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ABSTRACT

Bedaquiline has recently been approved for the treatment of multidrug-resistant tuber-
culosis. Carvedilol is a cardiovascular medication extensively used in the treatment of
heart failure and hypertension. In this study, Sprague-Dawley rats, rat liver microsomes
(RLM), human liver microsomes (HLM), and recombinant human CYP3A4 were
used to explore the effect of carvedilol on the metabolism of bedaquiline. Ultra-
performance liquid chromatography-tandem mass spectrometry was used to facilitate
the quantification of the analyte concentrations. In vitro, carvedilol did not exhibit time-
dependent inhibition of bedaquiline, which aligns with the half-maximal inhibitory
concentration (ICsg) shift results. The ICs values of carvedilol were 15.35 & 0.43 pM in
RLM, 7.55 £ 0.74 uM in HLM, and 0.79 £ 0.05 pM in CYP3A4. Besides, the inhibition
type of carvedilol was found to be mixed, un-competitive, and mixed in RLM, HLM,
and CYP3A4, respectively. In vivo, the co-administration of carvedilol with bedaquiline
resulted in a significant increase in the area under the plasma concentration-time
curve (AUC)o—1), AUC()—o0), and Cpax of bedaquiline while decreasing its CLyg.
Lay summary: Carvedilol could inhibit the metabolism of bedaquiline in vitro and in
vivo, with different mechanisms in different enzymatic reaction systems. Hence, caution
should be exercised when combining bedaquiline with carvedilol.

Subjects Pharmacology, Metabolic Sciences

Keywords Bedaquiline, Carvedilol, Drug—drug interactions, UPLC-MS/MS,
Inhibition mechanisms

INTRODUCTION

Multidrug-resistant tuberculosis (MDR-TB) is a growing global concern, as rising levels
of resistance lead to soaring death rates. Bedaquiline was approved by the US Food and
Drug Administration (FDA) in 2012 for treating pulmonary MDR-TB, which became
one of the important drugs in the treatment of long-term MDR-TB (Kotwal et al., 2020).
Nevertheless, studies have demonstrated that bedaquiline may cause adverse effects such
as cardiac toxicity (Worley & Estrada, 2014), hepatic toxicity (Kakkar & Dahiya, 2014),
and phospholipidosis (Diacon et al., 2012; Guillemont et al., 2011). Patients with TB are
usually treated with concurrent multiple-drug therapy; therefore, the risk of drug—drug
interactions (DDIs) also increases rapidly. In 1909, Pottenger proposed that TB affected
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the cardiovascular system (CVS) (Pottenger, 1909). A subsequent study by Levinsky (1961)
further demonstrated that TB could predispose individuals to cardiopulmonary failure.
In recent years, Ohene et al. (2019) have also revealed that patients with TB and CVS
complications exhibited a mortality rate approaching 60%. Moreover, DDIs are the main
reason for the stratification of drug efficacy. Therefore, in this study, we systematically
screened a series of drugs with bedaquiline.

The drug—drug interactions may be due to the inhibition or induction of drug
metabolism enzymes and drug transporter protein levels. Bedaquiline is mainly metabolized
to a less active metabolite (M2) through CYP3A4 (Liu et al., 2014) and a substrate of
p-glycoprotein (p-gp) (Kotwal et al., 2020). CYP3A4 is the most important member of
the cytochrome P450 superfamily, metabolizing approximately 30%-40% of clinical
drugs, such as analgesics (tramadol), antidepressants (quetiapine), and antimicrobials
(erythromycin) (Zanger et al., 2008). When bedaquiline was combined with a CYP3A4
inhibitor (fluconazole), its Cp,x and area under the plasma concentration-time curve
(AUC)(9—¢) increased by 45% and 46%, respectively, and when combined with a CYP3A4
inducer (carbamazepine), its Cp,ax and AUC(g—y) decreased by 13% and 16%, respectively
(Kotwal et al., 2020). Accordingly, we should take necessary precautions to avoid the
combination of bedaquiline with drugs that may inhibit or induce CYP3A4.

In the present study, ultra-performance liquid chromatography-tandem mass
spectrometry (UPLC-MS/MS) was used to quantify the concentration of analytes. Fifty
drugs were selected to investigate their influence on the metabolism of bedaquiline in
vitro. Additionally, the mechanism of carvedilol, which exhibited the strongest inhibitory
activity, was specifically explored in rat liver microsomes (RLM), human liver microsomes
(HLM), and recombinant human CYP3A4. We also evaluated the effect of carvedilol on
bedaquiline pharmacokinetics in rats in vivo.

MATERIALS AND METHODS

Chemicals and reagents

Bedaquiline, M2, and fluconazole (internal standard, IS) were bought from Yingxin
Biotechnology Co., Ltd. (Shanghai, China). Various drugs (andrographolide, amiodarone
hydrochloride, apigenin, apixaban, artemether, astragalin, baicalin, berberine, bergenin,
betaine, bosentan, carvedilol, cangrelor, cariprazine, chrysin, cimetidine, dabigatran,
daidzein, daphnoretin, genistein, glimepiride, hesperetin, isorhamnetin, kaempferol,
limonin, imipramine hydrochloride, losartan, lovastatin, lycopene, mexiletine
hydrochloride, naringenin, naringin, nifedipine, quercetin, quinidine, PF-04971729,
piperine, propafenone, resveratrol, rivaroxaban, rutin, selexipag, silibinin, sitagliptin,
sophocarpine, sophoridine, verapamil hydrochloride, vericiguat, warfarin, 2-(4-
hydroxyphenyl) acetic acid) were provided by Shanghai Chuangsai Technology Co.,
Ltd. (Shanghai, China). RLM and HLM were prepared by our team (Wang et al., 2015).
Recombinant human CYP3A4 was obtained from the Beijing Hospital (Beijing, China).
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) was obtained from
Roche Pharmaceutical, Ltd. (Basel, Switzerland). The remaining chemicals and reagents
were of analytical grade.
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Equipment and operation conditions

The concentrations of bedaquiline and its metabolite (M2) were detected using UPLC-
MS/MS, which was equipped with a Waters Acquity UPLC system (Milford, MA, USA)
and a Waters Xevo TQS triple quadrupole tandem mass spectrometer (Milford, MA, USA).
Chromatographic separations of the analytes were performed on the Bridged Ethylene
Hybrid (BEH) C18 column (2.1 x 50 mm, 1.7 pm; Milford, MA, USA), and it was
operated at a column temperature of 40 °C. The mobile phases were acetonitrile (ACN,
a) and 0.1% formic acid (b) at 0.30 mL/min gradient elution for 2.0 min. The gradient
conditions were as follows: 90% B (0-0.5 min), 90%-10% B (0.5—1.0 min), 10% B (1.0-1.4
min), 10%-90% B (1.4-1.5 min), and the last 90% B (1.5-2.0 min) was maintained for
balance. The temperature of the auto-sample injector was set at 4 °C, and the sample
volume was 1.0 pL for each run. Mass spectral information of the analytes was obtained
by selective response monitoring in the positive ion mode. To improve the sensitivity
and specificity of the analysis, the transitions of bedaquiline, M2, and IS were m/z 555.00
> 58.08, m/z 540.93 > 479.92, and m/z 307.14 > 238.14, respectively.

In vitro experiments

200 nL enzymatic reaction system contained 1.0 M phosphate buffered saline (PBS), 1.0
mM NADPH, 0.3 mg/mL RLM or 0.3 mg/mL HLM or 0.5 pmol CYP3A4, 0-100 uM
bedaquiline to determine the K, (Michaelis-Menten constant) values of bedaquiline. The
mixture without NADPH was pre-incubated at 37 °C for 5 min, and then 20 mM NADPH
was added to activate the reaction. After incubation for 30 min, the reaction was stopped
by rapid cooling to —80 °C. Next, 500 pL ACN and 20 pnL IS (200 ng/mL) were added
to precipitate protein before the samples melted. The mixture was vortexed for 2 min
and centrifuged at 13,000 rpm for 10 min. Finally, 100 pL supernatant was collected for
UPLC-MS/MS analysis (Lin et al., 2019).

To detect the possible DDIs with bedaquiline, the 200 L system was kept the same, and
the Ky,, value was used as the concentration of bedaquiline in the RLM system to determine
the inhibitory effect of 50 kinds of drugs (the concentration of each drug as the inhibitor
was 100 wM) on bedaquiline metabolism.

To explore the half-maximal inhibitory concentration (ICsg), the concentrations of
carvedilol were set at 0, 0.01, 0.1, 1, 10, 25, 50, and 100 wM, while bedaquiline was set at
10 uM in RLM, 80 pM in HLM, and 0.8 pM in CYP3A4, according to their K, values,
respectively. The incubation system consisted of 0.3 mg/mL RLM or 0.3 mg/mL HLM or 0.5
pmol CYP3A4, 1.0 mM NADPH, bedaquiline, carvedilol, and 1.0 M phosphate-buffered
saline buffer to the final volume of 200 L.

To investigate the potential inhibitory mechanism, the concentrations of carvedilol
and bedaquiline were determined based on ICsy and K, values, respectively. Carvedilol’s
concentrations were 0, 7.5, 15, and 30 wM in RLM, 0, 1.9, 3.8, and 7.6 uM in HLM, and
0, 0.4, 0.8, and 1.6 uM in CYP3A4, while the concentrations of bedaquiline were 2.5, 5,
10, and 20 pM or 20.8, 41.5, 83, and 166 uM or 2.5, 5, 10, and 20 pM in RLM or HLM
or CYP3A4, respectively. The sample was prepared following the experiment mentioned
above.

Li et al. (2025), PeerJ, DOI 10.7717/peerj.19313 3/16


https://peerj.com
http://dx.doi.org/10.7717/peerj.19313

Peer

To study the time-dependent inhibition (TDI), the incubation system was the same
as that described for detecting possible drug interactions with bedaquiline. The mixture
with or without NADPH was incubated at 37 °C for 30 min, where the concentration of
carvedilol was set as 0, 0.01, 0.1, 1, 10, 25, 50, and 100 wM. Thereafter, bedaquiline (the
corresponding K, values: 10 uM in RLM, 80 uM in HLM, and 0.8 pM in CYP3A4) was
added and incubated for another 30 min. The following procedures were the same as the
experiment above.

In vivo experiments

Sprague-Dawley (SD) male rats (200 £ 10 g) were provided by the Animal Experimental
Center of The First Affiliated Hospital of Wenzhou Medical University (Zhejiang, China)
and were housed in an animal experimental center with a temperature range of 20-26 °C,
relative humidity of 55% = 15%, and a 12 h/day light/dark cycle. Before the experiment, the
rats were fasted for 12 h and allowed free access to water. All animal experiments followed
the National Research Council’s Guide for the Care and Use of Laboratory Animals.
Furthermore, the study protocol followed the ARRIVE guidelines and was approved by the
Laboratory Animal Ethics Committee of The First Affiliated Hospital of Wenzhou Medical
University (Ethics approval number: WYYY-IACUC-AEC-2023-046).

Eight SD rats were randomly divided into two groups (1 =4): a single group (group A)
and a combined group (group B). Bedaquiline and carvedilol were dissolved with 0.5%
carboxymethylcellulose sodium salt (CMC-Na) solution to the desired concentrations.
Group B was orally administered carvedilol (5 mg/kg), while group A administered an
equivalent volume of 0.5% CMC-Na solution by gavage. Thirty minutes later, both groups
administered oral doses of bedaquiline (10 mg/kg) (Kotwal et al., 2020). The time points
of the collected tail vein blood samples were 0.5, 1, 2, 3, 4, 6, 8, 10, 12, 24, and 48 h after
bedaquiline administration. Finally, conform to the AVMA guidelines for the euthanasia
of animals, eight SD rats were given 2% isoflurane inhalation anesthesia followed by 5%
isoflurane concentration. Plasma (100 pL) was mixed with 300 wL ACN and 20 pL IS (200
ng/mL), vortexed, and centrifuged thoroughly, and the supernatant (100 wL) was obtained
for UPLC-MS/MS detection.

Statistical analysis

The Michaelis—Menten, IC5¢, Lineweaver—Burk plots and mean plasma concentration—time
curves were plotted by GraphPad Prism software (version 9.5; GraphPad Software Inc., CA,
USA). The pharmacokinetic parameters were obtained by non-compartmental analysis
using Drug and Statistics software (version 3.0; Shanghai University of Traditional Chinese
Medicine, Shanghai, China). All data were expressed as mean =+ standard deviation (SD)
and analyzed statistically using the Statistical Package for the Social Sciences software
(version 24.0; SPSS Inc., Chicago, IL, United States). P < 0.05 was considered statistically
significant.
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RESULTS

UPLC-MS/MS analysis

The UPLC-MS/MS chromatograms of bedaquiline, M2, and IS (fluconazole) under three
different conditions are presented in Fig. 1. The retention times of bedaquiline, M2, and IS
were 1.36, 1.35, and 1.17 min, respectively. No endogenous interferences were observed to
affect the determination of bedaquiline, M2, and IS. Moreover, the precision and accuracy of
this method were both less than 15%. The concentration range of the calibration standard
curve of bedaquiline was 1-5,000 ng/mL, and M2 was 1-500 ng/mL, with correlation
coefficients over 0.999. The lower limit of quantification (LLOQ) of bedaquiline and M2
was 1 ng/mL. In addition, the stability, matrix effect (ME), and extraction recovery of
samples in this method were all accorded with the requirements.

Carvedilol inhibited the metabolism of bedaquiline in vitro

According to Fig. 2, bedaquiline was a self-inhibiting substrate, and carvedilol exhibited
the most powerful restraining power of 50 drugs, with 81.88% inhibition of bedaquiline.
Then, combined with the result of ICs, carvedilol strongly inhibited the metabolism of
bedaquiline, with ICsy values of 15.35 + 0.43 uM in RLM, 7.55 & 0.74 uM in HLM,
and 0.79 % 0.05 uM in CYP3A4, respectively (Fig. 3). Therefore, we next conducted to
explore the underlying mechanisms. The ICsq shift was used to assess the existence of TDI.
Commonly, if the decrease in enzyme activity in the presence of NADPH (+NADPH)
was greater than that in the absence of NADPH (-NADPH), TDI was suspected, and
an ICs shift fold >10 was a time-dependent inhibition (Jin ef al., 2015). As exhibited in
Fig. 4, ICso(—naprH)/ICs50(+NADPH) Was 1.18, 1.92, and 5.00 for RLM, HLM, and CYP3A4,
respectively. Moreover, the Lineweaver—Burk plot intersected in the second quadrant

in RLM, exhibited a set of parallel lines in HLM, and intersected in the third quadrant
of CYP3A4 (Fig. 5). Accordingly, these data demonstrated that carvedilol inhibited the
metabolism of bedaquiline was all not in a time-dependent inhibition, and the inhibition
type was mixed of non-competitive + competitive, un-competitive, and mixed of non-
competitive + un-competitive, with the «¢K; values of 61.32, 8.44, and 0.13 in RLM, HLM,
and CYP3Ad4, respectively (Table 1).

Carvedilol changed the main pharmacokinetic parameters of
bedaquiline in vivo

The mean concentration—time curves of bedaquiline and M2 were demonstrated in Fig. 6.
Based on Tables 2 and 3, we found that carvedilol could raise the AUC(y—;), AUC(9—«), and
Cmax values of bedaquiline by 2.15-2.28 fold and declined the CL, /r of bedaquiline by about
4.33 fold. Furthermore, carvedilol prolonged the Ty, of bedaquiline while shortening its
t1/2,. However, there was a non-significant difference in M2 when bedaquiline was used in
combination with carvedilol compared to the single-used.

DISCUSSION

TB is caused by Mycobacterium tuberculosis (Deshkar e~ Shirure, 2022), with an incidence
rate of approximately 500,000 cases and an estimated 2—3 million deaths worldwide each
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Figure 1 Typical UPLC-MS/MS chromatograms of bedaquiline, M2, and IS (fluconazole). (A) Blank
plasma sample. (B) Blank plasma samples were spiked with 10 ng/mL bedaquiline, 10 ng/mL M2, and 200
ng/mL IS. (C) Sprague-Dawley rat plasma samples 4 h after oral administration of bedaquiline.

Full-size tal DOI: 10.7717/peerj.19313/fig-1

Li et al. (2025), PeerJ, DOI 10.7717/peerj.19313 6/16


https://peerj.com
https://doi.org/10.7717/peerj.19313/fig-1
http://dx.doi.org/10.7717/peerj.19313

Peer

(A)
0.06-
s
-
o
30.04-
£
E
g 0.021
s
N
=
0.00 T T T T |
0 20 40 60 80 100
Bedaquiline (uM)
(B) ©)
120~ 150~
— 100- =
S S
s 80 g 100
§ 607 g
5 a0d - S
S ‘ E 50
= 20 % O ol
0 0 T
Control Carvedilol

Figure 2 Potential DDIs of 50 varieties of drugs with bedaquiline in RLM. (A) Michaelis—Menten curve
of bedaquiline. (B) Inhibitory effects of 50 drugs (100 LM) on bedaquiline metabolism. (C) Inhibition of
bedaquiline by carvedilol. Data are expressed as mean =+ SD.

Full-size B8 DOI: 10.7717/peerj.19313/fig-2

(A) (B) ©)
RLM HLM CYP3A4
150 IC5p= 1535+ 043 M 150 ICep=7.55+ 0.74 pM 150 1Cgp= 0.79 0.05 uM
) 21 2
% 100 % s 00 § 3 g1
g g g
2 o ]
2 5 £ 50 £ 50
@ T T
['4 ['4
0 T T T 0+ T T T 0 T T *
2 0 2 2 0 2 2 0 2
Log (Carvedilol) (M) Log (Carvedilol) (uM) Log (Carvedilol) (uM)

Figure 3 The inhibitory strength of carvedilol to bedaquiline. ICs, curves of carvedilol with diverse
concentrations in RLM (A), HLM (B), and CYP3A4 (C). Data are expressed as the mean & SD, n=3.
Full-size &l DOI: 10.7717/peerj.19313/fig-3

year, is ranked as the second leading cause of death worldwide among infectious diseases
(Chan, Khadem & Brown, 2013; Nguyen et al., 2016; Fox ¢ Menzies, 2013). MDR-TB is
resistant to first-line anti-TB drugs such as rifampicin and isoniazid (Deshkar e~ Shirure,
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2022) and has received growing global concern as rising levels of drug resistance lead to
skyrocketing death rates (Kotwal et al., 2020).

Bedaquiline, a diarylquinoline compound, is the only drug approved by the FDA for
the treatment of MDR-TB in 2012 (Mahajan, 2013; Preiss et al., 2015) and has a significant
inhibitory effect on various non-tuberculous mycobacteria, such as Mycobacterium avium,
Mycobacterium ulcerans, and Mycobacterium abscessus (Andries et al., 2005). Bedaquiline
is a p-gp substrate and undergoes phase I metabolism in humans, mainly through CYP3A4
in the liver to N-monomethylated metabolite M2 (Kotwal et al., 2020; Lakshmanan &
Xavier, 2013). In this study, we screened a series of drugs to investigate potential DDIs
between bedaquiline and drugs for cardiovascular diseases, such as carvedilol, medications
for gastrointestinal disorders, such as cimetidine, and traditional Chinese medicine with
anti-inflammatory properties, such as resveratrol.

According to the results, carvedilol has the most potent restraining effect on bedaquiline.
Carvedilol is used to treat heart failure and hypertension by blocking the 81, 2, and «-1
adrenergic receptors (Gilbert et al., 1996). Compared with other heart failure drugs, such as
metoprolol, it has more beneficial effects, such as remodeling and central hemodynamics
(Gilbert et al., 1996; Di Lenarda et al., 1999; Metra et al., 2000; Sanderson et al., 1999).
Additionally, carvedilol is a substrate of p-gp (Brodde ¢ Kroemer, 2003), and although
it is not metabolized primarily by CYP3A4, it has been demonstrated to participate in
carvedilol’s metabolism (Oldham & Clarke, 1997; Iwaki et al., 2018; Iwaki et al., 2016).
Consequently, a vital conjecture was that there might be a DDI between bedaquiline and
carvedilol.

In vitro experiments, the ICsq of carvedilol to bedaquiline was 15.35 £ 0.43 uM in
RLM, 7.55 4+ 0.74 uM in HLM, and 0.79 &£ 0.05 uM in CYP3A4, with the inhibition
type of mixed, un-competitive, and mixed, respectively. In vivo experiments, compared
with the single group, the AUC(g_¢), AUC(9—o0), and Cpax values of bedaquiline went up
by 2.15-2.28 fold in the combined group and accompanied by a 4.33-fold reduction in
CL,/r. These pharmacokinetic parameters alterations indicated that carvedilol significantly
enhanced the plasma exposure and prolonged the accumulation duration of bedaquiline
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competitive inhibition in RLM (A), an un-competitive inhibition in HLM (B), and a mixed type of
non-competitive + un-competitive inhibition in CYP3A4 (C). Data are expressed as the mean =+ SD.
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Table 1 Effect of carvedilol on inhibiting bedaquiline metabolism in RLM/HLM/CYP3A4 and corre-
sponding ICs, values.

Inhibition type Ki oKi o ICsy values
(WM) (WM) (LM)
RLM Mixed 4.56 61.32 13.45 15.35+ 0.43
HLM Un-Competitive - 8.44 - 7.55+ 0.74
CYP3A4 Mixed 0.32 0.13 0.41 0.79 £ 0.05
(A) (B)
25007 —— Bedaquiline 1007 - E:aqui:ine carvedi
- . - laquiline+Carvedilo
CE\ 20001 -= Bedaquiline + Carvedilol 80
2 z
< 15001 E 601
£ £
3 10001 S 407
3 \i
@ 500 207
oL T T T T T T 0 T T T T it T 1
0 5 10 15 20 32 40 48 0 5 10 15 20 32 40 48
Time (h) Time (h)

Figure 6 Mean concentration—time curves of bedaquiline (A) and M2 (B). Mean concentration—time
curves of bedaquiline (A) and M2 (B) in the single group (bedaquiline alone) and the combined group
(bedaquiline and carvedilol). Data are expressed as the mean &£ SD, n=4.

Full-size tal DOI: 10.7717/peerj.19313/fig-6

in rats, potentially elevating the risk of bedaquiline-associated adverse reactions, including
cardiotoxicity (Worley ¢ Estrada, 2014), hepatotoxicity (Kakkar & Dahiya, 2014), and
phospholipidosis (Diacon et al., 2012; Guillemont et al., 2011). The saturation of p-gp
transport likely explains the dose-dependent increase of bedaquiline (Martin-Garcia ¢
Esteban, 2021). However, the main pharmacokinetic parameters of M2 did not have any
obvious variation, and the AUC increase in bedaquiline may not be mediated by carvedilol’s
effects on CYP3A4 or p-gp, which needed further research. Moreover, when carvedilol was
co-administered with bedaquiline, it prolonged the Ty« of bedaquiline while shortening
its t1/2,. Elimination half-time refers to the time taken for the drug concentration in the
body to decrease to half of its initial dose. Typically, the duration of drug action, time to
reach a steady-state level, and clearance time are all influenced by the drug’s t; /»,. Generally,
the time for the drug to reach steady-state concentrations in vivo is 4-5 t1 /5, (Andrade,
2022), suggesting that carvedilol may reduce the time for bedaquiline to reach steady-state
plasma concentrations.

However, DDIs and gene polymorphisms of metabolic enzymes are the main factors
causing otherness in clinical drug plasma exposure. In this study, we only analyzed DDIs;
however, CYP3A4 enzyme activity varies widely between individuals (up to 60-fold),
leading to treatment failure or unforeseeable toxicity and side effects (Hu er al., 2017). In
future studies, we expect to study the gene polymorphisms of its metabolic enzymes to
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Table 2 Main pharmacokinetic parameters of bedaquiline in two groups of rats (n =4).

Parameters Bedaquiline
(10 mg/kg)

Bedaquiline (10 mg/kg) +
Carvedilol (5 mg/kg)

AUC o_)(ng/mL*h)
AUC(O,OO) (ng/mL*h)

5,250.60 £ 1,693.23
5,510.31 £ 1,794.78

11,651.25 & 3,609.65
11,835.57 + 3,671.52°

t2. (h) 12.00 £ 1.01 7.15+ 2.71

Tmax (h) 2.00£ 0.82 5.25+ 1.50"

V,r (L/kg) 68.18 = 23.18 9.07+ 3.05

CL,/r (L/h/kg) 394+ 1.28 091+ 0.26

Cinax (ng/mL ) 639.61 + 273.93 1,458.70 &= 370.54
Notes.

AUG, area under the plasma concentration—time curve; t, /,, elimination half time; Ty.y, peak time; V, /g, apparent volume of

distribution; CL, g, plasma clearance; Cyax, maximum plasma concentration.

*P <0.05.
"P<0.0L
P < 0.005 in comparison with the single group.

Table 3 Main pharmacokinetic parameters of M2 in two groups of rats (n =4).

Parameters Bedaquiline (10 mg/kg)

Bedaquiline (10 mg/kg) +
Carvedilol (5 mg/kg)

AUC(O,I) (ng/mL*h)
AUC(O,OO) (ng/mL*h)

1,550.69 = 831.88
2,133.95+ 1,376.90

1,238.59 &+ 641.31
1,886.52 4+ 938.03

t12, (h) 19.68 = 1.22 18.44 £ 4.57

Tomax (h) 33.69+ 9.11 39.63 + 8.77

Ve (L/kg) 21.22 £ 6.53 25.32 £ 4.80

CL,r (L/h/kg) 9.00 + 2.58 10.00 £ 1.63

Crnax (ng/mL ) 176.37 £ 72.07 258.09 = 178.02
Notes.

AUC, area under the plasma concentration—time curve; t,,, elimination half time; Ty, peak time; Vg, apparent volume of

distribution; CL,/, plasma clearance; Cpax, maximum plasma concentration.

provide medical workers with more comprehensive experimental data on the correct use

of bedaquiline.

CONCLUSIONS

Carvedilol inhibited the metabolism of bedaquiline in vitro with mixed, un-competitive,
and mixed mechanisms in RLM, HLM, and CYP3A4, respectively, and significantly

changed the main pharmacokinetic parameters of bedaquiline in vivo to increase its plasma

exposure. As a consequence, the combination of bedaquiline and carvedilol should be

avoided, or regular plasma concentration monitoring should be performed to reduce the

severity and frequency of bedaquiline-related side effects.

Abbreviations

ABC ATP-binding cassette

ACN acetonitrile

AUC area under the plasma concentration-time curve
CL,k plasma clearance
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Cax maximum plasma concentration

CMC-Na carboxymethylcellulose sodium salt

CVsS cardiovascular system

CYP450 cytochrome P450

CYP3A4 cytochrome P450 3A4

DAS Drug and statistics

DDIs drug—drug interactions

FDA Food and Drug Administration

HF heart failure

HLM human liver microsomes

TIACUC Institutional Animal Care and Use Committee

ICsg the half-maximal inhibitory concentration

IS internal standard

K; inhibition constant

K Michaelis—Menten constant

LLOQ the lower limit of quantitation

ME matrix effect

MDR-TB multidrug-resistant tuberculosis

NADPH Reduced nicotinamide adenine dinucleotide phosphate

NTM non-tuberculous mycobacteria

PBS phosphate buffered saline

P-gp P-glycoprotein

RLM rat liver microsomes

SD standard deviation

SD rats Sprague-Dawley rats

SRM selective response monitoring

TCM Traditional Chinese Medicine

TDI time-dependent inhibition

TIC total ionic chromatography

t1/22 elimination half time

T max peak time

UPLC-MS/MS ultra-performance liquid chromatography tandem mass
spectrometry

V. E apparent volume of distribution
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