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Flood forecasting has become an essential component of hydrology and natural disaster
management due to the increasing frequency and severity of extreme hydrological events
driven by climate change. This study compares two methodologies for predicting ûood
events in Morelia, Mexico: one using theoretical distribution functions and another
employing stochastic weather generators. The methodology integrates maximum runoû
results for diûerent recurrence intervals into a hydraulic model of the drainage network,
using both the Soil Conservation Service Curve Number (SCS-CN) method and a
multivariate stochastic model (MASVC). Hydrodynamic modeling with HEC-RAS,
incorporating two-dimensional shallow water equations, was used to simulate ûood
inundation areas. The study reveals that while both modeling approaches similarly
replicate the system9s behavior, they produce diûerent water levels due to variations in
maximum ûow values. The stochastic model tends to generate higher maximum water
levels. High-resolution Digital Elevation Models (DEMs) and land use data were crucial in
improving the accuracy of the hydraulic simulations. Findings indicate that unregulated
urban growth in ûood-prone areas signiûcantly exacerbates the impact of ûooding. The
generated hazard maps and ûood simulations provide valuable tools for urban planning
and decision-making, highlighting the need for strategic interventions to mitigate ûood
risks. This research underscores the importance of integrating advanced modeling
techniques in ûood risk management to enhance the precision and reliability of ûood
forecasts.
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19 Abstract

20 Flood forecasting has become an essential component of hydrology and natural disaster 

21 management due to the increasing frequency and severity of extreme hydrological events driven 

22 by climate change. This study compares two methodologies for predicting flood events in 

23 Morelia, Mexico: one using theoretical distribution functions and another employing stochastic 

24 weather generators. The methodology integrates maximum runoff results for different recurrence 

25 intervals into a hydraulic model of the drainage network, using both the Soil Conservation 

26 Service Curve Number (SCS-CN) method and a multivariate stochastic model (MASVC). 

27 Hydrodynamic modeling with HEC-RAS, incorporating two-dimensional shallow water 

28 equations, was used to simulate flood inundation areas. The study reveals that while both 

29 modeling approaches similarly replicate the system�s behavior, they produce different water 

30 levels due to variations in maximum flow values. The stochastic model tends to generate higher 

31 maximum water levels. High-resolution Digital Elevation Models (DEMs) and land use data 

32 were crucial in improving the accuracy of the hydraulic simulations. Findings indicate that 

33 unregulated urban growth in flood-prone areas significantly exacerbates the impact of flooding. 

34 The generated hazard maps and flood simulations provide valuable tools for urban planning and 

35 decision-making, highlighting the need for strategic interventions to mitigate flood risks. This 

36 research underscores the importance of integrating advanced modeling techniques in flood risk 

37 management to enhance the precision and reliability of flood forecasts.

38

39 Introduction

40 In recent decades, flood forecasting has become a critical component of hydrology and natural 

41 disaster management. The increasing frequency and severity of extreme hydrological events, 

42 primarily due to climate change, highlight the need to enhance the precision and reliability of 

43 forecasting systems. The ability to accurately and timely forecast flood events is essential to 

44 reduce property loss, protect vital infrastructure, and prevent human casualties (Papaioannou et 

45 al., 2021).

46 Flood forecasting is a multidisciplinary field combining information from meteorology, 

47 hydrology, geography, and computer science, among other disciplines. Progress in these areas 

48 has led to more advanced forecasting models and methods. However, natural systems have 

49 variability and uncertainty, and human-environmental interactions are complex. These 

50 significant challenges have not yet been solved (Chahinian et al., 2023).

51 Adopting emerging technologies such as artificial intelligence, machine learning, and big data 

52 has opened new ways for flood risk analysis and modeling (Karyotis et al., 2019; Mosavi et al., 

53 2018). These approaches promise improvements in the ability to predict floods by enabling the 

54 processing of large volumes of data and the identification of complex patterns imperceptible to 

55 traditional methods (Falconer et al., 2009). In addition, the increasing availability of high-

56 resolution data obtained through satellites and other remote sensing offers unprecedented 

57 opportunities to improve flood forecasts' accuracy and spatial resolution (Munawar et al., 2022).

PeerJ reviewing PDF | (2024:07:103363:0:0:NEW 10 Jul 2024)

Manuscript to be reviewed

Luisa-Bianca Thiele
Hervorheben
I would clarify exactly what is meant by flood forcasting. The text sometimes uses forecast and sometimes prediction; as I understand it, forecasting in this work refers to a statistical evaluation, not a real-time forecast. In my opinion, this is rather prediction. Either way, I would start by defining more precisely what is meant here, because there are many different ways of looking at it.

Luisa-Bianca Thiele
Hervorheben

Luisa-Bianca Thiele
Kommentar zu Text
The abstract is well written and the objectives of the work and its relevance are emphasized.



58 Methods based on Machine Learning are, without a doubt, among the most analyzed in recent 

59 years. This type of methodology includes Adaptive Neuro-Fuzzy Inference Systems (ANFIS), 

60 Multilayer Perceptron (MLP), Artificial Neural Networks (ANNs), Wavelet Neural Networks 

61 (WNN), and Support Vector Machines (SVM), among others.

62 Choubin et al. (2016) analyzed precipitation prediction using three models: multiple linear 

63 regression (MLR), MLP, and ANFIS, using large-scale climate signals as inputs. Effective 

64 climate indices were selected through principal component analysis and cross-correlation to 

65 predict the standardized precipitation index (SPI) in the Maharlu-Bakhtegan basin, Iran. The 

66 results indicated that the MLP model outperformed the MLR and ANFIS models, suggesting a 

67 nonlinear relationship between climate signals and precipitation, making nonlinear methods 

68 more effective for predicting the analyzed area.

69 Gessang and Lasminto (2020) propose using ANN and a weather forecasting API for flood 

70 prediction and mitigation in a sub-basin of Indonesia. The research highlights how the 

71 precipitation intensity in this area can cause significant increases in river water levels, leading to 

72 flooding. ANN was used to predict rainfall and, together with the curve method (CN) of the 

73 United States Soil Conservation Service (USSCS), calculate maximum runoff, demonstrating the 

74 usefulness of these models in flood risk management.

75 Hernández-Bedolla et al. (2023) present a multivariate and multisite stochastic model, MASVC, 

76 designed to estimate maximum runoff in non-measured basins. The study highlights how 

77 precipitation influences the determination of runoff at different time scales and uses a stochastic 

78 approach to generate synthetic precipitation sequences, preserving spatial and temporal 

79 variability in daily, monthly, annual, and extreme values. The model was evaluated in the Rio 

80 Grande watershed of Morelia, Mexico. It showed its effectiveness by contrasting its results with 

81 conventional probability density functions and providing a more dependable approximation of 

82 peak surface runoff.

83 Several factors prevent the successful application of various flood analysis and prediction 

84 technologies in operational practice despite the numerous methods that exist for this purpose. 

85 These include the need for comprehensive and accurate historical datasets, understanding local 

86 river and rainfall dynamics, and integrating heterogeneous models and data into cohesive and 

87 reliable operating systems (Perera et al., 2020).

88 Despite the progress of the methods that predict flood events using maximum rainfall from 

89 distribution functions as an input, these are still the most widely used methods. Thus, this study 

90 compares two hydraulic models in the main rivers of Morelia, Mexico. One model uses flows 

91 derived from theoretical distribution functions; the other uses synthetic flows derived from 

92 stochastic models. This comparison aims to assess an alternative option to the current methods 

93 for forecasting and evaluating urban flood events.

94

95 Materials & Methods

96 Case study
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97 Morelia, the largest and most populous urban area in Michoacán, Mexico, is characterized by its 

98 significant population and complex fluvial network. The city has a fluvial network of fifteen 

99 perennial tributaries, shown in Figure 1 and the object of analysis in this work. The Rio Grande 

100 is the city's main river channel, collects the runoff generated in the area, and is regulated 

101 upstream by the Cointzio dam.

102 Morelia is prone to frequent floods from overflowing rivers, which directly impact houses and 

103 disrupt residents' daily lives. For instance, in 2018 a severe storm caused injuries, inundations in 

104 homes, landslides, and wrecked vehicles. Today, floods are perceived as having only negative 

105 consequences and as disasters that inflict harm, sometimes irreparable. These impacts are 

106 aggravated by the expansion of cities naturally prone to flooding, such as near rivers and 

107 streams.

108

109 Methodology

110 The proposed methodology utilizes maximum runoff results for various recurrence intervals 

111 within the hydraulic model of Morelia City's drainage network. It also incorporates scenarios 

112 created with the daily MASVC (Hernández-Bedolla et al., 2023). Moreover, the HEC-RAS 

113 model was adjusted to obtain the flood areas based on topographic studies and changes in the 

114 Manning roughness coefficients (Demir & Keskin, 2020; Yalcin, 2020). The methodology is 

115 illustrated in Figure 2.

116

117 Surface runoff

118 Surface runoff was calculated using two types of methodology. One method was the Probability 

119 Density Functions with The Soil Conservation Service Curve Number (PDF-SCS-CN), which is 

120 used to estimate runoff from small-to-medium-sized watersheds SCS-CN method (AL-Hussein 

121 et al., 2022; Ansori, 2023; Sathya et al., 2023). The other method was the stochastic weather 

122 generator, which applied the MASVC-SCS-CN approach. The MASVC is a multivariate 

123 stochastic model that uses lag one autoregressive multivariate parameters. It consists of two 

124 modeling phases. The first phase models the occurrence of precipitation (wet-dry), and the 

125 second phase estimates the amount of precipitation on a daily scale. Then, the maximum 

126 precipitation values are extracted, and the runoffs are computed using the SCS-CN method.

127

128 Flood inundation

129 Hydrodynamic model HEC-RAS is used to model rivers (one-dimensional), flood areas (two-

130 dimensional), channels, drains, and dams (Aç1l et al., 2023; Bharath et al., 2021; Bush et al., 

131 2022; Goswami et al., 2023; Namara et al., 2022; Ongdas et al., 2020). HEC-RAS calculates the 

132 depth of inundation and velocity based on floodwater discharge hydrographs (Hydrologic 

133 Engineering Center, 2009). HEC-RAS was applied for the two-dimensional hydraulic model and 

134 was solved by the 2-D shallow water equations. The solution method for both equations was by 

135 volume finite differences. The unsteady differential form of the mass conservation equation is 

136 (Equation 1).
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137 ÿ=
"ÿ"ý +

"(/ÿ)"ý +
"(/ÿ)"ÿ [1]

138

139 Where r is the source/sink term, H is the surface elevation (m); t is the time, hu and hv are the 

140 flow in x and y (m2s-1); HEC-RAS recently incorporates fully 2-D shallow equations (Costabile 

141 et al., 2020). The shallow water equations are presented in the following equations.

142 "ý"ý +
""ý (ý2/ ) +

""ÿ(ýÿ/ ) =2 ÿ2ýý ý2
+ ÿ2/2

2 ý/"ÿ"ý + ýÿ+
"ý"ý(/ÿýý) +

"ý"ÿ(/ÿýÿ)
[2]

"ÿ"ý +
""ý (ýÿ/ ) +

""ÿ(ÿ2/ ) =2 ÿ2ýý ý2
+ ÿ2/2

2 ý/"ÿ"ÿ + ÿÿ+
"ý"ý(/ÿýÿ) +

"ý"ÿ(/ÿÿÿ) [3]

143

144 Where p and q are hu and hv, (m2s-1); n is the Manning's roughness coefficient (s m21/3), g is the 

145 gravity acceleration (ms22), Ã is the water density (kg m23), Çxx, Çyy, and Çxy are the components of 

146 the stress tensor and f is the Coriolis parameter (s21). We propose the diffusive wave algorithm to 

147 select boundary conditions and response times. In this case, the inertial terms of the equation are 

148 neglected. 

149 The Eulerian Shallow Water equation (EM-SWE) was the calibration solution method. This 

150 method utilizes the momentum-conservative discretization assuming local conservation of 

151 momentum about control volume centered on all cell face  (Hydrologic Engineering (ý ;  ')ÿý
152 Center, 2021).

153

[(ý ; ')uý]ÿ j (
1/[ ' ; (/ýÿý 2 ÿý' ; /ý)])ÿ

[(ý ; ')uý]ÿ j ýÿÿ/ÿýÿ 3ý * ÿ(ÿ)

ý 2ÿ,ý(ýÿý ; ÿÿ 2 ÿý,ÿ) +
ýýÿ/ÿýý 3ý * ÿ(ÿ)

ý 2ý,ý(ýÿý ; ÿÿ 2 ÿý,ÿ)

[4a]

[4b]

154

155 Where ;  is the minimum value of inflow at face k to cell i   is the /ÿ =  «ÿ/ýýÿ ý __ÿ,ý ýÿ,ý, ýý, 0; ýý
156 face vertical area;  is the left cell horizontal area,  is the right cell horizontal area,  is the ýÿ ýý ýÿ
157 cell average current velocity vector  is  for  major than cero and is  for  less than ýÿý ýÿ ÿý,ý ýý ÿý,ý
158 zero;  is the face-normal unit vector.ÿÿ
159

160 DEM and land use

161 The quality of flood modeling depends on the topographic information. A hybrid mesh was used, 

162 combining a gridded DEM dataset with 5m of resolution from the National Institute of Statistics 

163 and Geography (INEGI, https://www.inegi.org.mx/temas/topografia/) and more detailed 0.5 m 

164 data from a specific topographic study to improve the accuracy in rivers. The land use data was 
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165 obtained from INEGI (https://www.inegi.org.mx/temas/usosuelo/), and field visits to the rivers 

166 were conducted to determine the Manning coefficient (n).

167

168 Boundary conditions 

169 Two-dimensional modeling was done with flexible and triangular meshes. The meshes gave 

170 more detail in the rivers due to a high-accuracy topographic survey (Muñoz et al., 2022; 

171 Ontowirjo et al., 2023). For the flood areas, a regular grid with a 5-meter resolution was 

172 proposed for roads, as well as for urban and rural areas. Boundary conditions describe how water 

173 behaves at the model domain's boundaries, including different conditions at the model edges 

174 (Hydrologic Engineering Center, 2009). Upstream boundary conditions are needed at the 

175 upstream end of all reaches that do not connect to other reaches or storage areas. Hydrographs 

176 were assigned upstream of each sub-basin studied. Hydrographs corresponding to various return 

177 and historical periods were assigned upstream of each sub-basin studied. For the downstream 

178 boundary condition, the normal depth option was chosen for the HEC-RAS model (Hydrologic 

179 Engineering Center, 2021).

180

181 Simulation and calibration 

182 The process of calibrating the hydraulic model is based on the different steps described below. 1) 

183 Simulation of the entire study area to identify the simulation times and potential flooding zones 

184 near the streams and rivers. 2) Simulation of the diffusive wave algorithm to generate the first 

185 flood from historical rainfall data. 3) Calibration using the EM-SWE by changing the Manning 

186 roughness coefficient and field visits to perform mesh refinement. 4) Validation of the results 

187 from the actual flooding for a specific date. 5) Generation of floods from different return periods 

188 and results from MASVC-SCS-CN and PDF-SCS-CN.

189

190 Results and Discussion

191 The city of Morelia often experiences floods due to the excess water in the urban drains that are 

192 part of the city's structure. In order to analyze the flooding problem accurately, a high-resolution 

193 (5m) Digital Elevation Model (DEM) of the city is needed. This study used 9 DEMs provided by 

194 INEGI (Instituto Nacional de Estadística y Geografía (INEGI), n.d.) to create a Digital Surface 

195 Model (DSM) that reflects the city's structure. This DSM allowed us to locate the potential 

196 channels that could form when the drains overflow.

197 However, the DSM has a limitation in that it does not account for vegetation. Vegetation can 

198 lower the hydraulic capacity of waterways, raising the flood risk. Bathymetric data on the river 

199 network was obtained from CONAGUA (2016) to obtain a comprehensive topographic model of 

200 the urban area. This data was combined with the MDE of the urban layout to create a complete 

201 topographic model. The final topographic model enabled the precise identification of the city's 

202 location, depth, and areas prone to flooding.
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203 The hydraulic simulation was performed with the HEC-RAS version 6.3 program. This software 

204 applies the two-dimensional shallow-water equations of diffusion waves and lets the user select 

205 the best solution method.

206 Shallow water equations are a set of mathematical equations that capture the movement of water 

207 in open channels. These equations can simulate different hydraulic phenomena such as floods, 

208 drinking water flows, and wastewater, which is why they were applied in this study. 

209 The hydraulic model covers a 34.74 km² area, split into 751,641 cells and 871,976 nodes. The 

210 cells have varied sizes depending on the area, with large-scale cells in areas away from the 

211 channels (10m) and small cells in the channels (2m) and structures (1m). This variable size 

212 enhances the calculation process without losing detail in critical areas. The model includes 170 

213 structures, such as bridges, gates, and culverts. These structures reflect the actual topography of 

214 the area and allow the water flow around them to be modeled.

215 The hydraulic model requires 17 boundary conditions. Of these, 16 are water inlets, represented 

216 by the hydrographs of each tributary, and one is an outlet located in the final section of the Rio 

217 Grande outside the city. This configuration enables the flow within the study area to act 

218 naturally, conforming to the terrain's topography. Figure 3 shows the position of boundary 

219 conditions in the model.

220 A comparative analysis was used to obtain the hydrographs for the water inlets. Two methods 

221 were applied: the best-fit probability function (Sánchez-Quispe et al., 2021) and stochastic 

222 models (Wright et al., 2020). Both methods were used to estimate design storms. 

223 The hydrographs for the modeling were derived from the maximum flows suggested by 

224 Hernández-Bedolla et al. (2023). The model input hydrographs, 15 in total, were produced using 

225 the HEC-HMS software. The constant flow of the Cointzio dam was based on its historical 

226 discharges.

227 Figure 4 shows that the use of stochastic models results in consistent maximum flows, regardless 

228 of the methodology (PDF-SCS-CN or MASVC-SCS-CN) used, because these models are 

229 uniform over time and reduce the uncertainty caused by the significant variation of using a best-

230 fit distribution function, which changes between basins and seasons.

231 Manning's roughness coefficient is critical for hydraulic simulation as it influences the flow 

232 speed. For instance, higher roughness coefficients typically indicate more resistance and slower 

233 flow velocities. Satellite images were used as a basis for this. Ven Te Chow (1959) states that 

234 this coefficient can be derived from land cover. However, the Manning coefficients were verified 

235 to ensure the parameter's accuracy in the system's hydraulic performance. This involved field 

236 visits and topographic surveys.

237 The data gathered enabled the identification of areas with comparable features of land cover and 

238 soil type. Each zone was given a distinct roughness coefficient. Figure 5 illustrates the spatial 

239 variation of these coefficients.

240 Different return periods (2, 10, 50, 100, 200, and 500 years) were used for hydraulic simulations. 

241 These simulations revealed four zones of natural flooding (Figure 6). This information is 

242 essential for deciding the city's urban growth, as these areas are prone to flooding.
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243 The input data inevitably creates variation in the depths produced on the flood surfaces 

244 depending on the model used, but the flood areas are clearly defined, as shown in Figure 7. This 

245 variation in the depths produced does not significantly affect the flood surface. It keeps us safe 

246 since the hydraulic behavior of the system in the study area is well-defined.

247 Both modeling approaches (distribution functions and stochastic models) similarly replicate the 

248 system's behavior; however, they yield different water levels due to the varying maximum flow 

249 values each model generates. These differences result from the different maximum flow values 

250 that each model creates. In general, stochastic models generate higher maximum water levels, as 

251 Table 2 shows.

252

253 Conclusions

254 All cities, particularly those prone to natural hazards like flooding, must address the challenges 

255 posed by unregulated urban growth. By occupying natural flood areas, economic and social 

256 losses pose a severe threat, which becomes a vital issue for governments.

257 The findings of this study highlight the necessity of using hydraulic models as essential tools in 

258 urban planning and decision-making to mitigate impacts on existing urban centers. Assessing 

259 natural hazards and their effects, such as rainfall that causes floods, is a complicated task that 

260 requires rigorous analysis, as done in this research. Decreased uncertainty in areas with limited 

261 data gives more confidence to the decisions that need to be made, as well as analyzing and 

262 generating a critical evaluation to avoid overestimating the effects of floods.

263 A crucial task in decision-making is the generation of hydraulic models that simulate the flow 

264 behavior. Therefore, it is essential to be careful when creating the model. It is important to verify 

265 every aspect involved in the physical and hydraulic model. Two-dimensional hydraulic models 

266 accurately simulate the flow behavior as it happens. The generation of hazard maps, such as 

267 those for flooding, helps identify the areas where urban development should be avoided because 

268 they are in areas prone to flooding, such as the natural floodplains of the river network of 

269 Morelia.

270 The hazard maps produced in this study can help to identify strategic locations for hydraulic 

271 works that can help mitigate the impacts of flooding in the urban area of Morelia. By analyzing 

272 different return periods, the maps clearly show the recurrent flood zones that should be 

273 prioritized for intervention. The flood maps can also be helpful for future work in developing 

274 warning systems that can link rainfall events with the historical floods generated.

275
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Figure 1
River network of the city of Morelia

Own elaboration by means of QGIS 3.18.
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It is difficult to recognize the differences between the various streams. I would either mark them with letters or numbers on the map or only show them in one color and only show R_Chiquito and R_grande in another color.



Figure 2
Proposed methodology

PeerJ reviewing PDF | (2024:07:103363:0:0:NEW 10 Jul 2024)

Manuscript to be reviewed



PeerJ reviewing PDF | (2024:07:103363:0:0:NEW 10 Jul 2024)

Manuscript to be reviewed

Luisa-Bianca Thiele
Hervorheben

Luisa-Bianca Thiele
Hervorheben

Luisa-Bianca Thiele
Notiz
That is not clear for me. What criteria are used to decide whether another iteration follows or not?
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What time span and temporal resolution was recorded? Can return periods equal and greater than 100 years be reliably derived from this?
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Figure 3
Boundary Conditions for the Hydraulic Model

Own elaboration by means of QGIS 3.18.
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Figure 4
Peak runoû ûows resulting from the precipitation events in the microbasins of the study,
MASVC-SCS-CN, and PDF-SCS-CN generated in Hec-HMS. a) Itzicuaros drain, b) Quinceo
drain, c) Chiquito river, and d) Arroyo de tierras drain
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What are the differences in the individual "microbasins" that the log-gumbel is sometimes significantly lower and sometimes significantly higher than the log-normal distribution? In my opinion, this should be discussed in the text.
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Figure 5
Manning's roughness coeûcients per zone

Own elaboration by means of QGIS 3.18
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Figure 6
Natural ûoodplains of the river network

Own elaboration by means of QGIS 3.18
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Which return period is shown here? Which method is used? Log-normal, Log-gumbel or MASVC-SCS-CN?



Figure 7
Hydraulic simulation for 100 and 200-year return periods, respectively, where ûood
zones are shown

Own elaboration by means of QGIS 3.18
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Table 1(on next page)

River Network of the city of Morelia
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River Network of the City of Morelia

Name ID

Channel 

length 

(km)

Total &H 

(m)

Average 

S (%)

R. Grande 01 29.35 12.144 0.04

Alberca 02 2.41 4.34 0.18

Calabocito 03 1.53 2.63 0.17

Calabozo 04 4.90 106.74 2.18

Itzícuaros 05 4.40 0.62 0.01

Parían 06 2.90 12.01 0.41

Barajas 07 3.78 10.35 0.27

Arroyo Blanco 08 2.96 37.69 1.27

Arroyo de 

Tierras 09 9.09 246.12 2.71

Mora Tovar 10 1.69 8.46 0.50

Río Chiquito 11 9.24 104.11 1.13

Carlos Salazar 12 0.57 17.54 3.06

Soledad 13 4.03 1.16 0.03

Quinceo 14 6.60 9.00 0.14

Erandeni 15 3.52 62.16 1.77

1

2
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Table 2(on next page)

Maximum Depth level reached in ûooding areas
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what does a, b, c and d mean? If this are the microbasins from before, still it should be repeated in the caption.



Average mam���� ded�� (m)Method Tr

a b c d

Distribution f. 0.35 0.32

Stochastic

2

0.37 0.32

Distribution f. 0.43 0.95 0.18

Stochastic

10

0.38 0.85 0.21 0.19

Distribution f. 0.56 1.37 0.69 0.23

Stochastic

50

0.57 1.69 0.74 0.29

Distribution f. 0.65 1.62 0.73 0.29

Stochastic

100

0.68 2.01 0.91 0.38

Distribution f. 0.77 2.02 1.15 0.35

Stochastic

200

0.68 2.01 0.91 0.38

Distribution f. 1.06 2.18 1.76 0.42

Stochastic

500

1.53 2.78 2.11 0.64

1

2
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