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The objective of this study was to examine the eûects of exercise at varying altitudes on
oxidative stress and muscle damage. A total of twelve elite long-distance runners (mean
age: 20.3 ± 1.5 years) from diûerent branches participated in the study. The exercise
protocol was the Bruce submaximal treadmill exercise test, which was conducted under
three simulated hypoxic conditions (1700 m, 2450 m, and 3200 m) and one normoxic
condition (sea level). All measurements took place at the same time of the day. After the
exercise protocol, 5 ml venous blood samples were taken from the participants. Signiûcant
diûerences were observed in total oxidant status (TOS, p=0.017), malondialdehyde (MDA,
p<0.001), total antioxidant status (TAS, p<0.001), and the oxidative stress index (OSI,
p<0.001) across diûerent altitudes. However, no signiûcant diûerence was found in
creatine kinase (CK, p=0.059) levels. Additionally, there were signiûcant diûerences in the
oxygen saturation measurement taken at the 3rd (p<0.001), 6th (p<0.001), 9th
(p<0.001), and 12th (p<0.001), 12 minutes following the exercise session. There was no
diûerence in the pulse measurement taken at the 3rd and 12th minutes, but a diûerence
was observed at the 6th and 9th minutes post-exercise (p<0.01). In conclusion, the study
determined that exercises per-formed in a hypoxic environment at diûerent altitudes
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increased TAS and reduced OSI in elite long-distance runners.
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41 Background. The objective of this study was to examine the effects of exercise at varying altitudes 

42 on oxidative stress and muscle damage. 

43 Methods. A total of twelve elite long-distance runners (mean age: 20.3 ± 1.5 years) from different 

44 branches participated in the study. The exercise protocol was the Bruce submaximal treadmill 

45 exercise test, which was conducted under three simulated hypoxic conditions (1700 m, 2450 m, 

46 and 3200 m) and one normoxic condition (sea level). All measurements took place at the same 

47 time of the day. After the exercise protocol, 5 ml venous blood samples were taken from the 

48 participants. 

49 Results: Significant differences were observed in total oxidant status (TOS, p=0.017), 

50 malondialdehyde (MDA, p<0.001), total antioxidant status (TAS, p<0.001), and the oxidative 

51 stress index (OSI, p<0.001) across different altitudes. However, no significant difference was 

52 found in creatine kinase (CK, p=0.059) levels. Additionally, there were significant differences in 

53 the oxygen saturation measurement taken at the 3rd (p<0.001), 6th (p<0.001), 9th (p<0.001), and 

54 12th (p<0.001), minutes following the exercise session. There was no difference in the pulse 

55 measurement taken at the 3rd and 12th minutes, but a difference was observed at the 6th and 9th 

56 minutes post-exercise (p<0.01). 

57 Conclusions. In conclusion, the study determined that exercises per-formed in a hypoxic 

58 environment at different altitudes increased TAS and reduced OSI in elite long-distance runners.

59

60 Introduction

61 Exercise's metabolic effects and physiological responses largely depend on the biochemical 

62 reactions occurring in muscle cells. However, the physiological stress induced by exercise can also 

63 lead to side effects such as muscle damage and oxidative stress (Powers & Jackson, 2008; Quindry 
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64 et al., 2016). Oxidative stress has long been a hotspot of exercise-based research. In recent years, 

65 intensive research has been conducted to understand oxidative stress and the physiological 

66 responses of exercise under different conditions, including high altitude (Quindry et al., 2016; Li 

67 et al., 2024). Exercise adaptations to altitude increase with altitude, starting at approximately 

68 1000�1500 m (Miller et al., 2013; Lukanova-Jakubowska et al., 2022). High-altitude adaptation is 

69 driven by various physiological and molecular mechanisms in response to hypoxia. The body 

70 compensates for reduced oxygen availability by increasing breathing and heart rate, while boosting 

71 erythrocyte production to enhance oxygen transport. On a molecular level, transcription factors 

72 like HIF-1 regulate energy metabolism and trigger antioxidant defenses to combat oxidative stress. 

73 These adaptations are crucial for both enhancing physical performance and preventing altitude-

74 related illnesses (Mallet et al., 2023; Vignati et al., 2023). Current knowledge about overexertion 

75 and oxidative stress at high altitudes is generally derived from a limited number of field studies. 

76 Alongside field studies, well-controlled laboratory studies on exercise performance and blood 

77 biomarker changes in humans artificially exposed to hypoxia also contribute significantly to this 

78 field (Gore, Clark & Saunders, 2007; Millet et al., 2010; Millet, Faiss & Pialoux, 2012; Karayigit 

79 et al., 2022). 

80 Exposure to high altitude, which is associated with decreased oxygen pressure, can cause 

81 oxidative/reductive stress, increased formation of reactive oxygen and nitrogen species (RONS), 

82 and associated oxidative damage to lipids, proteins, and DNA (Dosek et al., 2007; Powers & 

83 Jackson, 2008). Various RONS-producing systems are activated during high-altitude exposure, 

84 including the mitochondrial electron transport chain, xanthine oxidase, and nitric oxide synthase. 

85 High altitude appears to weaken both enzymatic and non-enzymatic antioxidant systems (Chao et 

86 al., 1999; Radak et al., 2014). The pattern of oxidative damage associated with high altitude 
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87 exposure is similar to ischemia/reperfusion injury. This adaptive process to the oxidative challenge 

88 requires a relatively long period (Cadenas, 2018; Zhang et al., 2019; Mallet et al., 2023). Physical 

89 exercise or increased physical activity at high altitudes may exacerbate the extent of oxidative 

90 threat (Maiti et al., 2006). The fact that acute exercise induces oxidative cell damage and 

91 contributes to systemic oxidative stress was first established by Dillard et al. (1978). Up-to-date 

92 investigators have clearly shown that acute exercise training increases oxidative stress levels 

93 predominantly with the skeletal muscle and blood (Powers, Smuder & Criswell, 2011; Powers, 

94 Radak & Ji, 2016). In this context, it is important to examine the effects of exercise performed at 

95 different altitudes on creatine kinase (CK) levels and oxidative stress. Different altitudes may have 

96 different effects on exercise performance and physiological responses (Wilber, 2007; Girard et al., 

97 2020). The changing oxygen levels at different altitudes can cause changes in levels of muscle 

98 damage and oxidative stress. This study aims to investigate the acute effects of exercises performed 

99 at different altitudes on CK levels and oxidative stress in elite long-distance runners.

100

101 2. Materials and Methods

102 2.1 Participants

103 The study participants were 12 long-distance athletes between the ages of 20-24 years, residing in 

104 Van province of Turkey, at an altitude of 1700 m. Before the study, participants� health (health 

105 history questionnaire) and activity were assessed. All participants (1) were elite long-distance 

106 runners, (2) were free from chronic illness, (3) were free from musculoskeletal injuries for at least 

107 6 months before the study, and (4) had no history of acute mountain sickness. Participants were 

108 informed about the risks, discomforts, and benefits associated with the study. Thereafter, all 

109 participants received detailed information about the study design, measurements, and procedures 
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110 and were required to give a written informed consent form. The procedures followed the Helsinki 

111 Declaration of 1975, as revised in 2000, and approval was received from the Ethics Committee of 

112 the local university.

113 Twelve long-distance athletes participated in the study (age: 20.3 ± 1.5 years; body weight: 

114 63.5 ± 15.2 kg; height: 171.8 ± 7.9 cm; body mass index: 21.4 ± 4.3; resting heart rate: 49.0 ± 3.0 

115 bpm). To define the high-level status of the athletes in this study, we used the IAAF scoring tables 

116 to evaluate their performance based on season-best results from 2022 to 2023. This method 

117 provided an objective assessment of performance level, categorizing athletes as 'low,' 'medium,' or 

118 'high' performers based on their scores. The use of IAAF scores ensured that only athletes reaching 

119 national and international competitive standards were classified as high-level (Spiriev, 2017).

120

121 2.2 Study design

122 This study was conducted in accordance with the Declaration of Helsinki and approved by the 

123 Ethics Committee of Van Yüzüncü  University (protocol code TYD-2021-9553 and date of 

124 approval 15 May 2021). Participants in the study exercised under four different conditions: 

125 normoxic conditions (sea level), and simulated altitudes of 1700 m, 2450 m, and 3200 m. No 

126 acclimatization was required as the participants had been living at an altitude of 1700 m for an 

127 extended period. This study was conducted using a single-blind, balanced, randomized, and 

128 crossover design. Measurements were conducted on individuals at sea level to establish a baseline. 

129 This baseline was considered sufficient to observe potential differences at higher altitudes. 

130 Separate pre-test measurements were not taken at each altitude; therefore, sea level data served as 

131 the comparison baseline.
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132 A quantitative method was used in the research, and the research model followed a single-

133 group, two-treatment time series (temporarily applied) design, which is one of the quasi-

134 experimental research models (Gliner, Morgan & Leech, 2017). To determine the necessary 

135 sample size within the scope of this research, a power analysis was conducted based on values 

136 recommended in the literature. Accordingly, using G*Power for Repeated Measures ANOVA (1-

137  power = 80%, alpha = 0.05, effect size = 0.40, correlation value = 0.7), it was determined that 8 

138 participants would be needed (Cohen, 1992). Additionally, Suresh and Chandrashekara, (2012) 

139 suggest increasing the sample size by approximately 10% to account for potential withdrawals or 

140 missing data. Consequently, 12 athletes were included in this study. In this context, 12 athletes 

141 were included in the study. Each exercise session at a different altitude was separated by at least 7 

142 days. The exercise protocol was the Bruce submaximal treadmill exercise test protocol under the 

143 four simulated hypoxic conditions (1700 m, 2450 m, and 3200 m) and normoxic conditions (sea 

144 level). Considering that excessive hypoxia (severe, > 3000 m) can cause adverse health effects 

145 such as high-altitude sickness, the levels of hypoxia selected in our study were chosen based on 

146 safety and practical reasons. This approach ensured that adequate metabolic stress was induced 

147 while minimizing the risk to participants (Millet et al., 2016; Strom et al., 2018; Burtscher et al., 

148 2022).

149 Prior to the study, participants provided detailed information about their alcohol, caffeine, 

150 and smoking habits, as well as their use of medications and ergogenic aids, through a specially 

151 designed structured form aimed at assessing lifestyle factors that could influence oxidative stress 

152 levels. Additionally, participants were instructed to follow a standardized diet initiated three days 

153 before the first measurement, consisting of balanced meals with controlled portions of 

154 carbohydrates, proteins, and fats. This diet aimed to control the effects of consumed foods on 
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155 antioxidant levels, thereby preventing any distortion of the study data. To ensure consistency, each 

156 measurement was conducted at three-day intervals and at the same time throughout the study. All 

157 exercise sessions were conducted in a Hypoxico Everest Summit II Altitude Generator, with 

158 temperature and relative humidity maintained at 20°C and 40%, respectively. The physical and 

159 physiological characteristics of the study group are shown in Table 1

160 .

161 --- INSERT TABLE 1 ABOUT HERE ---

162

163 2.3 Measurements

164 Before the exercise tests, a 15-minute classical warm-up protocol was applied under normoxic 

165 conditions. After the warm-up, the Bruce submaximal treadmill exercise test protocol was applied 

166 (Strom et al., 2018). The warm-up consisted of 5 minutes of low-intensity jogging at approximately 

167 50-60% of maximum heart rate to increase heart rate and body temperature. This was followed by 

168 5 minutes of dynamic stretching targeting key muscle groups involved in treadmill running, such 

169 as the quadriceps, hamstrings, calves, and gluteal muscles. The final 5 minutes included mobility 

170 drills like high knees and leg swings to enhance joint mobility and neuromuscular activation. At 

171 the end of Bruce's submaximal treadmill exercise protocol, a 5 mL venous blood sample was taken 

172 from the participants.

173

174 2.3.1 Bruce submaximal treadmill exercise test

175 In the 1st stage, participants walked for 3 minutes at a speed of 1.7 mph with a 10% incline. In the 

176 2nd stage, they walked for 3 minutes at a speed of 2.5 mph with a 12% incline. In the 3rd stage, 

177 the exercise continued for 3 minutes at a speed of 3.4 mph with a 14% incline. In the 4th and final 
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178 stage, participants walked for another 3 minutes at a speed of 4.2 mph with a 16% incline. The 

179 exercise protocol was kept constant for each measurement day, and the ambient altitude was set in 

180 four different ways: 1st measurement at sea level (normoxic conditions), 2nd measurement at 1700 

181 m, 3rd measurement at 2450 m, and 4th measurement at 3200 m. A Hypoxico Everest Summit II 

182 Altitude Generator was used to adjust the ambient partial pressure according to these altitudes 

183 (Harwood, Wright & Burnet, 2022). The Hypoxico Everest Summit II Altitude Generator 

184 simulates high-altitude conditions by lowering the oxygen concentration in the air using a filtration 

185 system. It mimics altitudes up to 8,848 meters, making it ideal for altitude training and research 

186 on physiological adaptations to hypoxia, such as enhanced endurance and reduced oxygen 

187 availability. Additionally, the athletes� oxygen saturation levels and heart rate variables were 

188 monitored under the supervision of a doctor throughout the exercise. This allowed for continuous 

189 real-time monitoring of physiological responses to ensure participant safety and the accuracy of 

190 data collection. To measure oxygen saturation and heart rate, the Masimo Radical-7 Pulse 

191 Oximeter and Polar H10 heart rate monitor were used. The Masimo Radical-7 is an advanced, 

192 clinically-approved pulse oximeter with an SpO2 accuracy of ± 2% for values between 70% and 

193 100%. It can also provide accurate results even under low perfusion conditions. The Polar H10 is 

194 a chest-strap heart rate monitor that provides highly accurate ECG data.

195

196 2.3.2 Blood sampling and assays

197 A 5 mL venous blood sample was collected from the participants' antecubital veins immediately 

198 after performing the Bruce submaximal treadmill exercise test protocol under normoxic 

199 conditions, as well as at 1700 m, 2450 m, and 3200 m altitudes. Blood samples were centrifuged 

200 at 3600 rpm at + 4  C for 5 min and then their serum was separated. Serum samples were stored at 
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201 -20  C until analyzed. Blood samples were analyzed at Van YYÜ Dursun  Medical Center. 

202 Then, the levels of CK-MM and oxidative stress markers such as malondialdehyde (MDA), total 

203 antioxidant status (TAS), and total oxidant status (TOS) were determined for each subject. CK- 

204 MM (Detection range  62.5�4000 pg/mL, sensitivity: 18.9 pg/mL, intra-assay CV: < 8%, inter-

205 assay CV: < 10%) and MDA (range 0.3mmol/L-7mmol/L, sensitivity: 0.01mmol/L, intra-assay 

206 CV: < 7%, inter-assay CV: < 19%) levels in serum were measured using the ELISA method and 

207 TAS and TOS levels were measured using a new automatic colorimetric measurement method 

208 developed by Erel, (2005). This method determines TOS by measuring the oxidation of ferrous 

209 ion to ferric ion in the presence of oxidant molecules, with the ferric ion then forming a colored 

210 complex with xylenol orange. The color intensity is proportional to the total oxidant molecules in 

211 the sample, allowing for an accurate assessment of oxidative status (Erel, 2005). The increase in 

212 antioxidant molecules in response to the increase in oxidative molecules may evaluate TOS 

213 measurement alone in terms of oxidative damage misleading. By comparing the change in the 

214 TOS/TAS ratio, an accurate comparison is possible by eliminating the antioxidant reactive 

215 response that may be misleading for oxidative damage. The importance of the Oxidative stress 

216 index (OSI) is that it shows the general balance of oxidative stress and antioxidant status in a two-

217 way manner by disabling reactive increases  et al., 2007). OSI was calculated using the 

218 TOS/TAS ratio. The selection of these parameters - heart rate, blood oxygen saturation, and four 

219 serum markers (TAS, TOS, MDA, CK) - was based on their established reliability in the literature 

220 for assessing oxidative stress and muscle damage under hypoxic conditions (Brancaccio, Maffulli 

221 & Limongelli, 2007; Mazzeo, 2008; Kaschina et al., 2011; Kong et al., 2022). Heart rate and 

222 oxygen saturation directly monitor cardiovascular and respiratory responses, essential for 

223 evaluating hypoxic adaptation (Richalet, Hermand & Lhuissier, 2024). TAS and TOS measure 
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224 oxidative and antioxidative balance, while MDA and CK-MM serve as key indicators of lipid 

225 peroxidation, cellular damage, and muscle response to exercise (Spirlandeli, Deminice & Jordao, 

226 2014; Janion et al., 2022).

227

228 2.3.3 Statistical analysis

229 Data analysis was done using the SPSS 25 package program. The normality of the data was 

230 checked with the Kolmogorov-Smirnov and Shapiro-Wilk tests and the homogeneity with the 

231 Levene test. A repeated measures ANOVA was used to compare tests applied at different times. 

232 In cases where the sphericity assumption was not met, the Greenhouse-Geisser correction was 

233 used. For values with significant differences as a result of repeated measurements, the Bonferroni 

234 Post Hoc test was used to determine which data group caused the difference. The significance level 

235 for analysis was evaluated as p<0.05. For altitudes where a significant difference was observed, 

236 Cohen's d was calculated, presented with 95% confidence intervals, and classified as small (d = 

237 0.2), medium (d = 0.5), and large (d  0.8) (Cohen, 1988).

238

239 3. Results

240 3.1 Oxidative stress markers and creatin kinase

241 Table 2 summarizes the results of TAS, TOS, MDA, OSI, and CK levels across different altitudes. 

242 TAS levels were significantly different between the altitudes (p<0.001). TAS levels were 

243 significantly higher in 1700 m, 2450, and 3200 m compared to the normoxia condition (p<0.005, 

244 d= 1.72 [0.78-2.65], p<0.001, d= 2.94 [1.78-4.09], p<0.001, d=4.17 [2.74-5.60] respectively). 

245 Additionally, 3200 m had significantly higher TAS level compared to 1700 m and 2450 m 

246 (p<0.001, d= 1.66 [0.73-2.59], p<0.05; d= 1.0 [0.15-1.85] respectively). For the TOS levels the 
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247 only significant difference was detected between 2450 m and normoxic condition (p<0.05, d= 1.99 

248 [1.01-2.97]. MDA levels showed significant differences across the altitudes (p<0.001). MDA 

249 levels were higher at 2450 m and 3200 m compared to the normoxic condition p<0.001, d= 1.49 

250 [0.58-2.39], p<0.005, d=2.99 [1.82-4.15] respectively). OSI levels were significantly different 

251 between the altitudes (p<0.001). OSI was significantly higher under normoxic condition compared 

252 to 1700 m, 2450 m, and 3200 m (p<0.001, d= 1.54 [0.63-2.45], p<0.001, d= 4.10 [2.69-5.51], 

253 p<0.001, d=4.61 [3.08-6.14] respectively) (Figure 1). CK levels showed no differences between 

254 the altitudes (p>0.05) (Figure 2).

255

256 --- INSERT TABLE 2 ABOUT HERE ---

257 --- INSERT FIGURE 2 ABOUT HERE ---

258

259 3.2 Variations in oxygen saturation across different intervals

260 Table 3 summarizes the variations in oxygen saturation across different intervals and altitudes. 

261 Oxygen saturation (OS) exhibited significant differences between altitudes at the 3-minute 

262 measurement point (p < 0.001). OS was significantly lower in 2450, and 3200 m compared to the 

263 normoxic condition (p<0.001, d= 3.32 [2.08-4.55], p<0.001, d= 3.97 [2.59-3.35] respectively). 

264 Additionally, OS was significantly lower at 2450 m compared to 1700 m (p<0.005, d= 2.48 [1.41-

265 3.54] and, 3200 m had significantly lower OS level compared to 1700 m and 2450 m (p<0.001, d= 

266 3.58 [2.29-4.87], p<0.001; d= 2.27 [1.24-3.30] respectively). OS showed significant differences 

267 between altitudes at the 6-minute measurement point (p < 0.001). OS was significantly lower in 

268 2450, and 3200 m compared to the normoxic condition (p<0.001, d= 2.16 [1.15-3.17], p<0.001, 

269 d= 5.91 [4.05-7.76] respectively). Additionally, OS was significantly lower at 2450 m compared 
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270 to 1700 m (p<0.001, d= 1.85 [0.89-2.80] and, 3200 m had significantly lower OS level compared 

271 to 1700 m and 2450 m (p<0.001, d= 5.63 [3.84-7.41], p<0.001; d= 3.21 [2.00-4.43] respectively). 

272 OS showed significant differences between altitudes at the 9-minute measurement point (p < 

273 0.001). OS was significantly lower in 2450, and 3200 m compared to the normoxic condition 

274 (p<0.001, d= 2.90 [1.75-4.05], p<0.001, d= 6.42 [4.43-8.40] respectively). Additionally, OS was 

275 significantly lower at 2450 m compared to 1700 m (p<0.001, d= 2.38 [1.34-3.43] and, 3200 m had 

276 significantly lower OS level compared to 1700 m and 2450 m (p<0.001, d= 5.99 [4.11-7.86], 

277 p<0.001; d= 3.77 [2.44-5.11] respectively). Oxygen saturation (OS) exhibited significant 

278 differences between altitudes at the 12-minute measurement point (p<0.001). OS was significantly 

279 lower in 2450, and 3200 m compared to the normoxic condition (p<0.001, d= 2.50 [1.43-3.57], 

280 p<0.001, d= 5.42 [3.69-7.15] respectively). Additionally, OS was significantly lower at 2450 m 

281 compared to 1700 m (p<0.001, d= 2.38 [1.33-3.43] and, 3200 m had significantly lower OS level 

282 compared to 1700 m and 2450 m (p<0.001, d= 5.28 [3.58-6.97], p<0.001; d= 2.34 [1.30-3.37] 

283 respectively) (Figure 3).

284

285 --- INSERT TABLE 3 ABOUT HERE ---

286 --- INSERT FIGURE 3 ABOUT HERE ---

287

288 3.3 Changes in heart rate (beat per minute) at different altitudes

289 Table 4 summarizes the changes in heart rate (beat per minute) at different altitudes. Heart rate 

290 (HR) exhibited significant differences between altitudes at the 3-minute measurement point 

291 (p<0.001). HR was significantly higher in 1700 m, 2450, and 3200 m compared to the normoxic 

292 condition (p<0.001, d= 2.66 [1.56-3.76], p<0.005, d= 1.51 [0.60-2.42], p<0.001, d= 2.84 [1.71-
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293 3.98] respectively). Heart rate (HR) was significantly different between altitudes at the 6-minute 

294 measurement point (p<0.001). HR was significantly higher in 1700 m, 2450, and 3200 m compared 

295 to the normoxic condition (p<0.001, d= 4.13 [2.72-5.55], p<0.001, d= 2.17 [1.16-3.18], p<0.001, 

296 d= 5.60 [3.82-7.38] respectively). Also, HR was significantly higher in 3200 m compared to 1700 

297 m and 2450 m (p<0.001, d= 1.31 [0.42-2.19], p<0.001; d= 1.43 [0.54-2.33] respectively). Heart 

298 rate (HR) was significantly different between altitudes at the 9-minute measurement point 

299 (p<0.001). HR was significantly higher in 1700 m, 2450, and 3200 m compared to the normoxic 

300 condition (p<0.001, d= 4.83 [3.25-6.42], p<0.001, d= 7.73 [5.40-10.06], p<0.001, d= 6.03 [4.15-

301 7.92] respectively). HR was significantly lower at 1700 m compared to 2450 and 3200 m (p<0.005, 

302 d= 0.17 [-0.62-0.97], p<0.001; d= 1.23 [0.35-2.10] respectively). Also, HR was significantly 

303 higher in 3200 m compared to and 2450 m (p<0.005, d= 1.27 [0.39-2.14]). A significant difference 

304 was observed only between the normoxic condition and the 3200 m altitude at the 12-minute heart 

305 rate measurement point (p<0.001, d= 1.68 [0.75-2.61) (Figure 4).

306

307 --- INSERT TABLE 4 ABOUT HERE ---

308 --- INSERT FIGURE 4 ABOUT HERE ---

309

310 4. Discussion

311 While high altitude can change the oxidative stress response in different simulated altitudes, this 

312 study was conducted to determine how oxidative stress is affected under exercise conditions. 

313 Determining the relationship between muscle damage and high altitude will provide important 

314 information for athletes living and exercising at high altitudes, for athletes and coaches performing 

315 high altitude camps, and for optimizing training methods and recovery processes. The main 
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316 findings of the present study were that there were no differences in TOS, MDA, and CK variables. 

317 However, a significant difference was found in TAS and OSI variables. Creatine kinase (CK) 

318 levels might not change significantly in this study's context for several reasons, despite varying 

319 exercise intensities and altitudes. First, CK levels are known to reflect muscle damage mainly 

320 when exercises involve eccentric contractions or when the muscle activity is unusually intense or 

321 prolonged, leading to substantial muscle fiber stress and breakdown. However, submaximal 

322 treadmill protocols, like the Bruce protocol used here, typically exert relatively less eccentric stress 

323 on muscles, especially in trained athletes whose muscles are conditioned to such workloads. 

324 Consequently, CK elevations might remain minimal as muscle integrity is better preserved 

325 compared to more intense or eccentric exercises (e.g., downhill running or maximal resistance 

326 exercises) (Clarkson & Hubal, 2002; Latham et al., 2008). Additionally, long-distance runners, 

327 who formed the sample group, often develop a degree of physiological adaptation to frequent high-

328 intensity training. These adaptations reduce CK response to exercise by enhancing muscle repair 

329 mechanisms and limiting muscle fiber damage under conditions that might otherwise elevate CK 

330 in untrained individuals. This resilience in elite athletes can attenuate CK fluctuations even when 

331 exercise is performed at higher altitudes, where muscle oxygenation might be more compromised 

332 (Brancaccio, Maffulli & Limongelli, 2007; Scalco et al., 2016). The possible lack of significant 

333 changes in MDA levels can be explained by various factors. Oxidative stress occurring during 

334 high-altitude exercise might be controlled by adaptive antioxidant defense mechanisms, which are 

335 often highly developed in elite endurance athletes. These adaptations increase resilience to 

336 oxidative stress and can prevent notable elevations in lipid peroxidation markers like MDA. Since 

337 MDA typically rises in response to heightened cellular damage, the robust antioxidant systems in 

338 such athletes might limit oxidative damage and, consequently, help stabilize MDA levels (Pialoux 
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339 et al., 2006; Furian, Tannheimer & Burtscher, 2022). Additionally, low-oxygen environments 

340 reduce muscle oxygenation, which can further trigger oxidative stress. However, endurance 

341 athletes who are adapted to high altitudes can maintain cellular homeostasis by upregulating 

342 antioxidant enzyme activities, effectively minimizing oxidative damage. This adaptive process 

343 helps counteract the harmful effects of free radicals and restricts shifts in MDA levels (Chapman, 

344 2013).

345 León0López et al. (2018) investigated the effects of sea level and high-altitude training on 

346 oxidative stress and antioxidant enzyme activities in professional swimmers. They reported that 

347 high-altitude training led to an increase in markers of oxidative stress, such as protein oxidation 

348 (AOPP) and MDA, indicating elevated lipid peroxidation. However, they observed a concomitant 

349 increase in antioxidant enzyme activities, suggesting a compensatory response to alleviate 

350 oxidative damage. Similarly,  et al. (2017) examined the effect of high-altitude training 

351 on oxidative stress and antioxidant defense markers in pentathlon athletes. They reported that 

352 altitude training increased oxidative stress assessed by MDA, a marker of lipid peroxidation, and 

353 non-enzymatic antioxidant levels measured by reduced glutathione (GSH). At the same time, it 

354 did not affect enzymatic antioxidant levels assessed by superoxide dismutase (SOD) activity.

355 Dosek et al. (2007) stated that oxidative stress, especially when induced by hypobaric 

356 hypoxia, causes structural changes and cellular damage in lipids, proteins, and DNA. Debevec, 

357 Millet and Pialoux, (2017) examined hypoxia-induced oxidative stress modeling with physical 

358 activity. They found that hypobaric hypoxia induces oxidative stress, as indicated by changes in 

359 oxidative stress markers. However, they also observed an upregulation of antioxidant defense 

360 mechanisms, suggesting an adaptive response to counteract oxidative damage. The results of our 

361 study show that TAS increases in direct proportion to altitude, while OSI decreases. This may be 
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362 due to the decrease in oxygen availability caused by low atmospheric pressure (Sinex & Chapman, 

363 2015). This lack of oxygen triggers a physiological response in the body known as hypoxia. The 

364 body adapts to hypoxic conditions by increasing antioxidant production to counteract oxidative 

365 stress, which is caused by an imbalance between free radicals and antioxidants. Exercise-induced 

366 oxidative stress occurs during physical activity because metabolic processes produce free radicals. 

367 Regular exercise at higher altitudes can lead to adaptations in the body's antioxidant 

368 defense system, resulting in increased TOS and decreased OSI. Collectively, findings from these 

369 studies (Dosek et al., 2007;  et al., 2017; Debevec, Millet & Pialoux, 2017; León0López 

370 et al., 2018; Elmas & Elmas, 2020) suggest that high-altitude exercise can induce oxidative stress, 

371 as evidenced by changes in oxidative stress markers such as MDA. However, it is important to 

372 note that these changes are often accompanied by a simultaneous upregulation of antioxidant 

373 defense mechanisms, reflected by increased antioxidant enzyme activities and enhanced TAS. 

374 These adaptive responses may contribute to the restoration of redox balance and the overall 

375 improvement in athletic performance observed in athletes performing high-altitude exercises. It is 

376 worth noting that the interaction between oxidative stress and performance improvements in high-

377 altitude exercise requires further investigation. The exact mechanisms underlying the relationship 

378 between oxidative stress, antioxidant responses, and athletic performance adaptations in response 

379 to high-altitude exercise have not been fully elucidated. Future studies should focus on elucidating 

380 the signaling pathways involved in adaptation to oxidative stress and identifying strategies to 

381 optimize the antioxidant defense system during high-altitude exercise.

382 In terms of saturation measurements, a significant difference was found between the 3rd, 

383 6th, 9th, and 12th min. Many studies have examined the relationship between high-altitude 

384 exercise and oxygen saturation levels. Chapman et al. (2011) investigated changes in oxygen 
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385 saturation during high-altitude endurance training. They observed that as athletes train at higher 

386 altitudes, oxygen saturation levels tend to decrease due to reduced oxygen availability. However, 

387 Chapman et al. (2016) indicated that athletes can adapt to high altitudes through acclimatization 

388 and adaptation processes. These adaptations include improvements in oxygen-carrying capacity 

389 and enhanced oxygen utilization efficiency. As a result, athletes may experience reduced declines 

390 in oxygen saturation levels over time as they adapt to the challenges posed by high-altitude 

391 training.

392 Additionally, Siebenmann et al. (2012) conducted a study examining the effects of high-

393 altitude training on oxygen saturation and performance in endurance athletes. Initially, exposure 

394 to high altitude led to a decrease in oxygen saturation, among athletes. However, with continued 

395 training and acclimatization, athletes experienced increased saturation values and improvements 

396 in performance. The result of our study indicated that saturation values decrease with increasing 

397 altitude. This decrease may be attributed to reduced ambient oxygen availability during high-

398 altitude exercises, with saturation values often referred to as oxygen saturation. Oxygen saturation 

399 is defined as the percentage of hemoglobin in the blood that is carrying oxygen (Collins et al., 

400 2015). As individuals ascend to higher altitudes, the partial pressure of oxygen decreases, leading 

401 to a reduction in oxygen saturation levels. It is important to note that responses to high-altitude 

402 exercise and saturation levels can vary significantly among individuals due to factors such as 

403 genetic predisposition, fitness level, training altitude, and acclimatization time (Siebenmann et al., 

404 2012; Elmas & Elmas, 2020). Furthermore, altitude-related conditions such as acute mountain 

405 sickness or high-altitude pulmonary edema can further affect saturation levels.

406 Regarding heart rate measurements, was observed in pulse values taken at the 3rd 6th  9th 

407 and 12th min. Bahenský and Grosicki (2021) investigated the effects of high-altitude training on 
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408 heart rate variability (HRV) in young athletes. The authors reported that high altitude training led 

409 to changes in HRV and autonomic modulation of heart rate. Specifically, they observed a decrease 

410 in parasympathetic activity and an increase in sympathetic activity, indicating a general shift 

411 towards sympathetic dominance. These changes in HRV may reflect adaptations in cardiovascular 

412 regulation in response to the hypoxic environment at high altitudes. Saunders et al. (2009) 

413 investigated the heart rate response to submaximal exercise at different altitudes in elite runners. 

414 They found that as altitude increased, there was a progressive increase in heart rate during 

415 submaximal exercise. This elevated heart rate response can be attributed to the reduced availability 

416 of oxygen at higher altitudes, leading to an increased sympathetic drive as an attempt to 

417 compensate for the reduced oxygen supply. These findings suggest that heart rate may serve as an 

418 indicator of the physiological strain imposed by high-altitude exercise. Similarly, Chapman et al. 

419 (2014) conducted a study examining the effects of altitude training on heart rate in athletes. They 

420 observed an increase in heart rate during exercise at higher altitudes compared to sea level. 

421 Additionally, they noted that heart rate recovery after exercise was slower at higher altitudes, 

422 indicating a prolonged sympathetic response. These findings further support the idea that high-

423 altitude exercise causes changes in heart rate dynamics, potentially due to hypoxic stress imposed 

424 on the cardiovascular system.

425 Javaloyes et al. (2021) investigated HRV in trained cyclists during altitude training. They 

426 reported changes in HRV patterns, with decreases in both time domain and frequency domain 

427 measurements of HRV. These changes indicate a decrease in para-sympathetic activity and an 

428 altered sympathovagal balance. They suggested that these adaptations in heart rate dynamics 

429 reflect the body's physiological response to hypoxic stress and the increased demand on the 

430 cardiovascular system during high-altitude exercise. These studies demonstrate that high-altitude 
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431 exercise elicits specific heart rate responses in athletes. The results of our study show that as 

432 altitude increases, pulse values also increase. Observed increases in heart rate during exercise, 

433 along with changes in HRV, indicate adaptations in sympathetic and parasympathetic 

434 cardiovascular control mechanisms. This may be due to reduced oxygen availability and the 

435 physiological adjustments required to meet the increased oxygen demand during high-altitude 

436 exercise. Heart rate responses observed during high-altitude exercises are important indicators of 

437 the physiological strain and adaptation processes that occur in athletes training at high altitudes 

438 Bonato, Goodman and Tjh (2023). Monitoring heart rate during training sessions at different 

439 altitudes can provide valuable information about cardiovascular responses and help optimize 

440 training protocols for athletes in high-altitude environments (Yu et al., 2022; Feng et al., 2023).

441

442 4.1. Limitations

443 This study has certain limitations. First, all participants underwent the four altitude conditions in 

444 a fixed order, from sea level to the highest altitude. The lack of a randomized or counterbalanced 

445 order may introduce potential order and training effects, which could have been minimized with a 

446 random order. However, our study aimed to observe altitude adaptation in a natural progression. 

447 Future studies may benefit from employing a randomized order to mitigate these potential effects. 

448 Additionally, only a select set of biomarkers (TAS, TOS, MDA, CK) were used to assess oxidative 

449 stress and muscle damage. These biomarkers were chosen based on their reliability and relevance 

450 to hypoxic conditions; however, a broader range of markers, such as inflammatory or metabolic 

451 indicators, could provide a more comprehensive view of the physiological responses. Future 

452 research could include additional biomarkers to expand the understanding of hypoxic adaptation. 

453 Furthermore, participants in this study resided at an altitude of 1700 m, which may have influenced 
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454 their physiological responses compared to those at lower altitudes. To improve generalizability, 

455 future studies could consider recruiting participants residing at sea level or lower altitudes.

456

457 4.2 Future perspectives

458 Changing oxygen levels at altitudes causes muscle damage and changes in oxidative stress levels. 

459 In the conclusion of the study, it was determined that exercises performed in a hypoxic 

460 environment at different altitudes increased the TAS and reduced the OSI in athletes. However, 

461 the adaptation response and subsequent recovery processes that occur after high-altitude exposure 

462 appear to contribute to enhanced antioxidant defense systems. These findings emphasize the 

463 importance of maintaining redox balance during high altitude training and provide insight into the 

464 mechanisms underlying the physiological adaptations observed in athletes. However, there is a 

465 need for more comprehensive studies on the subject, especially on the molecular changes that 

466 occur in this process, with different protocols, taking into account performance markers.

467

468 5. Conclusion

469 In conclusion, it was determined that exercises performed in a hypoxic environment at different 

470 altitudes increased TAS and reduced the OSI in elite long-distance runners. These findings suggest 

471 that altitude training not only elicits specific cardiovascular adaptations but also enhances the 

472 body�s antioxidant defense mechanisms, thereby mitigating oxidative stress. This dual benefit 

473 underscores the potential of high-altitude training to improve athletic performance and overall 

474 physiological resilience. Monitoring and understanding these changes can help optimize training 

475 strategies, ensuring athletes achieve peak performance while maintaining health and well-being in 

476 high-altitude environments.
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516 Figure captures

517 Figure 1. Changes in oxidative stress markers and CK levels across different altitudes. A) Total 

518 Antioxidant Status (TAS) levels, B) Total Oxidant Status (TOS) levels, C) Malondialdehyde 

519 (MDA) levels, D) Oxidative Stress Index (OSI) levels. Data are presented as mean ± standard 

520 deviation. Statistical significance between groups is indicated by * p < 0.05, ** p < 0.01, *** p < 

521 0.001, and **** p < 0.0001.

522
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523 Figure 2. Changes in Creatine Kinase (CK) levels across different altitudes. Data are presented as 

524 mean ± standard deviation. Statistical significance between groups is indicated by * p < 0.05, ** 

525 p < 0.01, *** p < 0.001, **** p < 0.0001, and ns for non-significant differences.

526

527 Figure 3. Changes in oxygen saturation (%) across different altitudes at various measurement 

528 intervals (3 min, 6 min, 9 min, and 12 min). Data are presented as mean ± standard deviation. 

529 Statistical significance between groups is indicated by * p < 0.05, ** p < 0.01, *** p < 0.001.

530

531 Figure 4. Changes in heart rate (BPM) across different altitudes at various measurement intervals 

532 (3 min, 6 min, 9 min, and 12 min). Data are presented as mean ± standard deviation. Statistical 

533 significance between groups is indicated by * p < 0.05, ** p < 0.01, *** p < 0.001.

534
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Participants9 baseline characteristics
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1 Table 1. Participants� baseline characteristics.

Variables n Average ± SD Min Max

Age (years) 12 20.3 ± 1.5 18 23

Body Weight (kg) 12 63.5 ± 15.2 51.0 98.5

Height (cm) 12 171.8 ± 7.9 155.5 184.0

BMI (kg/m2) 12 21.4 ± 4.3 17.70 32.00

Resting Heart Rate (bpm) 12 49.0 ± 3.0 45 52

2

3

4

5

6
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Table 2(on next page)

Changes in oxidative stress markers and CK at diûerent altitudes (mean±SD)

Total Antioxidant Level (TAS), Total Oxidant Level (TOS), Malondialdehyde (MDA), Creatine
Kinase (CK) and Oxidative Stress Index (OSI). a: signiûcant diûerences between normoxic
condition and 1700 m; b: signiûcant diûerences between normoxic condition and 2450 m; c:
signiûcant diûerences between normoxic condition and 3200 m; d: signiûcant diûerences
between 1700 m and 2450 m; e: signiûcant diûerences between 1700 m and 3200 m; f:
signiûcant diûerences between 2450 m and 3200 m. *: signiûcant diûerences at 0.05 level;
**: signiûcant diûerences at 0.01 level; ***: signiûcant diûerences at <0.001 level.
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1 Table 2. Changes in oxidative stress markers and CK at different altitudes (mean±SD).

2
Oxidative Stress 

Markers and CK

Normoxic 

Condition

1700 m

(%Change)

2450 m

(%Change)

3200 m

(%Change)
p-value

TAS (mmol /L)a,b,c,e,f 5.83 ± 1.25
18.64 ± 10.45

(219%)

25.87 ± 9.56

(343%)

35.70 ± 

10.04

(512%)

0.000***

TOS (µmol /L)b 59.97 ± 5.35
49.90 ± 15.67

(-17%)

42.86 ± 

10.89

(-28%)

49.23 ± 

12.04

(-18%)

0.017*

MDA (mmol/L)b,c 5.06 ± 1.11
7.91 ± 1.85

(56%)

9.62 ± 4.18

(90%)

8.96 ± 1.47

(77%)
0.000***

OSI a,b,c,e 10.77 ± 2.83
4.62 ± 4.86

(-57%)

1.95 ± 1.10

(-82%)

1.44 ± .42

(-87%)
0.000***

CK (pg/mL) 125.34 ± 9.77

196.18 ± 

116.61

(56%)

157.39 ± 

35.61

(25%)

184.65 ± 

60.93

(47%)

0.059

3 Total Antioxidant Level (TAS), Total Oxidant Level (TOS), Malondialdehyde (MDA), Creatine Kinase (CK) and 

4 Oxidative Stress Index (OSI). a: significant differences between normoxic condition and 1700 m; b: significant 

5 differences between normoxic condition and 2450 m; c: significant differences between normoxic condition and 3200 

6 m; d: significant differences between 1700 m and 2450 m; e: significant differences between 1700 m and 3200 m; f: 

7 significant differences between 2450 m and 3200 m. *: significant differences at 0.05 level; **: significant differences 

8 at 0.01 level; ***: significant differences at <0.001 level. 

9
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Table 3(on next page)

Changes in oxygen saturation (%) at diûerent altitudes (mean±SD)

m: meter; a: signiûcant diûerences between normoxic condition and 1700 m; b: signiûcant
diûerences between normoxic condition and 2450 m; c: signiûcant diûerences between
normoxic condition and 3200 m; d: signiûcant diûerences between 1700 m and 2450 m; e:
signiûcant diûerences between 1700 m and 3200 m; f: signiûcant diûerences between 2450
m and 3200 m. *: signiûcant diûerences at 0.05 level; **: signiûcant diûerences at 0.01 level;
***: signiûcant diûerences at <0.001 level.
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1 Table 3. Changes in oxygen saturation (%) at different altitudes (mean±SD).

MinuteM Normoxic Condition
1700 m

(%Change)

2450 m

(%Change)

3200 m

(%Change)
p-value

3 

minb,c,d,e,f 96.08 ± 1.00
94.50 ± .91

(-2%)

90.08 ± 2.35

(-6%)

80.58 ± 5.42

(-16%)
0.000***

6 

minb,c,d,e,f 94.75 ± .97
93.83 ± 1.12

(-1%)

88.08 ± 4.25

(-7%)

72.92 ± 5.13

(23%)
0.000***

9 

minb,c,d,e,f 94.83 ± 1.11
93.92 ± 1.62

(-1%)

87.83 ± 3.22

(-7%)

72.33 ± 4.83

(-24%)
0.000***

12 

minb,c,d,e,f 95.00 ± 1.48
94.67 ± 1.72

(0.3%)

85.42 ± 5.21

(-10%)

72.75 ± 5.61

(-23%)
0.000***

2 m: meter; a: significant differences between normoxic condition and 1700 m; b: significant differences 

3 between normoxic condition and 2450 m; c: significant differences between normoxic condition and 3200 

4 m; d: significant differences between 1700 m and 2450 m; e: significant differences between 1700 m and 

5 3200 m; f: significant differences between 2450 m and 3200 m. *: significant differences at 0.05 level; **: 

6 significant differences at 0.01 level; ***: significant differences at <0.001 level.

7
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Table 4(on next page)

Changes in heart rate (beat per minute) at diûerent altitudes

a: signiûcant diûerences between normoxic condition and 1700 m; b: signiûcant diûerences
between normoxic condition and 2450 m; c: signiûcant diûerences between normoxic
condition and 3200 m; d: signiûcant diûerences between 1700 m and 2450 m; e: signiûcant
diûerences between 1700 m and 3200 m; f: signiûcant diûerences between 2450 m and
3200 m.*: signiûcant diûerences at 0.05 level; **: signiûcant diûerences at 0.01 level; ***:
signiûcant diûerences at <0.001 level.
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1 Table 4. Changes in heart rate (beat per minute) at different altitudes. 

Minute� Normoxic Condition
1700 m

(%Change)

2450 m

(%Change)

3200 m

(%Change)
p-value

3 min a,b,c 73.67 ± 1.78
99.25 ± 13.47

(35%)

94.08 ± 18.95

(28%)

104.42 ± 15.16

(42%)
0.000***

6 min 

a,b,c,e,f 73.92 ± 1.31
112.33 ± 13.06

(52%)

105.08 ± 20.20

(42%)

130.17 ± 14.33

(76%)
0.000***

9 min 

a,b,c,d,e,f 73.75 ± 1.91
128.25 ± 15.82

(74%)

130.58 ± 10.21

(77%)

148.75 ± 17.47

(102%)
0.000***

12 minc 131.25 ± 22.36
152.50 ± 23.15

(16%)

148.00 ± 16.29

(13%)

162.67 ± 15.50

(24%)
0.001***

2 a: significant differences between normoxic condition and 1700 m; b: significant differences between 

3 normoxic condition and 2450 m; c: significant differences between normoxic condition and 3200 m; d: 

4 significant differences between 1700 m and 2450 m; e: significant differences between 1700 m and 3200 m; 

5 f: significant differences between 2450 m and 3200 m.*: significant differences at 0.05 level; **: significant 

6 differences at 0.01 level; ***: significant differences at <0.001 level.
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Figure 1
Changes in oxidative stress markers and CK levels across diûerent altitudes.

A) Total Antioxidant Status (TAS) levels, B) Total Oxidant Status (TOS) levels, C)
Malondialdehyde (MDA) levels, D) Oxidative Stress Index (OSI) levels. Data are presented as
mean ± standard deviation. Statistical signiûcance between groups is indicated by * p <
0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.
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Figure 2
Changes in Creatine Kinase (CK) levels across diûerent altitudes.

Data are presented as mean ± standard deviation. Statistical signiûcance between groups is
indicated by * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, and ns for non-
signiûcant diûerences.
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Figure 3
Changes in oxygen saturation (%) across diûerent altitudes at various measurement
intervals (3 min, 6 min, 9 min, and 12 min).

Data are presented as mean ± standard deviation. Statistical signiûcance between groups is
indicated by * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 4
Changes in heart rate (BPM) across diûerent altitudes at various measurement intervals
(3 min, 6 min, 9 min, and 12 min).

Data are presented as mean ± standard deviation. Statistical signiûcance between groups is
indicated by * p < 0.05, ** p < 0.01, *** p < 0.001.

PeerJ reviewing PDF | (2024:11:109713:0:1:NEW 27 Nov 2024)

Manuscript to be reviewed




