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Flood forecasting has become an essential component of hydrology and natural disaster
management due to the increasing frequency and severity of extreme hydrological events
driven by climate change. This study compares two methodologies for predicting flood
events in Morelia, Mexico: one using theoretical distribution functions and another
employing stochastic weather generators. The methodology integrates maximum runoff
results for different recurrence intervals into a hydraulic model of the drainage network,
using both the Soil Conservation Service Curve Number (SCS-CN) method and a
multivariate stochastic model (MASVC). Hydrodynamic modeling with HEC-RAS,
incorporating two-dimensional shallow water equations, was used to simulate flood
inundation areas. The study reveals that while both modeling approaches similarly
replicate the system’s behavior, they produce different water levels due to variations in
maximum flow values. The stochastic model tends to generate higher maximum water
levels. High-resolution Digital Elevation Models (DEMs) and land use data were crucial in
improving the accuracy of the hydraulic simulations. Findings indicate that unregulated
urban growth in flood-prone areas significantly exacerbates the impact of flooding. The
generated hazard maps and flood simulations provide valuable tools for urban planning
and decision-making, highlighting the need for strategic interventions to mitigate flood
risks. This research underscores the importance of integrating advanced modeling
techniques in flood risk management to enhance the precision and reliability of flood
forecasts.
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Abstract

Flood forecasting has become an essential component of hydrology and natural disaster
management due to the increasing frequency and severity of extreme hydrological events driven
by climate change. This study compares two methodologies for predicting flood events in
Morelia, Mexico: one using theoretical distribution functions and another employing stochastic
weather generators. The methodology integrates maximum runoff results for different recurrence
intervals into a hydraulic model of the drainage network, using both the Soil Conservation
Service Curve Number (SCS-CN) method and a multivariate stochastic model (MASVC).
Hydrodynamic modeling with HEC-RAS, incorporating two-dimensional shallow water
equations, was used to simulate flood inundation areas. The study reveals that while both
modeling approaches similarly replicate the system’s behavior, they produce different water
levels due to variations in maximum flow values. The stochastic model tends to generate higher
maximum water levels. High-resolution Digital Elevation Models (DEMs) and land use data
were crucial in improving the accuracy of the hydraulic simulations. Findings indicate that
unregulated urban growth in flood-prone areas significantly exacerbates the impact of flooding.
The generated hazard maps and flood simulations provide valuable tools for urban planning and
decision-making, highlighting the need for strategic interventions to mitigate flood risks. This
research underscores the importance of integrating advanced modeling techniques in flood risk
management to enhance the precision and reliability of flood forecasts.

Introduction

In recent decades, flood forecasting has become a critical component of hydrology and natural
disaster management. The increasing frequency and severity of extreme hydrological events,
primarily due to climate change, highlight the need to enhance the precision and reliability of
forecasting systems. The ability to accurately and timely forecast flood events is essential to
reduce property loss, protect vital infrastructure, and prevent human casualties (Papaioannou et
al., 2021).

Flood forecasting is a multidisciplinary field combining information from meteorology,
hydrology, geography, and computer science, among other disciplines. Progress in these areas
has led to more advanced forecasting models and methods. However, natural systems have
variability and uncertainty, and human-environmental interactions are complex. These
significant challenges have not yet been solved (Chahinian et al., 2023).

Adopting emerging technologies such as artificial intelligence, machine learning, and big data
has opened new ways for flood risk analysis and modeling (Karyotis et al., 2019; Mosavi et al.,
2018). These approaches promise improvements in the ability to predict floods by enabling the
processing of large volumes of data and the identification of complex patterns imperceptible to
traditional methods (Falconer et al., 2009). In addition, the increasing availability of high-
resolution data obtained through satellites and other remote sensing offers unprecedented
opportunities to improve flood forecasts' accuracy and spatial resolution (Munawar et al., 2022).
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58 Methods based on Machine Learning are, without a doubt, among the most analyzed in recent
59 years. This type of methodology includes Adaptive Neuro-Fuzzy Inference Systems (ANFIS),
60 Multilayer Perceptron (MLP), Artificial Neural Networks (ANNs), Wavelet Neural Networks
61 (WNN), and Support Vector Machines (SVM), among others.

62 Choubin et al. (2016) analyzed precipitation prediction using three models: multiple linear

63 regression (MLR), MLP, and ANFIS, using large-scale climate signals as inputs. Effective

64 climate indices were selected through principal component analysis and cross-correlation to

65 predict the standardized precipitation index (SPI) in the Maharlu-Bakhtegan basin, Iran. The

66 results indicated that the MLP model outperformed the MLR and ANFIS models, suggesting a
67 nonlinear relationship between climate signals and precipitation, making nonlinear methods

68 more effective for predicting the analyzed area.

69 Gessang and Lasminto (2020) propose using ANN and a weather forecasting API for flood

70 prediction and mitigation in a sub-basin of Indonesia. The research highlights how the

71 precipitation intensity in this area can cause significant increases in river water levels, leading to
72 flooding. ANN was used to predict rainfall and, together with the curve method (CN) of the

73 United States Soil Conservation Service (USSCS), calculate maximum runoff, demonstrating the
74 usefulness of these models in flood risk management.

75 Hernandez-Bedolla et al. (2023) present a multivariate and multisite stochastic model, MASVC,
76  designed to estimate maximum runoff in non-measured basins. The study highlights how

77 precipitation influences the determination of runoff at different time scales and uses a stochastic
78 approach to generate synthetic precipitation sequences, preserving spatial and temporal

79 variability in daily, monthly, annual, and extreme values. The model was evaluated in the Rio
80 Grande watershed of Morelia, Mexico. It showed its effectiveness by contrasting its results with
81 conventional probability density functions and providing a more dependable approximation of
82 peak surface runoff.

83 Several factors prevent the successful application of various flood analysis and prediction

84 technologies in operational practice despite the numerous methods that exist for this purpose.
85 These include the need for comprehensive and accurate historical datasets, understanding local
86 river and rainfall dynamics, and integrating heterogeneous models and data into cohesive and
87 reliable operating systems (Perera et al., 2020).

88 Despite the progress of the methods that predict flood events using maximum rainfall from

89 distribution functions as an input, these are still the most widely used methods. Thus, this study
90 compares two hydraulic models in the main rivers of Morelia, Mexico. One model uses flows
91 derived from theoretical distribution functions; the other uses synthetic flows derived from

92 stochastic models. This comparison aims to assess an alternative option to the current methods
93 for forecasting and evaluating urban flood events.

94
95 terials & Methods
96 e study
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Morelia, the largest and most populous urban area in Michoacan, Mexico, is characterized by its
significant population and complex fluvial network. The city has a fluvial network of fifteen
perennial tributaries, shown in Figure 1 and the object of analysis in this work. The Rio Grande
is the city's main river channel, collects the runoff generated in the area, and is regulated
upstream by the Cointzio dam.

Morelia is prone to frequent floods from overflowing rivers, which directly impact houses and
disrupt residents' daily lives. For instance, in 2018 a severe storm caused injuries, inundations in
homes, landslides, and wrecked vehicles. Today, floods are perceived as having only negative
consequences and as disasters that inflict harm, sometimes irreparable. These impacts are
aggravated by the expansion of cities naturally prone to flooding, such as near rivers and
streams.

Methodology

The proposed methodology utilizes maximum runoff results for various recurrence intervals
within the hydraulic model of Morelia City's drainage network. It also incorporates scenarios
created with the daily MASVC (Hernandez-Bedolla et al., 2023). Moreover, the HEC-RAS
model was adjusted to obtain the flood areas based on topographic studies and changes in the
Manning roughness coefficients (Demir & Keskin, 2020; Yalcin, 2020). The methodology is
illustrated in Figure 2.

Surface runoff

Surface runoff was calculated using two types of methodology. One method was the Probability
Density Functions with The Soil Conservation Service Curve Number (PDF-SCS-CN), which is
used to estimate runoff from small-to-medium-sized watersheds SCS-CN method (AL-Hussein
et al., 2022; Ansori, 2023; Sathya et al., 2023). The other method was the stochastic weather
generator, which applied the MASVC-SCS-CN approach. The MASVC is a multivariate
stochastic model that uses lag one autoregressive multivariate parameters. It consists of two
modeling phases. The first phase models the occurrence of precipitation (wet-dry), and the
second phase estimates the amount of precipitation on a daily scale. Then, the maximum
precipitation values are extracted, and the runoffs are computed using the SCS-CN method.

Flood inundation

Hydrodynamic model HEC-RAS is used to model rivers (one-dimensional), flood areas (two-
dimensional), channels, drains, and dams (Agll et al., 2023; Bharath et al., 2021; Bush et al.,
2022; Goswami et al., 2023; Namara et al., 2022; Ongdas et al., 2020). HEC-RAS calculates the
depth of inundation and velocity based on floodwater discharge hydrographs (Hydrologic
Engineering Center, 2009). HEC-RAS was applied for the two-dimensional hydraulic model and
was solved by the 2-D shallow water equations. The solution method for both equations was by
volume finite differences. The unsteady differential form of the mass conservation equation is
(Equation 1).
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0H 0d(hu) d(hv)
rTY dx + dy [

Where r is the source/sink term, H is the surface elevation (m); ¢ is the time, Au and Av are the
flow in x and y (m?s™"); HEC-RAS recently incorporates fully 2-D shallow equations (Costabile
et al., 2020). The shallow water equations are presented in the following equations.

a_p+ip—2 +i(ﬂ)— —nngm h— + +ih +ih
9q 0 (pq) (¢ npap’+d’ O 0 0 ;
at + ox ( h) + dy\ h - hZ -9 dy +af + pax( Txy) + pay( Tyy) [3]

Where p and q are hu and hv, (m?s™); n is the Manning's roughness coefficient (s m™'73), g is the
gravity acceleration (ms2), p is the water density (kg m™), z,, 1,,, and z,, are the components of
the stress tensor and f'is the Coriolis parameter (s™!). We propose the diffusive wave algorithm to
select boundary conditions and response times. In this case, the inertial terms of the equation are
neglected.

The Eulerian Shallow Water equation (EM-SWE) was the calibration solution method. This
method utilizes the momentum-conservative discretization assuming local conservation of
momentum about control volume centered on all cell face (V - V)u, (Hydrologic Engineering

Center, 2021).

1
[(V- V)uN]f ~ (71[ V- (hVuy —uyV- hV)])f [4a]
0Dl Y 03l ) e Y 0V
WV -Vuyl| = QuVi ne—uy ) +=—— QriVie np—uy, 4b
had fALkEK(L) AT thRkEK(L) AT TS [ ]

Where h; = Qi/AVlV; Q% is the minimum value of inflow at face & to cell i Sik @ 0; Ay is the
face vertical area; A, is the left cell horizontal area, Aj is the right cell horizontal area, V; is the
cell average current velocity vector V}, is V, for u v, major than cero and is V, for uy ,, less than

Zero; ng is the face-normal unit vector.

DEM and land use

The quality of flood modeling depends on the topographic information. A hybrid mesh was used,
combining a gridded DEM dataset with Sm of resolution from the National Institute of Statistics
and Geography (INEGI, https://www.inegi.org.mx/temas/topografia/) and more detailed 0.5 m
data from a specific topographic study to improve the accuracy in rivers. The land use data was
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obtained from INEGI (https://www.inegi.org.mx/temas/usosuelo/), and field visits to the rivers
were conducted to determine the Manning coefficient (n).

Boundary conditions

Two-dimensional modeling was done with flexible and triangular meshes. The meshes gave
more detail in the rivers due to a high-accuracy topographic survey (Mufioz et al., 2022;
Ontowirjo et al., 2023). For the flood areas, a regular grid with a 5-meter resolution was
proposed for roads, as well as for urban and rural areas. Boundary conditions describe how water
behaves at the model domain's boundaries, including different conditions at the model edges
(Hydrologic Engineering Center, 2009). Upstream boundary conditions are needed at the
upstream end of all reaches that do not connect to other reaches or storage areas. Hydrographs
were a551gned upstream of each sub-basin studied. H—ydiﬁegraphs-cenﬁespondmg—te—vaneus-retum
2 2 : 2 b-ba udied. For the downstream
boundary COIldlthIl the normal depth OpthIl was chosen for the HEC RAS model (Hydrologic

Engineering Center, 2021).

Simulation and calibration

The process of calibrating the hydraulic model is based on the different steps described below. 1)
Simulation of the entire study area to identify the simulation times and potential flooding zones

near the streams and rivers. 2) Simulation of the diffusive wave algorithm to generate the first

flood from historical rainfall data. 3) Calibration using the EM-SWE by changing the Manning
roughness coefficient and field visits to perform mesh refinement. 4) Validation of the results

from the actual flooding for a specific date. 5) Generation of floods from different return periodSE
and results from MASVC-SCS-CN and PDF-SCS-CN.

Results and Discussion

The city of Morelia often experiences floods due to the excess water in the urban drains that are
part of the city's structure. In order to analyze the flooding problem accurately, a high-resolution
(5m) Digital Elevation Model (DEM) of the city is needed. This study used 9 DEMs provided by
INEGI (Instituto Nacional de Estadistica y Geografia (INEGI), n.d.) to create a Digital Surface
Model (DSM) that reflects the city's structure. This DSM allowed us to locate the potential
channels that could form when the drains overflow.

However, the DSM has a limitation in that it does not account for vegetation. Vegetation can
lower the hydraulic capacity of waterways, raising the flood risk. Bathymetric data on the river
network was obtained from CONAGUA (2016) to obtain a comprehensive topographic model of
the urban area. This data was combined with the MDE of the urban layout to create a complete
topographic model. The final topographic model enabled the precise identification of the city's
location, depth, and areas prone to flooding.
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The hydraulic simulation was performed with the HEC-RAS version 6.3 program. This software
applies the two-dimensional shallow-water equations of diffusion waves and lets the user select
the best solution method.

Shallow water equations are a set of mathematical equations that capture the movement of water
in open channels. These equations can simulate different hydraulic phenomena such as floods,
drinking water flows, and wastewater, which is why they were applied in this study.

The hydraulic model covers a 34.74 km? area, split into 751,641 cells and 871,976 nodes. The
cells have varied sizes depending on the area, with large-scale cells in areas away from the
channels (10m) and small cells in the channels (2m) and structures (1m). This variable size
enhances the calculation process without losing detail in critical areas. The model includes 170
structures, such as bridges, gates, and culverts. These structures reflect the actual topography of
the area and allow the water flow around them to be modeled.

The hydraulic model requires 17 boundary conditions. Of these, 16 are water inlets, represented
by the hydrographs of each tributary, and one is an outlet located in the final section of the Rio
Grande outside the city. This configuration enables the flow within the study area to act
naturally, conforming to the terrain's topography. Figure 3 shows the position of boundary
conditions in the model.

A comparative analysis was used to obtain the hydrographs for the water inlets. Two methods
were applied: the best-fit probability function (Sanchez-Quispe et al., 2021) and stochastic
models (Wright et al., 2020). Both methods were used to estimate design storms.

The hydrographs for the modeling were derived from the maximum flows suggested by
Hernéndez-Bedolla et al. (2023). The model input hydrographs, 15 in total, were produced using
the HEC-HMS software. The constant flow of the Cointzio dam was based on its historical
discharges.

Figure 4 shows that the use of stochastic models results in consistent maximum flows, regardless
of the methodology (PDF-SCS-CN or MASVC-SCS-CN) used, because these models are
uniform over time and reduce the uncertainty caused by the significant variation of using a best-
fit distribution function, which changes between basins and seasons.

Manning's roughness coefficient is critical for hydraulic simulation as it influences the flow
speed. For instance, higher roughness coefficients typically indicate more resistance and slower
flow velocities. Satellite images were used as a basis for this. Ven Te Chow (1959) states that
this coefficient can be derived from land cover. However, the Manning coefficients were verified
to ensure the parameter's accuracy in the system's hydraulic performance. This involved field
visits and topographic surveys.

The data gathered enabled the identification of areas with comparable features of land cover and
soil type. Each zone was given a distinct roughness coefficient. Figure 5 illustrates the spatial
variation of these coefficients.

Different return periods (2, 10, 50, 100, 2OOEd 500 years) were used for hydraulic simulations.
These simulations revealed four zones of natural flooding (Figure 6). This information is
essential for deciding the city's urban growth, as these areas are prone to flooding.
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The input data inevitably creates variation in the depths produced on the flood surfaces
depending on the model used, but the flood areas are clearly defined, as shown in Figure 7. This
variation in the depths produced does not significantly affect the flood surface. It keeps us safe
since the hydraulic behavior of the system in the study area is well-defined.

Both modeling approaches (distribution functions and stochastic models) similarly replicate the
system's behavior; however, they yield different water levels due to the varying maximum flow
values each model generates. These differences result from the different maximum flow values
that each model creates. In general, stochastic models generate higher maximum water levels, as
Table 2 shows.

Conclusions

All cities, particularly those prone to natural hazards like flooding, must address the challenges
posed by unregulated urban growth. By occupying natural flood areas, economic and social
losses pose a severe threat, which becomes a vital issue for governments.

The findings of this study highlight the necessity of using hydraulic models as essential tools in
urban planning and decision-making to mitigate impacts on existing urban centers. Assessing
natural hazards and their effects, such as rainfall that causes floods, is a complicated task that
requires rigorous analysis, as done in this research. Decreased uncertainty in areas with limited
data gives more confidence to the decisions that need to be made, as well as analyzing and
generating a critical evaluation to avoid overestimating the effects of floods.

A crucial task in decision-making is the generation of hydraulic models that simulate the flow
behavior. Therefore, it is essential to be careful when creating the model. It is important to verify
every aspect involved in the physical and hydraulic model. Two-dimensional hydraulic models
accurately simulate the flow behavior as it happens. The generation of hazard maps, such as
those for flooding, helps identify the areas where urban development should be avoided because
they are in areas prone to flooding, such as the natural floodplains of the river network of
Morelia.

The hazard maps produced in this study can help to identify strategic locations for hydraulic
works that can help mitigate the impacts of flooding in the urban area of Morelia. By analyzing
different return periods, the maps clearly show the recurrent flood zones that should be
prioritized for intervention. The flood maps can also be helpful for future work in developing
warning systems that can link rainfall events with the historical floods generated.
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helps to identify
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to mitigate

Luisa-Bianca Thiele
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I would use a consistent term: return periods or reoccurence intervals. I think that the first term is the most widely used.
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Figure 1

River network of the city of Morelia

Own elaboration by means of QGIS 3.18.
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Notiz
It is difficult to recognize the differences between the various streams. I would either mark them with letters or numbers on the map or only show them in one color and only show R_Chiquito and R_grande in another color.
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Figure 2

Proposed methodology
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Notiz
That is not clear for me. What criteria are used to decide whether another iteration follows or not?
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Notiz
What time span and temporal resolution was recorded? Can return periods equal and greater than 100 years be reliably derived from this?
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Figure 3

Boundary Conditions for the Hydraulic Model

Own elaboration by means of QGIS 3.18.
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Figure 4 [J

Peak runoff flows resulting from the precipitation events in the microbasins of the study,
MASVC-SCS-CN, and PDF-SCS-CN generated in Hec-HMS. a) Itzicuaros drain, b) Quinceo
drain, c¢) Chiquito river, and d) Arroyo de tierras drain
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Luisa-Bianca Thiele
Notiz
What are the differences in the individual "microbasins" that the log-gumbel is sometimes significantly lower and sometimes significantly higher than the log-normal distribution? In my opinion, this should be discussed in the text.
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Figure 5

Manning's roughness coefficients per zone

Own elaboration by means of QGIS 3.18

Manuscript to be reviewed

Z
=
¥ Legend —
b = River network I.“r— /
_Z“ Urban layout . a-_‘ {
:E, | Manning roughness coefficient (n) %@@% =
Y 0013 0.045 ¥ A
= | 0014 [ 1005 ¢
% l0.015 [ | 0.07
3 0016 [ 10075 5 .
& 0017 || 0.08 = A
2 [ 0025 0.1 S
S 1 0.03 0.12 <
g 10.035 102 -
- 004 0.75 i
:=Z 5 = 1] ?_‘5 imat
g_ SR i
b5y A _ Vi
= La s ] I

E - ] e, PAVIR
179 B i
=1 i [ B >
16 § &% .
& - S i
‘z- - .... |
= /
03‘ T e b
= ~ 1. e E b
2 | ! \\ K %%_
= ) '. VB : /
o y | ( \
o = L 7 ol
o e 17
- ‘ LN i )

. e > J /
z
fc ;
:f'?‘- g T, L4
3 ‘grﬁ\ I ==552

T L T L T L T L Ll L T T L Ll L T L Ll L Ll L Ll L Ll L L

101°1930"W  101°18'0"W  101°1630"W  101°15'0"W  101°13'30"W  101°12'0"W  10I°1030"W  101°90"W 101°8'0"W 101°6'30"W

Peer] reviewing PDF | (2024:07:103363:0:0:NEW 10 Jul 2024)



PeerJ

=

Natural floodplains of the river network

Own elaboration by means of QGIS 3.18
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Luisa-Bianca Thiele
Notiz
Which return period is shown here? Which method is used? Log-normal, Log-gumbel or MASVC-SCS-CN?
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Figure 74

Hydraulic simulation for 100 and 200-year return periods, respectively, where flood
zones are shown

Own elaboration by means of QGIS 3.18
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Notiz
Which method is used? Log-normal, Log-gumbel or MASVC-SCS-CN?
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Table 1l(on next page)

River Network of the city of Morelia
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River Network of the City of Morelia
ame |10 | Tongt | 04 | Avers
(km)

R. Grande 01| 29.35 12.144 0.04
Alberca 02 241 4.34 0.18
Calabocito 03 1.53 2.63 0.17
Calabozo 04 4.90 106.74 2.18
Itzicuaros 05| 4.40 0.62 0.01
Parian 06 2.90 12.01 0.41
Barajas 07 3.78 10.35 0.27
Arroyo Blanco | 08 2.96 37.69 1.27
Arroyo de

Tierras 09 9.09 246.12 2.71
Mora Tovar 10 1.69 8.46 0.50
Rio Chiquito 11 9.24 104.11 1.13
Carlos Salazar |12 | 0.57 17.54 3.06
Soledad 13| 4.03 1.16 0.03
Quinceo 14 6.60 9.00 0.14
Erandeni 15 3.52 62.16 1.77

1
2
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Table 2(on next page)

Maximum Depth level reached in flooding areasE
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what does a, b, c and d mean? If this are the microbasins from before, still it should be repeated in the caption.
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Method Tr Average maximum depth (m)
a b o d

Distribution f. 2 0.35 0.32

Stochastic 0.37 0.32

Distribution f. 10 0.43 0.95 0.18
Stochastic 0.38 0.85 0.21 0.19
Distribution f. 50 0.56 1.37 0.69 0.23
Stochastic 0.57 1.69 0.74 0.29
Distribution f. 100 0.65 1.62 0.73 0.29
Stochastic 0.68 2.01 0.91 0.38
Distribution f. 200 0.77 2.02 1.15 0.35
Stochastic 0.68 2.01 0.91 0.38
Distribution f. 500 1.06 2.18 1.76 0.42
Stochastic 1.53 2.78 2.11 0.64
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Log-normal or log-gumbel?




