotype was further classified using the computed drought tolerance indices,
stress tolerance index, geometric mean productivity, mean productivity, harmonic mean, and yield
index (Table S4). The hierarchical clustering analysis categorized the genotypes into four groups
(Figure 6). Group A contained three genotypes (G8, G3 and G12) that exhibited the highest
tolerance indices, classifying them as drought-tolerance genotypes. These genotypes exhibited
strong adaptability to drought conditions and represent valuable candidates for wheat breeding to
enhance drought tolerance. Group B comprised four genotypes (G6, G4, G1, and Gl1)
demonstrating moderate tolerance index values. These genotypes displayed intermediate
performance under drought stress. In contrast, five genotypes (G13, G10, G9, G5, and G7) in
Group C, followed by two genotypes (G2 and G14) in Group D that displayed the lowest tolerance

index, and were identified as drought-sensitive genotypes.

Ranking and AMMI analyses
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317 The ranking biplot provides a detailed evaluation of stability and performance of 14 wheat
318 genotypes (G1-G14) across four distinct environments (E1-E4) under well-watered and water
319 deficit conditions across two seasons (Figure 7A). The first principal component (PC1) captured
320 74.07%, and the second principal component (PC2) explained 19.58% of the total variation of
321 genotype by environment interaction. The Average Environment Coordinate (AEC, represented
322 by a blue arrow) assesses the performance and stability of genotypes. Genotypes closer to the AEC
323 and aligned along its axis exhibited high performance and stability, while those far from the axis
324 were either less stable or showed environment-specific responses. Genotypes exhibited varying
325 levels of performance and stability across the environments. Genotypes G6, G3, G8 and G12 are
326 positioned close to the AEC axis, indicating high mean performance and stability across all
327 environments. These broadly adaptable genotypes can be suggested for cultivation under normal
328 and water deficit conditions. In contrast, genotypes such as G2, G14, and G13 located far from
329 AEC are better suited for regions with favorable growing conditions. The environments showed
330 variability in their alignment with the AEC, reflecting their distinctiveness and representativeness
331 of the overall mean performance. Environments E1 and E3, corresponding to normal conditions in
332 the first and second seasons, respectively, are located on the positive side of PCI. These
333 environments are favorable for wheat production as they align with high-yielding genotypes. In
334 contrast, E2 and E4, representing drought conditions in the first and second seasons, are situated
335 on PCl1 negative side.

336 Also, in AMMI analysis, the four environments (E1-E4) showed distinct interaction patterns
337 with the genotypes (Figure 7B). E1 is located in the sector of positive PC1 and PC2, indicating
338 favorable growing conditions that associated with G1 and G2, which performed well under these
339 conditions. In contrast, E2 represents drought conditions in the first season in the negative PC2
340 sector. Genotypes G13 and G8 were associated with E2, suggesting their resilience to drought
341 stress in the first season. E3 corresponds to normal conditions in the second season, is placed in

342 the sector of positive PC1 and negative PC2, and is associated with G3. E4 represents drought
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conditions in the second season and is situated in the sector of negative PC1 and PC2, with G12
strongly associated highlighting its performance under drought conditions. The genotypes
displayed different levels of stability and adaptability across the studied environments. Genotypes
G5, G6, G9, and G7 are located close to the biplot origin indicating minimal interaction effects
and broad adaptability. These genotypes were stable across normal and drought conditions, which

indicated their suitability for diverse environmental conditions.

Association analyses

Principal component analysis (PCA) was applied to explore the relationships among studied
physiological and agronomic characters under different conditions. The biplot (Figure 8A)
segregated the normal and drought conditions indicating diverse associations. The first two PCs
(PC1 and PC2) explained 79.94% of the total variance, with PC1 accounting for 69.42% and PC2
for 10.52% (Figure 8B). Traits such as APX, MDA, SOD, Proc, and CAT were associated with
drought stress were presented in distinct blue cluster. In contrast, traits related to normal conditions
were presented in the separated yellow cluster, indicating to their differing responses to
environmental conditions. Regarding trait contributions, Chl a had the highest contribution to PC1
(8.23%), followed by RWC (8.0%) and Proc (7.56%). For PC2, Tr was the dominant contributor
(22.5%), followed by GY (11.32%) (Figures 8B, C).

Spearman correlation matrix for physiological and agronomic parameters under well-watered
and drought conditions is presented in Figure 9A and 9. The correlation analysis revealed different
patterns under normal and drought conditions. Under normal conditions (Figure 9A), positive
associations were detected between grain yield and several key characters, including Chl a, MSI,
NPR, PH, NGPS, and TKW. These associations emphasized the significance of these characters
in determining yield under normal conditions. Besides, Chl a exhibited a strong positive
association with NPR, PH, and NGPS, indicating its role in influencing agronomic performance.
Other positive associations included NPR with SOD and RWC with APX, suggesting that
improved photosynthesis and water retention are associated with enhanced antioxidant activity.
Conversely, Tr displayed a strong negative association with NPR and MDA, indicating that

oxidative stress negatively impacts photosynthetic efficiency.
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Under drought conditions (Figure 9B), GY exhibited significant positive associations with Chl
a, Chl b, NPR, MSI, RWC, ProC, SOD, NGPS, and TKW. Also, TKW was positively associated
with RWC, ProC, and APX. In addition, NGPS showed strong positive correlations with PH,
RWC, and SOD. Other pairwise associations were identified, such as Chl a with Chl 5, CAT with
APX, ProC with SOD, and RWC with CAT. Negative correlations were also observed between
GY and MDA.

Path analysis

The direct and indirect effects of studied physiological and agronomic characters on grain yield
under water deficit conditions are presented in Table S5. Most traits positively affected grain yield,
except MDA, which showed a negative direct effect. RWC, MSI, chlorophyll content (Chl a and
Chl b) and antioxidant enzyme activities CAT, APX, and SOD demonstrated positive direct effects
on GY. In addition to direct contributions, some traits influenced grain yield indirectly. For
example, RWC enhanced grain yield indirectly by positively affecting traits such as photosynthetic
efficiency and antioxidant enzyme activity. Similarly, antioxidant enzymes (CAT, APX, and SOD)
indirectly affected grain yield by improving RWC and MSI. Agronomic characters, including
TKW and PH, indirectly contributed to grain yield by associating with physiological traits such as

MSI and chlorophyll content.

Heritability, variance component, and genetic advance

The phenotypic variance exceeded the genotypic variance in all studied traits under normal
conditions (Table 2). Among the characteristics, PH and NGPS had the greatest values of GCV
and PCV, while the lowest values were observed for Chla, Proc, and gs. High PCV values were
recorded for NGPS, PH, MSI, and TKW. In contrast, GY, Tr, and Proc exhibited moderate PCV
values. Likewise, GCV was highest for APX, NPR, and MSI, while PH, TKW, Tr, and gs displayed
moderate GCV values. Broad sense heritability estimates varied from moderate to high across the
studied characters. GY and Proc exhibited moderate genetic advance and heritability. In contrast,

NPR, SOD, APX, and PH displayed high heritability with genetic advance.
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Similarly, phenotypic variance exceeded genotypic variance for all characters under drought
stress. PCV and GCV values were uppermost for APX, MDA, and NPR, while the lowest values
were observed for Chl a, gs, and GY. NGPS, PH, MSI, and TKW exhibited high PCV values,
whereas moderate PCV values were recorded for Tr, gs, and Proc. Likewise, GCV was highest for
APX, NPR, and MDA, while moderate GCV values were observed for PH, TKW, Tr, and GY.
Broad sense heritability varied from moderate to high for studied characters. APX, SOD, MDA,
and NGPS exhibited high heritability and genetic advance under drought stress. In contrast, GY,

gs, and Proc showed moderate heritability and genetic advance.

Discussion

Climate change increases drought stress in arid Mediterranean regions and severely
diminishes wheat yields (Melki et al. 2024). Therefore, developing drought-tolerant genotypes is
essential for sustaining wheat production. Screening genotypes for tolerance to water scarcity
using physiological and agronomic traits under natural field conditions in targeted environments
is an effective strategy for enhancing wheat breeding in arid environments. This study focused
on bread wheat genotypes' physiological and agronomic performance under stressed and non
stressed conditions in an arid environment. The ANOVA-results demonstrated that both genotype
and irrigation had a significant impact on all studied traits. These results displayed that the assessed
materials possessed high degree of genetic variability, which could be employed in improving
wheat productivity. These results are in consonance with Morsy et al. (2022); Saidi et al. (2024),
Tefera et al. (2021), who reported genetic variability among genotypes for physiological and
agronomic characters under stressed and normal conditions. The observed significant genotype x
irrigation interaction across studied traits highlighted the varied responses of genotypes to
irrigation treatments. This result indicated the importance of studying these interactions in wheat

breeding to develop resilient genotypes to diverse environmental conditions. Similarly, Ru et al.
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(2024); Thapa et al. (2018); Upadhyay et al. (2023) depicted the vital effects of genotype-
environment interactions on the expression of physiological and agronomic characters.

The results showed that water scarcity significantly reduced all assessed characters compared
to normal conditions, except for antioxidant enzyme activities, proline content and
malondialdehyde, which increased significantly. Drought stress significantly impacts the physio-
biochemical pathways leading to impaired photosynthesis, reduced growth, and, ultimately, lower
yields. The significant reduction in studied traits such as chlorophyll content (Chla, Chlb), NPR,
RWC, and MSI indicated that drought stress negatively affected photosynthetic capacity and water
retention ability (Kamara et al. 2022). Under drought conditions, the decrease of Chla and Chlb
under water deficit conditions indicates to of impair of the photosynthetic system (Croce et al.
2024; Wang et al. 2017). Similarly, the reduction in NPR and Tr limited carbon dioxide
assimilation and disrupted stomatal conductance, consequently decreased plant productivity
(Osakabe et al. 2014; Sallam et al. 2019). Moreover, increased levels of MDA indicated oxidative
damage and disturbed cellular activities. Compared to the plants under normal conditions, elevated
antioxidant activities and proline accumulation in stressed wheat plants may result from the direct
action of free radical scavengers, emphasizing their vital function as drought stress tolerance
mechanisms. By promoting osmotic adjustment, preserving redox equilibrium, and stabilizing
proteins, proline, an essential osmolyte, protections plant cells (Mwadzingeni et al. 2016). SOD is
primary defense against oxidative damage which transforms O,— radicals into H,O, and O, (Chung
2017). By breaking down H,O, into water and oxygen, APX assistances with detoxification
(Sachdev et al. 2021), while CAT is essential for signal transduction and metabolism (Zhang et
al. 2022). Grain yield of the assessed genotypes was-significantly reduced under drought stress
compared to well-watered conditions. This reduction could be attributed to reduced assimilate
availability, pollen abortion, impaired fertilization, and disrupted grain filling. This negative effect

of water deficit on yield traits were documented in studies such as those by Rijal et al. (2024),
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Khan et al. (2024), Mutanda et al. (2024), Wang et al. (2024), Xu et al. (2023) which emphasized
the sensitivity of yield components to water deficit.

The heatmap and cluster analyses displayed different responses of assessed genotypes to
water deficit. The genotypes were classified into different groups ranging from drought sensitive
to tolerant. Genotypes G3, G8, and G12 demonstrated superior performance under drought
conditions, characterized by higher chlorophyll content (Chl a and »), RWC, and enhanced
antioxidant enzyme activities (CAT, APX and SOD). These parameters displayed the ability of
these genotypes to sustain photosynthetic efficiency and cellular stability, contributing to higher
grain yields under drought stress. Moreover, elevated proline and antioxidant levels emphasized
their superior drought tolerance, because these characters are crucial in osmotic adjustment and
scavenging ROS. The strong performance under drought stress identifies these genotypes as
promising candidates for wheat breeding to enhance its productivity under limited water conditions
(Ahmad et al. 2022). Furthermore, ranking and AMMI biplots displayed valuable information on
the stability and adaptability of these genotypes. Therefore, these multivariate analyses are
important in differentiating wheat genotypes based on physiological and agronomic traits under
stress conditions (A/-Ashkar et al. 2021; Kamara et al. 2022; Khan et al. 2023, Upadhyay et al.
2023).

Direct or indirect selection of agronomic and physiological character can improve grain yield.
In this study, correlation analyses revealed strong positive associations between grain yield and
Chl a, MSI, NPR, PH, and NGPS under normal conditions. These associations indicated the
importance of photosynthetic parameters and structural traits in maximizing yield potential under
normal conditions. Otherwise, under water deficit conditions, grain yield displayed positive
associations with RWC, Proc, and antioxidant enzyme activities (CAT and SOD). This indicated
the vital role of physiological adaptations in mitigating the damages induced by water scarcity.
Consequently, grain yield could be improved by enhancing these physiological characteristics

under drought conditions. In this regard, the importance of physiological parameters as markers of
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grain yield under water deficit was clarified by Yasir et al. (2019), Ahmad et al. (2018), and
Shirvani et al. (2023). Additionally, the negative correlation between grain yield and MDA
observed under water deficit presented detrimental effects of lipid peroxidation on yield. This
finding indicated the importance of selecting genotypes with lower MDA levels to enhance grain
yield and drought tolerance (Devi et al. 2024). The different correlations under normal and drought
conditions revealed different strategic adjustments in resource allocation and physiological
processes. Under normal conditions, traits were associated with growth and productivity, while
under drought stress, traits such as antioxidant activity were related to stress resilience as depicted
by Foulkes et al. (2007),; Pantha et al. (2024).

Assessing genetic variability and heritability of physiological and agronomic parameters
under normal and water scarcity conditions is pivotal for developing drought tolerant wheat
genotypes. In the present study, higher PCV compared to GCV for most characters under normal
and water deficit conditions indicated significant effect of irrigation treatments on studied traits.
These results align with the research of Pour-Aboughadareh et al. (2020), Mansour et al. (2023);
Sewore & Abe (2024), which also stated significant variability and potential for selection across
physiological and agronomic characters under both conditions. Heritability values were slightly
higher under drought conditions than under normal conditions for most characters, suggesting that
selection for moisture response is more feasible in stress environments (Beyene et al. 2015). When
combined with substantial genetic advances, high heritability suggests the presence of additive
gene effects, indicating that selection could lead to meaningful genetic gains (Johnson et al. 1955).
Chl b, NPR, ProC, CAT, APX, SOD, and PH exhibited high genetic advance and moderately high
heritability under drought conditions. This indicates their strong genetic potential for enhancing
drought tolerance. Similarly Ahmed et al. (2024); Fufa et al. (2024), Saeed et al. (2024), elucidated
the critical role of exploring heritability and genetic advance of grain yield and related traits in

enhancing selection strategies in wheat breeding under stress conditions.
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Conclusions

The results displayed adverse effects of water deficit conditions on wheat productivity, with
significant reductions in photosynthetic parameters, water retention ability, and yield traits.
However, activating defense mechanisms, such as increased proline and antioxidant activities,
displayed an important role in mitigating stress impacts. Genotypes G3, G8, and G12 exhibited
superior resilience and consistent yield traits under drought stress. Therefore, these genotypes
could be considered promising for improving drought resilience and ensuring sustainable wheat
production in drought-prone regions. In contrast, the remaining moderately tolerant and sensitive
genotypes require targeted improvement. Key traits, including chlorophyll content (Chl a and ),
relative water content (RWC), photosynthetic efficiency (NPR, Tr and gs), and antioxidant enzyme
activities (CAT, APX, SOD), were identified as crucial indicators of drought tolerance while
reducing malondialdehyde (MDA) levels was essential for improving drought tolerance. These
traits exhibited high heritability and genetic advance, providing a strong foundation for genetic
improvement. Consequently, integrating these biochemical and physiological parameters with
agronomic traits in wheat breeding programs could offer an efficient approach to improve drought
tolerance and address the challenges of climate variability.
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Figure 1

Comparative boxplots of 16 physiological and agronomic measured traits under normal
and drought conditions.

Comparative boxplots of 16 physiological and agronomic measured traits under normal and
drought conditions. Chlorophyll a (mg/g FW), Chib: Chlorophyll b (mg/g FW), NPR: Net
photosynthetic rate (umol CO2/m2/s, Tr: Transpiration rate (umol CO2/m2/s), gs: Stomatal
conductance (umol CO2/m2/s), RWC: Relative water content (%), MSI: Membrane stability
index (%), MDA: Malondialdehyde (umol/g FW), Proc: Proline content (umol/g DW), SOD:
Superoxide dismutase (unit mg/ protein), CAT: Catalase (unit mg/ protein), APX: Ascorbate
peroxidase (unit mg/ protein), PH: Plant height (cm), NGS: Number of grains /spike, TGW:
1000-grain weight (g), and GY: Grain yield (tons/ha).
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Figure 1. Comparative boxplots of 16 physiological and agronomic measured traits under normal
and drought conditions. Chlorophyll a (mg/g FW), Chlb: Chlorophyll b (mg/g FW), NPR: Net
photosynthetic rate (umol CO2/m?%s, Tr: Transpiration rate (umol CO2/m?/s), gs: Stomatal
conductance (pumol CO2/m?/s), RWC: Relative water content (%), MSI: Membrane stability index
(%), MDA: Malondialdehyde (umol/g FW), Proc: Proline content (umol/g DW), SOD: Superoxide
dismutase (unit mg/ protein), CAT: Catalase (unit mg/ protein), APX: Ascorbate peroxidase (unit
mg/ protein), PH: Plant height (cm), NGS: Number of grains /spike, TGW: 1000-grain weight (g),
and GY: Grain yield (tons/ha).
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Figure 2

Comparative performance of evaluated wheat genotypes

Comparative performance of evaluated wheat genotypes: (A): Chlorophyll a, (B): Chlorophyll
b, (C): Net photosynthetic rate, (D): Transpiration rate, (E: Stomatal conductance, and (F):

Relative water content. The standard error (SE) is shown by the bars above the columns.
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Figure 2. Comparative performance of evaluated wheat genotypes: (A): Chlorophyll a, (B):
Chlorophyll 4, (C): Net photosynthetic rate, (D): Transpiration rate, (E: Stomatal conductance, and

(F): Relative water content. The standard error (SE) is shown by the bar.'éwc the columns.
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Figure 3

Comparative performance of evaluated wheat genotypes

Comparative performance of evaluated wheat genotypes: (A): Membrane stability index, (B):
Malondialdehyde, (C): Proline content, (D) Catalase, (E): Ascorbate peroxidase and (F):

Superoxide dismutase. The standard error (SE) is shown by the bars above the columns
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Figure 3. Comparative performance of evaluated wheat genotypes: (A): Membrane stability index,
(B): Malondialdehyde, (C): Proline content, (D) Catalase, (E): Ascorbate peroxidase and (F):
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Figure 4

Comparative performance of evaluated wheat genotypes

Comparative performance of evaluated wheat genotypes: (A): Plant height, (B): Number of

grains/spike, (C): 1000-grain weight, and (D): Grain yield. The standard error (SE) is shown by

the bars above the columns.
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Figure 4. Comparative performance of evaluated wheat genotypes: (A): Plant height, (B): Number
of grains/spike, (C): 1000-grain weight, and (D): Grain yield. The standard error (SE) is shown by
the bars above the columns.
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Figure 5

Heatmap for wheat genotypes based on studied physiological and agronomic traits
under drought stress.

Heatmap for wheat genotypes based on studied physiological and agronomic traits under
drought stress. Blue color indicates lower rank of studied character while red color indicates
high rank. Chlorophyll a (mg/g FW), Chlb: Chlorophyll b (mg/g FW), NPR: Net photosynthetic
rate (umol CO2/m2/s, Tr: Transpiration rate (umol CO2/m2/s), gs: Stomatal conductance
(umol CO2/m2/s), RWC: Relative water content (%), MSI: Membrane stability index (%), MDA:
Malondialdehyde (umol/g FW), Proc: Proline content (umol/g DW), SOD: Superoxide
dismutase (unit mg/ protein), CAT: Catalase (unit mg/ protein), APX: Ascorbate peroxidase
(unit mg/ protein), PH: Plant height (cm), NGS: Number of grains /spike, TGW: 1000-grain
weight (g), and GY: Grain yield (tons/ha).
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Figure 5. Heatmap for wheat genotypes based on studied physiological and agronomic traits under
drought stress. Blue color indicates lower rank of studied character while red color indicates high
rank. Chlorophyll a (mg/g FW), Chlb: Chlorophyll b (mg/g FW), NPR: Net photosynthetic rate
(umol CO2/m?/s, Tr: Transpiration rate (umol CO»m?s), gs: Stomatal conductance (pumol
CO2/m?/s), RWC: Relative water content (%), MSI: Membrane stability index (%), MDA:
Malondialdehyde (umol/g FW), Proc: Proline content (umol/g DW), SOD: Superoxide dismutase
(unit mg/ protein), CAT: Catalase (unit mg/ protein), APX: Ascorbate peroxidase (unit mg/
protein), PH: Plant height (cm), NGS: Number of grains /spike, TGW: 1000-grain weight (g), and
GY: Grain yield (tons/ha).
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Figure 6

Dendrogram depicting distances among fourteen wheat genotypes according to
tolerance indices

Dendrogram depicting distances among fourteen wheat genotypes according to tolerance

indices
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Figure 6. Dendrogram depicting distances among fourteen wheat genotypes according to tolerance

indices.
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Figure 7

Comparison of fourteen wheat genotype performance (G1-G14) and stability across
environments using ranking and AMMI biplots for grain yield

Comparison of fourteen wheat genotype performance (G1-G14) and stability across
environments using ranking and AMMI biplots for grain yield. E1: Normal conditions during
the first season, E2: Drought conditions during the first season, E3: Normal condition durinf

the second Season, and E4: Drought condition during second season.
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Figure 7. Comparison of fourteen wheat genotype performance (G1-G14) and stability across
environments using ranking and AMMI biplots for grain yield. E1: Normal conditions during the
first season, E2: Drought conditions during the first season, E3: Normal condition durinf the
second Season, and E4: Drought condition during second season.
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Figure 8

PCA biplot for studied physiological and agronomic in fourteen wheat genotypes under
normal and water deficit conditions

PCA biplot for studied physiological and agronomic in fourteen wheat genotypes under
normal and water deficit conditions (A), bar chart with contribution percentage of principal

components to overall variance (B), and bar charts of trait contribution with dashed line of

significant contribution (C and D).
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Figure 8. PCA biplot for studied physiological and agronomic in fourteen wheat genotypes under
normal and water deficit conditions (A), bar chart with contribution percentage of principal
components to overall variance (B), and bar charts of trait contribution with dashed line of
significant contribution (C and D).
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Figure 9

Matrix of Spearman correlation for physiological and agronomic characters under well-
watered (A) and water deficit conditions (B).

Matrix of Spearman correlation for physiological and agronomic characters under well-

watered (A) and water deficit conditions (B).
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Figure 9. Matrix of Spearman correlation for physiological and agronomic characters under well-
watered (A) and water deficit conditions (B).
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Figure 10

Graphical Abstract

Graphical Abstract
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Table 1(on next page)

Analysis of variance (mean squares) for evaluated characters of the assessed genotypes

under well watered and drought stress conditions over the two seasons of 2021/2022
and 2022/2023.

Analysis of variance (mean squares) for evaluated characters of the assessed genotypes
under well watered and drought stress conditions over the two seasons of 2021/2022 and

2022/2023.
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Table 1. Analysis of variance (mean squares) for evaluated characters of the assessed genotypes
under well watered and drought stress conditions over the two seasons of 2021/2022 and

2022/2023.

Source of df Chla$ Chh NPR Tr g& RWC MSI MDA
Variance

Growing season (Gs) 1 115" 074 2418 154 017 7802 4113 6926
Replication/(Gs) 4 0130 0157 9.69 079 002 6718 9694 9561
Trrigation (Ir) 1 4138° 989"  0470™  4080™ 119" 15676 4492* 13021
<GS 1 0.57 0.58 1239 085 0001 7232 1320  22.84
Error a 4 0.29 0.11 343 009 0001 5986 2110 458
Genotypes (Gen) 13 007° 093" 5303 172" 010% 1069" 2047* 191.1*
GenxGs 13003 028" 1247 204" 002" 1402 69.17% 1507
GenxIr 13 008* 026"  2059% 091" 006" 7779 1188 1388~
GenxGsxIr 13 004" 030" 622" 114" 001" 1573 8155% 2405
Errorb 104 001 0.01 0.50 0.10 0001 1235 974 454
Source of df Proc CAT APX SOD PH NGS TGW GY
Variance

Growing season (Gs) 1 097 3679% 3896 1318~ 4072 4043 7469 474
Replication/(Gs) 4 034 152 2135 362 1852 5323 892 0517
Trrigation (Ir) 1 51.52% 1301 1519 28529 15016™ 4939™  5332%  1232%
<GS 1 416 4758" 4495 3122° 5119 53720 2819 3463
Error a 4 033 055 051 1608 3066 310 1019 205
Genotypes (Gen) 13 009" 2096™ 37.80 8474 1077% 4198" 10317 654"
GenxGs 13 004" 072 1071 4471 5478 4194" 6694 045
GenxIr 13 010" 1185 4791 5597* 2873 101.0™ 3605 191"
GenxGsxIr 13 004™ 103 768" 3382 4058" 5274 1324 035
Errorb 104 0001 070 154 583 1568 1138 1463 080

§ Chla: Chlorophyll a (mg/g FW), Chlb: Chlorophyll 5 (mg/g FW), NPR: Net photosynthetic rate (umol
CO,/m?/s, Tr: Transpiration rate (umol CO,/m?/s), gs: Stomatal conductance (umol CO,/m?/s), RWC:
Relative water content (%), MSI: Membrane stability index (%), MDA: Malondialdehyde (umol/g FW),
Proc: Proline content (umol/g DW), SOD: Superoxide dismutase (unit mg/ protein), CAT: Catalase (unit
mg/ protein), APX: Ascorbate peroxidase (unit mg/ protein), NGS: Number of grains /spike, PH: Plant
height (cm), TGW: 1000-grain weight (g), and GY: Grain yield (tons/ha).
* and ** indicate p-value < 0.05 and 0.01 in the same order.
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Table 2(on next page)

G enetic variability parameters for physiological and agronomic characters in evaluated
genotypes under normal (NOR) and water deficit (DRO) conditions

G enetic variability parameters for physiological and agronomic characters in evaluated

genotypes under normal (NOR) and water deficit (DRO) conditions
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2 Table 2. Genetic variability parameters for physiological and agronomic characters in evaluated
3 genotypes under normal (NOR) and water deficit (DRO) conditions.
Parameter Irrigation Chla Chlb NPR Tr gs RWC MSI MDA
Nor 0.01 0.15 9.62 0.08 002 19.11 12.22 46.04

2
S Dro _..002 004 249 032 001 _ 7.58 3845 743
- Nor 002 0.8 1028 021 0.02 31.23 2050 51.42
o Dro _..003 005 282 041 001 _ 20.16 49.66 11.13
GOV Nor 154771940 1563 7.03 1927 555 6.63 1847
U Dro 519 12.70 10.44 18.13 2052  4.63 14.64 502
PCV Nor ~ 4.06 20.72 16.15 '11.02° '19.63 7.09 859 19.52
S Dro 619 1389 11.12 2046 2237 7.55 1664  6.14
b Nor 1446 '87.73 9361 40.63 9632 61.18 59.63 89.52
S Dro _.70.25 83.08 88.08 7855 84.14 37.60 7742 60.76
GA Nor 004 076 618 038 026 704 556 1322

Dro 023 037 3.05 1.03 0.19 348 11.24 4.59
Parameter Irrigation Proc CAT APX SOD PH NGPS TKW GY

og Nor 0.0l 095 211 429 09625 5191 1071 0.70
T Dro 003 428 1166 17.23 8291 31.04 759 044
o Nor  0.02 147 239 1032 11658 6256 37.65 1.8
e Dro 003 517 1446 2284 9396 43.14 991 116
GOV Nor  6.17 '10.16 20.06 559 1047 1126 7.01 12.93
e Dro . 9.66 13.63 2575 658 1217 1049  7.78 13.99
POV Nor  6.83 1260 2131 8.68 11.52° 1236 13.15 19.44
S Dro 1002 14.98 28.67 7.58 _12.96 12.36 889 22.61
Hh Nor  81.54 65.05 88.58 41.53 '82.56 8298 2846 44.25
e Dro 92.98 8281 8061 7541 8824 7195 76.60 38.30
GA Nor 007 1.62 282 275 1836 1352 360 115

e Dro 034 383 632 743 17.62 9.74 497 085

4  o’p: Phenotypic variance, GCV: genotypic coefficient of variation, c?g: Genotypic variance, PCV:
5 phenotypic coefficient of variation, H*b: Broad-sense heritability, GA: Genetic Advance.
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