Flood analysis comparison with Probability Density Functions and a stochastic weather generator (#103363)

First submission

Guidance from your Editor

Please submit by 27 Sep 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

7 Figure file(s)

2 Table file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Flood analysis comparison with Probability Density Functions and a stochastic weather generator

Jaime Madrigal ^{Corresp., 1}, Israel García-Ledesma ¹, Jesús Pardo-Loaiza ¹, Joel Hernández-Bedolla ¹, Constantino Domínguez-Sánchez ¹, Sonia Tatiana Sánchez-Quispe ^{Corresp. 1}

Corresponding Authors: Jaime Madrigal, Sonia Tatiana Sánchez-Quispe Email address: jose.madrigal@umich.mx, quispe@umich.mx

Flood forecasting has become an essential component of hydrology and natural disaster management due to the increasing frequency and severity of extreme hydrological events driven by climate change. This study compares two methodologies for predicting flood events in Morelia, Mexico: one using theoretical distribution functions and another employing stochastic weather generators. The methodology integrates maximum runoff results for different recurrence intervals into a hydraulic model of the drainage network, using both the Soil Conservation Service Curve Number (SCS-CN) method and a multivariate stochastic model (MASVC). Hydrodynamic modeling with HEC-RAS, incorporating two-dimensional shallow water equations, was used to simulate flood inundation areas. The study reveals that while both modeling approaches similarly replicate the system's behavior, they produce different water levels due to variations in maximum flow values. The stochastic model tends to generate higher maximum water levels. High-resolution Digital Elevation Models (DEMs) and land use data were crucial in improving the accuracy of the hydraulic simulations. Findings indicate that unregulated urban growth in flood-prone areas significantly exacerbates the impact of flooding. The generated hazard maps and flood simulations provide valuable tools for urban planning and decision-making, highlighting the need for strategic interventions to mitigate flood risks. This research underscores the importance of integrating advanced modeling techniques in flood risk management to enhance the precision and reliability of flood forecasts.

¹ Faculty of Civil Engineering, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico

Flood analysis comparison with Probability Density Functions and a stochastic weather generator

3	
4	

- 5 Jaime Madrigal ¹, Israel García-Ledesma ², Jesús Pardo-Loaiza ³, Joel Hernández-Bedolla ⁴,
- 6 Constantino Domínguez-Sánchez ⁵, Sonia Tatiana Sánchez-Quispe ⁶

7

- 8 1, 2, 3, 4, 5, 6 Faculty of Civil Engineering, Universidad Michoacana de San Nicolás de Hidalgo,
- 9 Morelia, Michoacán, México.

10

- 11 Corresponding Author:
- 12 Sonia Tatiana Sánchez-Quispe ¹
- 13 Francisco J. Múgica, Morelia, Michoacán, 58030, Mexico
- 14 Email address: quispe@umich.mx

- 16 Jaime Madrigal ²
- 17 Francisco J. Múgica, Morelia, Michoacán, 58030, Mexico
- 18 Email address: jose.madrigal@umich.mx

Abstract

- 20 Flood forecasting has become an essential component of hydrology and natural disaster
- 21 management due to the increasing frequency and severity of extreme hydrological events driven
- 22 by climate change. This study compares two methodologies for predicting flood events in
- 23 Morelia, Mexico: one using theoretical distribution functions and another employing stochastic
- 24 weather generators. The methodology integrates maximum runoff results for different recurrence
- 25 intervals into a hydraulic model of the drainage network, using both the Soil Conservation
- 26 Service Curve Number (SCS-CN) method and a multivariate stochastic model (MASVC).
- 27 Hydrodynamic modeling with HEC-RAS, incorporating two-dimensional shallow water
- 28 equations, was used to simulate flood inundation areas. The study reveals that while both
- 29 modeling approaches similarly replicate the system's behavior, they produce different water
- 30 levels due to variations in maximum flow values. The stochastic model tends to generate higher
- 31 maximum water levels. High-resolution Digital Elevation Models (DEMs) and land use data
- 32 were crucial in improving the accuracy of the hydraulic simulations. Findings indicate that
- 33 unregulated urban growth in flood-prone areas significantly exacerbates the impact of flooding.
- 34 The generated hazard maps and flood simulations provide valuable tools for urban planning and
- decision-making, highlighting the need for strategic interventions to mitigate flood risks. This
- 36 research underscores the importance of integrating advanced modeling techniques in flood risk
- 37 management to enhance the precision and reliability of flood forecasts.

Introduction

- 40 In recent decades, flood forecasting has become a critical component of hydrology and natural
- 41 disaster management. The increasing frequency and severity of extreme hydrological events,
- 42 primarily due to climate change, highlight the need to enhance the precision and reliability of
- 43 forecasting systems. The ability to accurately and timely forecast flood events is essential to
- 44 reduce property loss, protect vital infrastructure, and prevent human casualties (Papaioannou et
- 45 al., 2021).

38

- 46 Flood forecasting is a multidisciplinary field combining information from meteorology,
- 47 hydrology, geography, and computer science, among other disciplines. Progress in these areas
- 48 has led to more advanced forecasting models and methods. However, natural systems have
- 49 variability and uncertainty, and human-environmental interactions are complex. These
- significant challenges have not yet been solved (Chahinian et al., 2023).
- 51 Adopting emerging technologies such as artificial intelligence, machine learning, and big data
- has opened new ways for flood risk analysis and modeling (Karyotis et al., 2019; Mosavi et al.,
- 53 2018). These approaches promise improvements in the ability to predict floods by enabling the
- 54 processing of large volumes of data and the identification of complex patterns imperceptible to
- traditional methods (Falconer et al., 2009). In addition, the increasing availability of high-
- resolution data obtained through satellites and other remote sensing offers unprecedented
- 57 opportunities to improve flood forecasts' accuracy and spatial resolution (Munawar et al., 2022).

- Methods based on Machine Learning are, without a doubt, among the most analyzed in recent
- 59 years. This type of methodology includes Adaptive Neuro-Fuzzy Inference Systems (ANFIS),
- 60 Multilayer Perceptron (MLP), Artificial Neural Networks (ANNs), Wavelet Neural Networks
- 61 (WNN), and Support Vector Machines (SVM), among others.
- 62 Choubin et al. (2016) analyzed precipitation prediction using three models: multiple linear
- 63 regression (MLR), MLP, and ANFIS, using large-scale climate signals as inputs. Effective
- 64 climate indices were selected through principal component analysis and cross-correlation to
- 65 predict the standardized precipitation index (SPI) in the Maharlu-Bakhtegan basin, Iran. The
- 66 results indicated that the MLP model outperformed the MLR and ANFIS models, suggesting a
- 67 nonlinear relationship between climate signals and precipitation, making nonlinear methods
- 68 more effective for predicting the analyzed area.
- 69 Gessang and Lasminto (2020) propose using ANN and a weather forecasting API for flood
- 70 prediction and mitigation in a sub-basin of Indonesia. The research highlights how the
- 71 precipitation intensity in this area can cause significant increases in river water levels, leading to
- 72 flooding. ANN was used to predict rainfall and, together with the curve method (CN) of the
- 73 United States Soil Conservation Service (USSCS), calculate maximum runoff, demonstrating the
- 74 usefulness of these models in flood risk management.
- 75 Hernández-Bedolla et al. (2023) present a multivariate and multisite stochastic model, MASVC,
- designed to estimate maximum runoff in non-measured basins. The study highlights how
- 77 precipitation influences the determination of runoff at different time scales and uses a stochastic
- 78 approach to generate synthetic precipitation sequences, preserving spatial and temporal
- 79 variability in daily, monthly, annual, and extreme values. The model was evaluated in the Rio
- 80 Grande watershed of Morelia, Mexico. It showed its effectiveness by contrasting its results with
- 81 conventional probability density functions and providing a more dependable approximation of
- 82 peak surface runoff.
- 83 Several factors prevent the successful application of various flood analysis and prediction
- 84 technologies in operational practice despite the numerous methods that exist for this purpose.
- 85 These include the need for comprehensive and accurate historical datasets, understanding local
- 86 river and rainfall dynamics, and integrating heterogeneous models and data into cohesive and
- 87 reliable operating systems (Perera et al., 2020).
- 88 Despite the progress of the methods that predict flood events using maximum rainfall from
- 89 distribution functions as an input, these are still the most widely used methods. Thus, this study
- 90 compares two hydraulic models in the main rivers of Morelia, Mexico. One model uses flows
- 91 derived from theoretical distribution functions; the other uses synthetic flows derived from
- 92 stochastic models. This comparison aims to assess an alternative option to the current methods
- 93 for forecasting and evaluating urban flood events.

95

Materials & Methods

96 **Case study**

- 97 Morelia, the largest and most populous urban area in Michoacán, Mexico, is characterized by its
- 98 significant population and complex fluvial network. The city has a fluvial network of fifteen
- 99 perennial tributaries, shown in Figure 1 and the object of analysis in this work. The Rio Grande
- 100 is the city's main river channel, collects the runoff generated in the area, and is regulated
- 101 upstream by the Cointzio dam.
- Morelia is prone to frequent floods from overflowing rivers, which directly impact houses and
- disrupt residents' daily lives. For instance, in 2018 a severe storm caused injuries, inundations in
- homes, landslides, and wrecked vehicles. Today, floods are perceived as having only negative
- 105 consequences and as disasters that inflict harm, sometimes irreparable. These impacts are
- aggravated by the expansion of cities naturally prone to flooding, such as near rivers and
- 107 streams.

Methodology

- 110 The proposed methodology utilizes maximum runoff results for various recurrence intervals
- within the hydraulic model of Morelia City's drainage network. It also incorporates scenarios
- created with the daily MASVC (Hernández-Bedolla et al., 2023). Moreover, the HEC-RAS
- model was adjusted to obtain the flood areas based on topographic studies and changes in the
- 114 Manning roughness coefficients (Demir & Keskin, 2020; Yalcin, 2020). The methodology is
- illustrated in Figure 2.

116

- 117 Surface runoff
- 118 Surface runoff was calculated using two types of methodology. One method was the Probability
- 119 Density Functions with The Soil Conservation Service Curve Number (PDF-SCS-CN), which is
- used to estimate runoff from small-to-medium-sized watersheds SCS-CN method (AL-Hussein
- et al., 2022; Ansori, 2023; Sathya et al., 2023). The other method was the stochastic weather
- 122 generator, which applied the MASVC-SCS-CN approach. The MASVC is a multivariate
- stochastic model that uses lag one autoregressive multivariate parameters. It consists of two
- modeling phases. The first phase models the occurrence of precipitation (wet-dry), and the
- second phase estimates the amount of precipitation on a daily scale. Then, the maximum
- precipitation values are extracted, and the runoffs are computed using the SCS-CN method.

- 128 Flood inundation
- 129 Hydrodynamic model HEC-RAS is used to model rivers (one-dimensional), flood areas (two-
- dimensional), channels, drains, and dams (AcIl et al., 2023; Bharath et al., 2021; Bush et al.,
- 131 2022; Goswami et al., 2023; Namara et al., 2022; Ongdas et al., 2020). HEC-RAS calculates the
- depth of inundation and velocity based on floodwater discharge hydrographs (Hydrologic
- Engineering Center, 2009). HEC-RAS was applied for the two-dimensional hydraulic model and
- was solved by the 2-D shallow water equations. The solution method for both equations was by
- volume finite differences. The unsteady differential form of the mass conservation equation is
- 136 (Equation 1).

$$r = \frac{\partial H}{\partial t} + \frac{\partial (hu)}{\partial x} + \frac{\partial (hv)}{\partial y}$$
 [1]

138

Where r is the source/sink term, H is the surface elevation (m); t is the time, hu and hv are the flow in x and y (m²s⁻¹); HEC-RAS recently incorporates fully 2-D shallow equations (Costabile et al., 2020). The shallow water equations are presented in the following equations.

142

$$\frac{\partial p}{\partial t} + \frac{\partial}{\partial x} \left(\frac{p^2}{h} \right) + \frac{\partial}{\partial y} \left(\frac{pq}{h} \right) = -\frac{n^2 pg \sqrt{p^2 + q^2}}{h^2} - gh \frac{\partial H}{\partial x} + pf + \frac{\partial}{\rho \partial x} (h\tau_{xx}) + \frac{\partial}{\rho \partial y} (h\tau_{xy})$$
[2]

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left(\frac{pq}{h} \right) + \frac{\partial}{\partial y} \left(\frac{q^2}{h} \right) = -\frac{n^2 p g \sqrt{p^2 + q^2}}{h^2} - g h \frac{\partial H}{\partial y} + q f + \frac{\partial}{\rho \partial x} (h \tau_{xy}) + \frac{\partial}{\rho \partial y} (h \tau_{yy})$$
[3]

143

- Where p and q are hu and hv, (m²s⁻¹); n is the Manning's roughness coefficient (s m^{-1/3}), g is the gravity acceleration (ms⁻²), ρ is the water density (kg m⁻³), τ_{xx} , τ_{yy} , and τ_{xy} are the components of the stress tensor and f is the Coriolis parameter (s⁻¹). We propose the diffusive wave algorithm to select boundary conditions and response times. In this case, the inertial terms of the equation are neglected.
- The Eulerian Shallow Water equation (EM-SWE) was the calibration solution method. This method utilizes the momentum-conservative discretization assuming local conservation of
- 151 momentum about control volume centered on all cell face $(V \cdot \nabla)u_N$ (Hydrologic Engineering
- 152 Center, 2021).

153

$$[(V \cdot \nabla)\mathbf{u}_N]_f \approx \left(\frac{1}{h}[\nabla \cdot (hVu_N - u_N\nabla \cdot hV)]\right)_f$$
 [4a]

$$[(V \cdot \nabla)\mathbf{u}_N]_f \approx \frac{\alpha_f^L}{\overline{h}_f A_{L_k}} \sum_{e \in K(L)} Q_{i,k}^{-} \left(V_k^u \cdot n_f - u_{N,f} \right) + \frac{\alpha_f^R}{\overline{h}_f A_{R_k}} \sum_{e \in K(L)} Q_{R,k}^{-} \left(V_k^u \cdot n_f - u_{N,f} \right)$$
[4b]

154

Where $h_i = \Omega_i/A_i^w$; $Q_{i,k}$ is the minimum value of inflow at face k to cell i $s_{i,k}$, Q_k , 0; A_k is the face vertical area; A_L is the left cell horizontal area, A_R is the right cell horizontal area, V_j is the cell average current velocity vector V_k^u is V_L for $u_{N,k}$ major than cero and is V_R for $u_{N,k}$ less than zero; n_f is the face-normal unit vector.

- 160 DEM and land use
- 161 The quality of flood modeling depends on the topographic information. A hybrid mesh was used,
- 162 combining a gridded DEM dataset with 5m of resolution from the National Institute of Statistics
- and Geography (INEGI, https://www.inegi.org.mx/temas/topografia/) and more detailed 0.5 m
- data from a specific topographic study to improve the accuracy in rivers. The land use data was

165 obtained from INEGI (https://www.inegi.org.mx/temas/usosuelo/), and field visits to the rivers were conducted to determine the Manning coefficient (n). 166 167 Boundary conditions 168 169 Two-dimensional modeling was done with flexible and triangular meshes. The meshes gave more detail in the rivers due to a high-accuracy topographic survey (Muñoz et al., 2022; 170 Ontowirjo et al., 2023). For the flood areas, a regular grid with a 5-meter resolution was 171 proposed for roads, as well as for urban and rural areas. Boundary conditions describe how water 172 behaves at the model domain's boundaries, including different conditions at the model edges 173 174 (Hydrologic Engineering Center, 2009). Upstream boundary conditions are needed at the upstream end of all reaches that do not connect to other reaches or storage areas. Hydrographs 175 were assigned upstream of each sub-basin studied. Hydrographs corresponding to various return 176 177 and historical periods were assigned upstream of each sub-basin studied. For the downstream 178 boundary condition, the normal depth option was chosen for the HEC-RAS model (Hydrologic 179 Engineering Center, 2021). 180 181 Simulation and calibration 182 The process of calibrating the hydraulic model is based on the different steps described below. 1) Simulation of the entire study area to identify the simulation times and potential flooding zones 183 near the streams and rivers. 2) Simulation of the diffusive wave algorithm to generate the first 184 flood from historical rainfall data. 3) Calibration using the EM-SWE by changing the Manning 185 roughness coefficient and field visits to perform mesh refinement. 4) Validation of the results 186 187 from the actual flooding for a specific date. 5) Generation of floods from different return periods and results from MASVC-SCS-CN and PDF-SCS-CN. 188 189 **Results and Discussion** 190 191 The city of Morelia often experiences floods due to the excess water in the urban drains that are 192 part of the city's structure. In order to analyze the flooding problem accurately, a high-resolution (5m) Digital Elevation Model (DEM) of the city is needed. This study used 9 DEMs provided by 193 INEGI (Instituto Nacional de Estadística y Geografía (INEGI), n.d.) to create a Digital Surface 194 Model (DSM) that reflects the city's structure. This DSM allowed us to locate the potential 195 channels that could form when the drains overflow. 196 197 However, the DSM has a limitation in that it does not account for vegetation. Vegetation can lower the hydraulic capacity of waterways, raising the flood risk. Bathymetric data on the river 198 network was obtained from CONAGUA (2016) to obtain a comprehensive topographic model of 199 200 the urban area. This data was combined with the MDE of the urban layout to create a complete 201 topographic model. The final topographic model enabled the precise identification of the city's

location, depth, and areas prone to flooding.

- 203 The hydraulic simulation was performed with the HEC-RAS version 6.3 program. This software
- applies the two-dimensional shallow-water equations of diffusion waves and lets the user select
- the best solution method.
- 206 Shallow water equations are a set of mathematical equations that capture the movement of water
- in open channels. These equations can simulate different hydraulic phenomena such as floods,
- 208 drinking water flows, and wastewater, which is why they were applied in this study.
- The hydraulic model covers a 34.74 km² area, split into 751,641 cells and 871,976 nodes. The
- 210 cells have varied sizes depending on the area, with large-scale cells in areas away from the
- 211 channels (10m) and small cells in the channels (2m) and structures (1m). This variable size
- 212 enhances the calculation process without losing detail in critical areas. The model includes 170
- 213 structures, such as bridges, gates, and culverts. These structures reflect the actual topography of
- 214 the area and allow the water flow around them to be modeled.
- 215 The hydraulic model requires 17 boundary conditions. Of these, 16 are water inlets, represented
- by the hydrographs of each tributary, and one is an outlet located in the final section of the Rio
- 217 Grande outside the city. This configuration enables the flow within the study area to act
- 218 naturally, conforming to the terrain's topography. Figure 3 shows the position of boundary
- 219 conditions in the model.
- 220 A comparative analysis was used to obtain the hydrographs for the water inlets. Two methods
- were applied: the best-fit probability function (Sánchez-Quispe et al., 2021) and stochastic
- 222 models (Wright et al., 2020). Both methods were used to estimate design storms.
- 223 The hydrographs for the modeling were derived from the maximum flows suggested by
- Hernández-Bedolla et al. (2023). The model input hydrographs, 15 in total, were produced using
- 225 the HEC-HMS software. The constant flow of the Cointzio dam was based on its historical
- 226 discharges.
- Figure 4 shows that the use of stochastic models results in consistent maximum flows, regardless
- of the methodology (PDF-SCS-CN or MASVC-SCS-CN) used, because these models are
- 229 uniform over time and reduce the uncertainty caused by the significant variation of using a best-
- 230 fit distribution function, which changes between basins and seasons.
- 231 Manning's roughness coefficient is critical for hydraulic simulation as it influences the flow
- speed. For instance, higher roughness coefficients typically indicate more resistance and slower
- 233 flow velocities. Satellite images were used as a basis for this. Ven Te Chow (1959) states that
- 234 this coefficient can be derived from land cover. However, the Manning coefficients were verified
- 235 to ensure the parameter's accuracy in the system's hydraulic performance. This involved field
- 236 visits and topographic surveys.
- 237 The data gathered enabled the identification of areas with comparable features of land cover and
- soil type. Each zone was given a distinct roughness coefficient. Figure 5 illustrates the spatial
- variation of these coefficients.
- 240 Different return periods (2, 10, 50, 100, 200 at 500 years) were used for hydraulic simulations.
- 241 These simulations revealed four zones of natural flooding (Figure 6). This information is
- essential for deciding the city's urban growth, as these areas are prone to flooding.

- The input data inevitably creates variation in the depths produced on the flood surfaces
- depending on the model used, but the flood areas are clearly defined, as shown in Figure 7. This
- variation in the depths produced does not significantly affect the flood surface. It keeps us safe
- since the hydraulic behavior of the system in the study area is well-defined.
- Both modeling approaches (distribution functions and stochastic models) similarly replicate the
- system's behavior; however, they yield different water levels due to the varying maximum flow
- values each model generates. These differences result from the different maximum flow values
- 250 that each model creates. In general, stochastic models generate higher maximum water levels, as
- Table 2 shows.

Conclusions

- All cities, particularly those prone to natural hazards like flooding, must address the challenges
- posed by unregulated urban growth. By occupying natural flood areas, economic and social
- losses pose a severe threat, which becomes a vital issue for governments.
- 257 The findings of this study highlight the necessity of using hydraulic models as essential tools in
- 258 urban planning and decision-making to mitigate impacts on existing urban centers. Assessing
- 259 natural hazards and their effects, such as rainfall that causes floods, is a complicated task that
- requires rigorous analysis, as done in this research. Decreased uncertainty in areas with limited
- data gives more confidence to the decisions that need to be made, as well as analyzing and
- generating a critical evaluation to avoid overestimating the effects of floods.
- A crucial task in decision-making is the generation of hydraulic models that simulate the flow
- behavior. Therefore, it is essential to be careful when creating the model. It is important to verify
- every aspect involved in the physical and hydraulic model. Two-dimensional hydraulic models
- accurately simulate the flow behavior as it happens. The generation of hazard maps, such as
- 267 those for flooding, helps identify the areas where urban development should be avoided because
- 268 they are in areas prone to flooding, such as the natural floodplains of the river network of
- 269 Morelia.
- 270 The hazard maps produced in this study can help to identify strategic locations for hydraulic
- works that can help mitigate the impacts of flooding in the urban area of Morelia. By analyzing
- 272 different return periods, the maps clearly show the recurrent flood zones that should be
- 273 prioritized for intervention. The flood maps can also be helpful for future work in developing
- warning systems that can link rainfall events with the historical floods generated.

275276

Acknowledgements

- 277 The authors express their gratitude to the Universidad Michoacana de San Nicolás de Hidalgo
- 278 (UMSNH) for providing the necessary facilities for conducting this study. The first and second
- authors also wish to extend their thanks to the National Council of Humanities, Science and
- 280 Technology of Mexico (CONAHCYT Consejo Nacional de Humanidades, Ciencias y
- 281 Tecnologías) for funding their postgraduate studies.

297

298

299

300 301

302

303

304 305

306

References

- Açıl, A., Aydın, A., Eker, R., & Duyar, A. (2023). Use of UAV Data and HEC-RAS Model for Dimensioning of Hydraulic Structures on Forest Roads. *Croatian Journal of Forest Engineering*, *44*(1), 171–188. https://doi.org/10.5552/crojfe.2023.1701
- AL-Hussein, A. A. M., Khan, S., Ncibi, K., Hamdi, N., & Hamed, Y. (2022). Flood Analysis Using HEC-RAS and HEC-HMS: A Case Study of Khazir River (Middle East—Northern Iraq). Water (Switzerland), 14(22). https://doi.org/10.3390/w14223779
- Ansori, M. B. (2023). FLOOD HYDROGRAPH ANALYSIS USING SYNTHETIC UNIT
 HYDROGRAPH, HEC-HMS, AND HEC-RAS 2D UNSTEADY FLOW PRECIPITATION ON GRID MODEL FOR DISASTER RISK MITIGATION. *International Journal of GEOMATE*,
 25(107). https://doi.org/10.21660/2023.107.3719
- Bharath, A., Shivapur, A. V., Hiremath, C. G., & Maddamsetty, R. (2021). Dam break analysis
 using HEC-RAS and HEC-GeoRAS: A case study of Hidkal dam, Karnataka state, India.
 Environmental Challenges, 5. https://doi.org/10.1016/j.envc.2021.100401
 - Bush, S. T., Dresback, K. M., Szpilka, C. M., & Kolar, R. L. (2022). Use of 1D Unsteady HEC-RAS in a Coupled System for Compound Flood Modeling: North Carolina Case Study. *Journal of Marine Science and Engineering*, 10(3). https://doi.org/10.3390/jmse10030306
 - Chahinian, N., Alcoba, M., Dembélé, N. dit J., Cazenave, F., & Bouvier, C. (2023). Evaluation of an early flood warning system in Bamako (Mali): Lessons learned from the flood of May 2019. *Journal of Flood Risk Management*, *16*(3). https://doi.org/10.1111/jfr3.12878
 - Choubin, B., Khalighi-Sigaroodi, S., Malekian, A., & Kişi, Ö. (2016). Multiple linear regression, multi-layer perceptron network and adaptive neuro-fuzzy inference system for forecasting precipitation based on large-scale climate signals. *Hydrological Sciences Journal*, *61*(6), 1001–1009. https://doi.org/10.1080/02626667.2014.966721
- 307 Chow, V. Te. (1959). *Open-channel hydraulics* (McGraw-Hill, Ed.).
- 308 CONAGUA. (2016). Actualización del estudio para el control de avenidas en el sistema Río 309 Grande-río Chiquito de la presa Cointzio a su desembocadura al lago de Cuitzeo.
- Costabile, P., Costanzo, C., Ferraro, D., Macchione, F., & Petaccia, G. (2020). Performances of the new HEC-RAS version 5 for 2-D hydrodynamic-based rainfall-runoff simulations at basin scale: Comparison with a state-of-the art model. *Water (Switzerland)*, *12*(9). https://doi.org/10.3390/W12092326
- Demir, V., & Keskin, A. Ü. (2020). Obtaining the manning roughness with terrestrial-remote sensing technique and flood modeling using FLO-2D: A case study Samsun from Turkey.

 Geofizika, 37(2), 131–156. https://doi.org/10.15233/gfz.2020.37.9
- Falconer, R. H., Cobby, D., Smyth, P., Astle, G., Dent, J., & Golding, B. (2009). Pluvial flooding:

 New approaches in flood warning, mapping and risk management. *Journal of Flood Risk*Management, 2(3), 198–208. https://doi.org/10.1111/j.1753-318X.2009.01034.x
- Gessang, O. M., & Lasminto, U. (2020). The flood prediction model using Artificial Neural
 Network (ANN) and weather Application Programming Interface (API) as an alternative
 effort to flood mitigation in the Jenelata Sub-watershed. *IOP Conference Series: Materials*Science and Engineering, 930(1). https://doi.org/10.1088/1757-899X/930/1/012080
- Goswami, G., Prasad, R. K., & Kumar, D. (2023). Hydrodynamic flood modeling of Dikrong River in Arunachal Pradesh, India: a simplified approach using HEC-RAS 6.1. *Modeling*

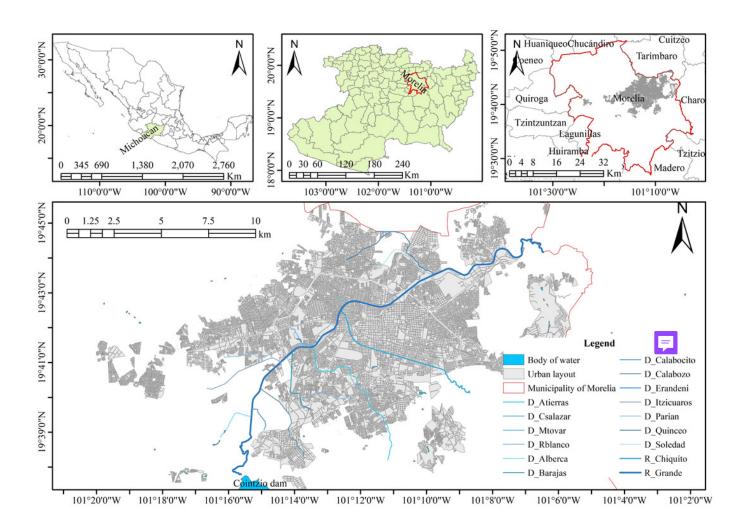
- 326 *Earth Systems and Environment*, *9*(1), 331–345. https://doi.org/10.1007/s40808-022-327 01507-2
- Hernández-Bedolla, J., García-Romero, L., Franco-Navarro, C. D., Sánchez-Quispe, S. T., & Domínguez-Sánchez, C. (2023). Extreme Runoff Estimation for Ungauged Watersheds
- Using a New Multisite Multivariate Stochastic Model MASVC. *Water (Switzerland)*, *15*(16). https://doi.org/10.3390/w15162994
- Hydrologic Engineering Center. (2009). *HEC-GeoRAS GIS Tools for Support of HEC-RAS using ArcGIS® User's Manual.* www.hec.usace.army.mil
- 334 Hydrologic Engineering Center. (2021). HEC-RAS User's Manual.
 335 www.hec.usace.army.mil/confluence/display/RASUM/
- Instituto Nacional de Estadística y Geografía (INEGI). (n.d.). *INEGI*. Retrieved January 3, 2024, from https://www.inegi.org.mx/app/geo2/elevacionesmex/
- Karyotis, C., Maniak, T., Doctor, F., Iqbal, R., Palade, V., & Tang, R. (2019). Deep learning for
 flood forecasting and monitoring in urban environments. *Proceedings 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019*, 1392–1397.
 https://doi.org/10.1109/ICMLA.2019.00227
- Mosavi, A., Ozturk, P., & Chau, K. W. (2018). Flood prediction using machine learning models:
 Literature review. In *Water (Switzerland)* (Vol. 10, Issue 11). MDPI AG.
 https://doi.org/10.3390/w10111536
- Munawar, H. S., Hammad, A. W. A., & Waller, S. T. (2022). Remote Sensing Methods for Flood
 Prediction: A Review. In *Sensors* (Vol. 22, Issue 3). MDPI.
 https://doi.org/10.3390/s22030960
- Muñoz, D. F., Yin, D., Bakhtyar, R., Moftakhari, H., Xue, Z., Mandli, K., & Ferreira, C. (2022).
 Inter-Model Comparison of Delft3D-FM and 2D HEC-RAS for Total Water Level Prediction in Coastal to Inland Transition Zones. *Journal of the American Water Resources* Association, 58(1), 34–49. https://doi.org/10.1111/1752-1688.12952
- Namara, W. G., Damisse, T. A., & Tufa, F. G. (2022). Application of HEC-RAS and HEC-GeoRAS model for Flood Inundation Mapping, the case of Awash Bello Flood Plain, Upper Awash River Basin, Oromiya Regional State, Ethiopia. In *Modeling Earth Systems and* Environment (Vol. 8, Issue 2, pp. 1449–1460). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s40808-021-01166-9
- Ongdas, N., Akiyanova, F., Karakulov, Y., Muratbayeva, A., & Zinabdin, N. (2020). Application of hec-ras (2d) for flood hazard maps generation for yesil (ishim) river in kazakhstan. *Water (Switzerland)*, *12*(10), 1–20. https://doi.org/10.3390/w12102672
- Ontowirjo, B., Fathurrahman, I., Ramadhan, M. V., Zahriani, A., Zahra, M., & Wahyudi, H. (2023). LiDAR DEM and HEC-RAS On-Grid Rainfall Hydrograph Model for Irrigation System. *IOP Conference Series: Earth and Environmental Science*, *1198*(1). https://doi.org/10.1088/1755-1315/1198/1/012023
- Papaioannou, G., Vasiliades, L., Loukas, A., Alamanos, A., Efstratiadis, A., Koukouvinos, A., Tsoukalas, I., & Kossieris, P. (2021). A flood inundation modeling approach for urban and rural areas in lake and large-scale river basins. *Water (Switzerland)*, *13*(9).
- 367 https://doi.org/10.3390/w13091264

Manuscript to be reviewed

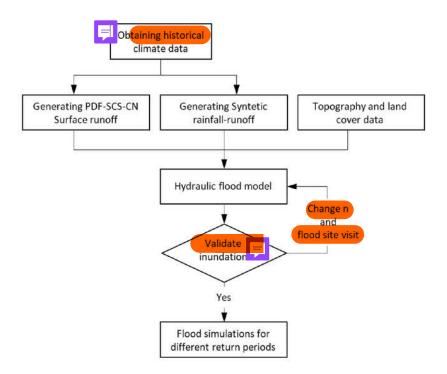
368	Perera, D., Seidou, O., Agnihotri, J., Mehmood, H., & Rasmy, M. (2020). Challenges and
369	Technical Advances in Flood Early Warning Systems (FEWSs). In Flood Impact Mitigation
370	and Resilience Enhancement. IntechOpen. https://doi.org/10.5772/intechopen.93069
371	Sánchez-Quispe, S. T., Navarro-Farfán, M. del M., & García-Romero, L. (2021). Methodology
372	for processing meteorological and hydrometric data at basin level. In CIERMMI Women in
373	Science T-XVI Engineering and Technology Handbooks.
374	https://doi.org/10.35429/H.2021.16.107.145
375	Sathya, A., Thampi, S. G., & Chithra, N. R. (2023). Development of a framework for sand
376	auditing of the Chaliyar River basin, Kerala, India using HEC-HMS and HEC-RAS model
377	coupling. International Journal of River Basin Management, 21(1), 67–80.
378	https://doi.org/10.1080/15715124.2021.1909604
379	Wright, D. B., Yu, G., & England, J. F. (2020). Six Decades of Rainfall and Flood Frequency
380	Analysis Using Stochastic Storm Transposition: Review, Progress, and Prospects.
381	Yalcin, E. (2020). Assessing the impact of topography and land cover data resolutions on two-
382	dimensional HEC-RAS hydrodynamic model simulations for urban flood hazard analysis.
383	Natural Hazards, 101(3), 995–1017. https://doi.org/10.1007/s11069-020-03906-z
384	

River network of the city of Morelia

Own elaboration by means of QGIS 3.18.

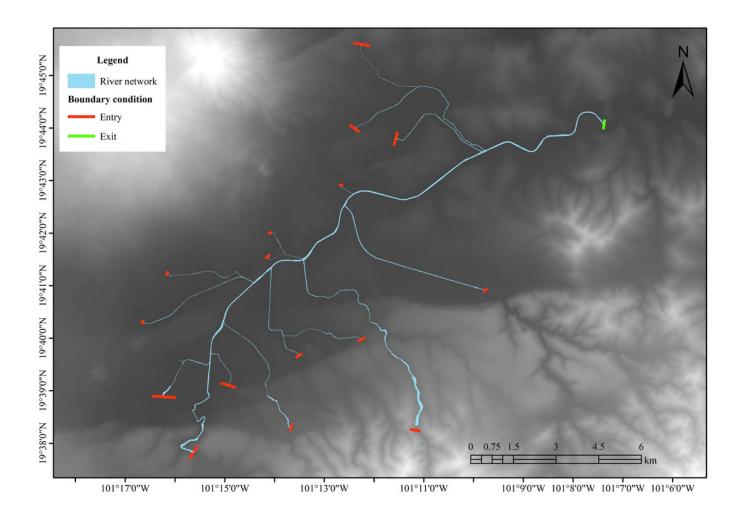


Proposed methodology

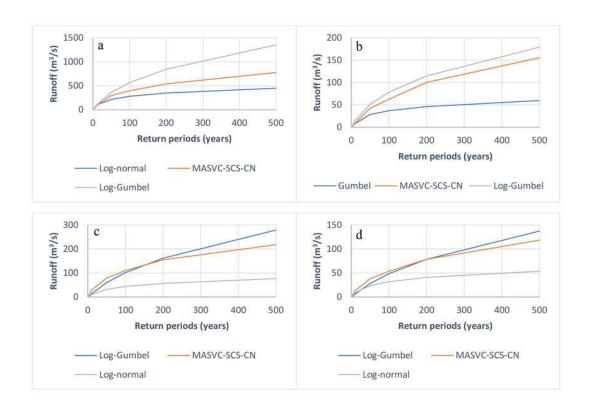


Boundary Conditions for the Hydraulic Model

Own elaboration by means of QGIS 3.18.

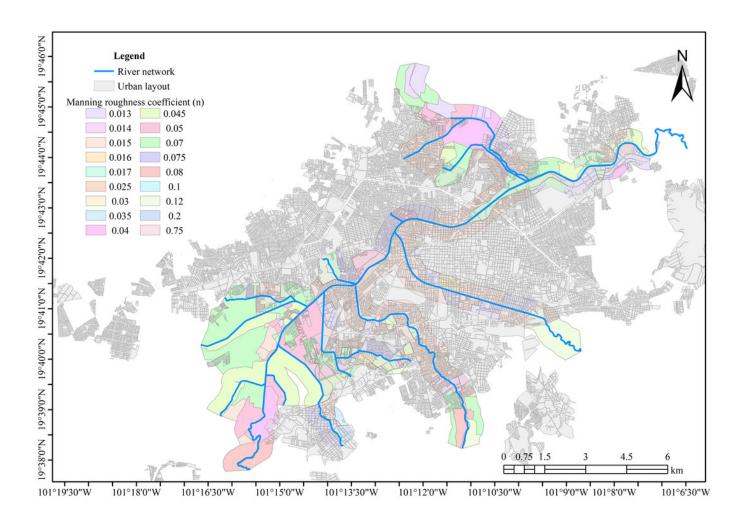


Peak runoff flows resulting from the precipitation events in the microbasins of the study, MASVC-SCS-CN, and PDF-SCS-CN generated in Hec-HMS. a) Itzicuaros drain, b) Quinceo drain, c) Chiquito river, and d) Arroyo de tierras drain



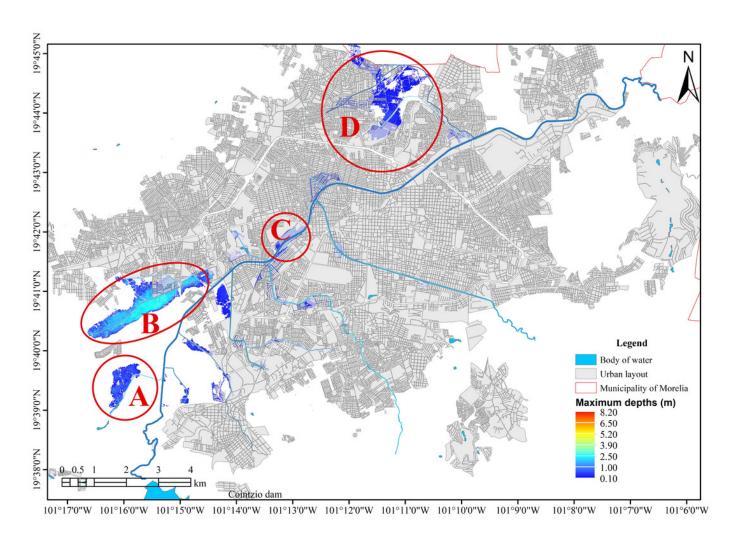
Manning's roughness coefficients per zone

Own elaboration by means of QGIS 3.18



Natural floodplains of the river network

Own elaboration by means of QGIS 3.18



Hydraulic simulation for 100 and 200-year return periods, respectively, where flood zones are shown

Own elaboration by means of QGIS 3.18

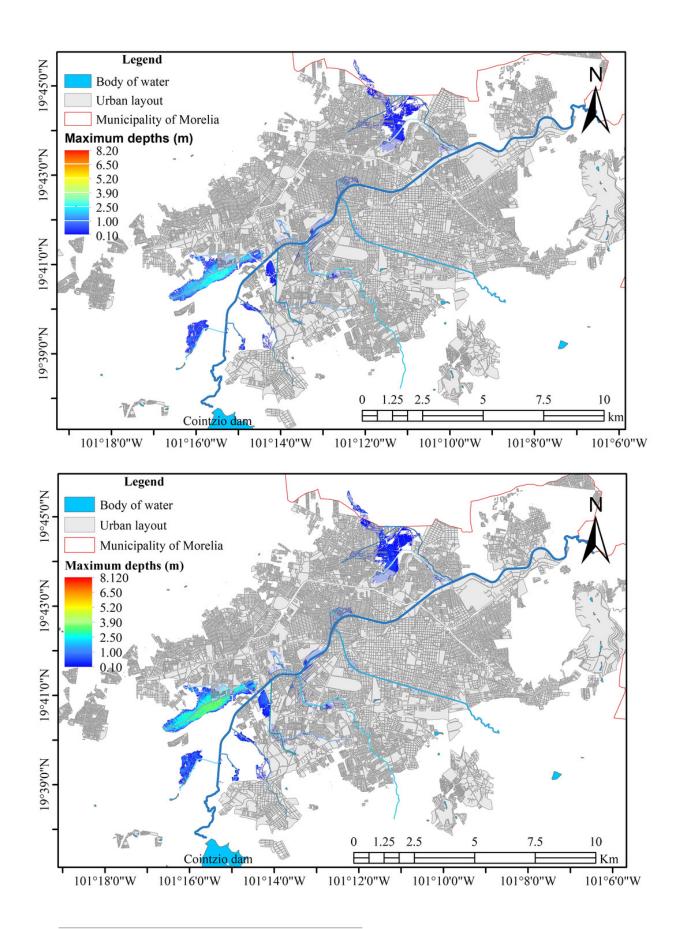


Table 1(on next page)

River Network of the city of Morelia

River Network of the City of Morelia				
Name	ID	Channel length (km)	Total ΔH (m)	Average S (%)
R. Grande	01	29.35	12.144	0.04
Alberca	02	2.41	4.34	0.18
Calabocito	03	1.53	2.63	0.17
Calabozo	04	4.90	106.74	2.18
Itzícuaros	05	4.40	0.62	0.01
Parían	06	2.90	12.01	0.41
Barajas	07	3.78	10.35	0.27
Arroyo Blanco	08	2.96	37.69	1.27
Arroyo de Tierras	09	9.09	246.12	2.71
Mora Tovar	10	1.69	8.46	0.50
Río Chiquito	11	9.24	104.11	1.13
Carlos Salazar	12	0.57	17.54	3.06
Soledad	13	4.03	1.16 0.03	
Quinceo	14	6.60	9.00 0.14	
Erandeni	15	3.52	62.16 1.77	

Table 2(on next page)

Maximum Depth level reached in flooding areas

Method	Tr	Average maximum depth (m)			
		а	b	С	d
Distribution f.	2	0.35	0.32		
Stochastic		0.37	0.32		
Distribution f.	10	0.43	0.95		0.18
Stochastic		0.38	0.85	0.21	0.19
Distribution f.	50	0.56	1.37	0.69	0.23
Stochastic		0.57	1.69	0.74	0.29
Distribution f.	100	0.65	1.62	0.73	0.29
Stochastic		0.68	2.01	0.91	0.38
Distribution f.	200	0.77	2.02	1.15	0.35
Stochastic		0.68	2.01	0.91	0.38
Distribution f.	500	1.06	2.18	1.76	0.42
Stochastic		1.53	2.78	2.11	0.64