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Trindade Island, located in the middle of the South Atlantic Ocean, faces environmental
challenges such as the threat of pollution and reduced biodiversity. This study synthesizes
knowledge of the microbial community (Archaea, Bacteria, and Fungi) on the island,
highlighting their ecological roles and biotechnological potential. A series of studies using
shotgun metagenomic sequencing, 16S and ITS amplicon techniques has been compiled,
revealing a rich microbial diversity in soil, seawater, and coral tissue samples. Dominant
soil genera such as Acidothermus, Mycobacterium, and Conexibacter play potential roles in
cellulose degradation, hydrocarbon bioremediation, and soil ecosystem cycling. Water
samples showed dominance of Prochlorococcus and Pelagibacter, which are important for
marine carbon fixation. Coral-associated Bacteria such as Streptomyces, Shewanella, and
Mycobacterium are involved in antibiotic production, metal reduction, and pathogenesis.
Soil fungal diversity includes Mortierella and Antarctomyces, while water samples show
Aspergillus species. Coral samples display a predominance of the genus Aspergillus, with
unexpected discoveries such as Paracoccidioides brasilienses and Scheffersomyces stipitis,
raising the possibility of artifactual results, as well as Laccaria bicolor in water samples,
and Antarctomyces psychrotrophyus in soil samples. Isolated bacterial strains show
remarkable abilities in hydrocarbon degradation and biosurfactant production, which are
essential for bioremediation in oil-contaminated environments. Strains such as
Rhodococcus rhodochrous, Nocardia farcinica, Exiguobacterium, and Tistrella stand out for
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their biotechnological potential. This study highlights the importance of the microbial
diversity of Trindade Island through molecular research to provide essential knowledge for

biodiversity conservation and biotechnological applications, especially in petroleum-related
sectors.
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Abstract

Trindade Island, located in the middle of the South Atlantic Ocean, faces environmental
challenges such as the threat of pollution and reduced biodiversity. This study synthesizes
knowledge of the microbial community (Archaea, Bacteria, and Fungi) on the island,
highlighting their ecological roles and biotechnological potential. A series of studies using
shotgun metagenomic sequencing, 16S and ITS amplicon techniques has been compiled,
revealing a rich microbial diversity in soil, seawater, and coral tissue samples. Dominant soil
genera such as Acidothermus, Mycobacterium, and Conexibacter play potential roles in cellulose
degradation, hydrocarbon bioremediation, and soil ecosystem cycling. Water samples showed
dominance of Prochlorococcus and Pelagibacter, which are important for marine carbon
fixation. Coral-associated Bacteria such as Streptomyces, Shewanella, and Mycobacterium are
involved in antibiotic production, metal reduction, and pathogenesis. Soil fungal diversity
includes Mortierella and Antarctomyces, while water samples show Aspergillus species. Coral
samples display a predominance of the genus Aspergillus, with unexpected discoveries such as
Paracoccidioides brasilienses and Scheffersomyces stipitis, raising the possibility of artifactual
results, as well as Laccaria bicolor in water samples, and Antarctomyces psychrotrophyus in soil
samples. Isolated bacterial strains show remarkable abilities in hydrocarbon degradation and
biosurfactant production, which are essential for bioremediation in oil-contaminated
environments. Strains such as Rhodococcus rhodochrous, Nocardia farcinica, Exiguobacterium,
and Tistrella stand out for their biotechnological potential. This study highlights the importance
of the microbial diversity of Trindade Island through molecular research to provide essential
knowledge for biodiversity conservation and biotechnological applications, especially in
petroleum-related sectors.

Keywords: Trindade Island; Microbial composition; Metagenome; Bioprospection.
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Introduction

Trindade Island, the largest one of the Trindade-Martim Vaz Archipelago, covers an area of
approximately 10 km? in the South Atlantic Ocean and is located at the same latitude as the
municipality of Vitoria, Espirito Santo - Brazil, approximately 1,140 km from the coast
(Camacho-Montealegre et al., 2019; Camara et al., 2023). On Trindade Island, soils are generally
fertile as a result of lithological, topographical, and biological activity influences, which are
often closely linked (Clemente et al., 2009). The volcanic arc, to which Trindade Island belongs,
is characterized by a high sodium content, providing a continuum of niche opportunities for salt-
tolerant microorganisms (da Silva et al., 2015).

The island is home to a rich biota, including endemic and endangered species (Costa-Rezende et
al., 2023). Nonetheless, the island faces several historical and recent environmental challenges
that require immediate attention, as well as the implementation of effective strategies. Potential
pollution from various sources threatens the integrity of this marine and insular ecosystem. These
environmental threats include possible contamination with toxic metals resulting from fires, rock
erosion, volcanic processes and sediment movement (Cariou et al., 2017; Santos-Silva et al.,
2018), as well as the presence of plastic waste (Andrades et al., 2018; de Souza Petersen et al.,
2016). Furthermore, the island is located close to the Campos Basin oil fields, which is an
additional concern for the conservation of the marine environment and wildlife (Camara et al.,
2023; Rodrigues et al., 2018). In addition, human interventions, such as the introduction of goats
from the years 1700s up to 2005, have led to a reduction in biodiversity due to their negative
impact on the soil for pasturing and the consumption of native trees (Camara et al., 2023; Costa-
Rezende et al., 2023; Rodrigues et al., 2018; Silva & Alves, 2011).

In the environment, microorganisms are extremely important in ecological processes from the
oceans to soils, such as biogeochemical cycles, climate regulation, carbon storage, disease
propagation, and pollutant transformation, as well as can enhance functionality relationships
among micro and macroorganisms (e.g. Ducklow, 2008; Escalas et al., 2019; Giller et al., 2004).
Trindade Island has been the subject of studies on microbial diversity (eg. Camara et al., 2023;
Meirelles et al., 2015) and biotechnological potential (eg. da Silva et al., 2015; Rodrigues et al.,
2015a; Rodrigues et al., 2018). Nevertheless, little is known about the relationship between the
structural and functional diversity specific to Archaea, Bacteria, and Fungi on this Island (Costa-
Rezende et al., 2023).

There is a consensus that microbial diversity is linked to ecosystem functioning, meaning that
communities with higher microbial richness improve ecosystem performance (e.g. Delgado-
Baquerizo et al., 2016; Jing et al., 2015; Maherali et al., 2007; Semchenko et al., 2018). Archaea,
Bacteria, and Fungi can represent unique species that perform specific functions and play
fundamental roles in biodiversity conservation (Olofintila & Noel, 2023). These microorganisms
can act as highly sensitive indicators of environmental pollution and contamination (Korneykova
et al., 2021), playing a very important role in the protection of ecosystems, especially
considering the imminent threat of contamination by oil and other pollutants (Camara et al.,
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2023; Rodrigues et al., 2018). Moreover, they may also have a high biotechnological potential,
including the ability to degrade pollutants through the production of specialized enzymes (Ghosh
et al., 2020) and also the ability to degrade antibiotic substances (Lei et al., 2023), which can be
harmful in natural environments.

Based on this scenario, the aim of this study was to synthesize and interpret, in a systematic way,
the knowledge of the microbial communities (Archaea, Bacteria, and Fungi) of Trindade Island,
highlighting, when possible, the ecological role and biotechnological potential of the most
representative taxa.

Survey Methodology

Data collection

This systematic review was based on the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines (Page et al., 2021). Records were searched on 2 August
2024 in the Scopus, Web of Science, PubMed, PubMed Central, Dimensions, and Google
Scholar databases using the Publish or Perish v8 tool (Harzing, 2007). The keywords used to
search for records were: "trindade island" AND (metagenomics OR shotgun OR [amplicons
AND (16S OR 18S OR ITS OR "internal transcribed spacer")]. There were no restrictions on
document type, language or publication date to avoid excluding relevant records.

The results of the database searches were exported in CSV format. The scripts format input.py
(Jasper, 2023a) and remove duplicates.py (Jasper, 2023b) were used to select unique documents.
These scripts read the CSV files and filter out DOI-less and duplicate documents from the set of
records (Dutra et al., 2023a,b; Gomes et al., 2023). The researchers Garcia, G.J.Y. and Dutra,
J.d.C.F. reviewed both the unique and DOI-less documents to select the scientific articles that
met the selection criteria (Table 1). Disagreements in the selection of documents were resolved
by the researcher Gomes, R.F.

After the initial review of titles and abstracts, only studies that addressed Trindade Island using
shotgun metagenomics or amplicon sequencing were selected. These studies underwent a
thorough evaluation, applying well-defined inclusion and exclusion criteria (Table 1),
considering the collection area, sample type, methodologies used and the relevance of the results.
The following data were extracted from the selected documents: taxonomic abundance of
microorganisms (Archaea, Bacteria and Fungi) obtained by shotgun metagenomics and amplicon
sequencing, type of substrate, samples or treatments, metagenomic approach, marker genes and
sequencing platform used.

Extraction of taxonomic data

The set of selected documents was used to extract taxonomic information on Archaea, Bacteria,
and Fungi, both in the main text and in the supplementary materials. Because of the use of
different taxonomic databases or different versions of the same database between the studies
analyzed, it was necessary to standardize the nomenclature of the taxa, identify synonyms, and
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position in classification. This task was carried out using a local script written in Python v3.10.8,
which consulted the Global Biodiversity Information Facility database (GBIF Secretariat, 2023)
via its APIL. For taxa missing from the GBIF database, manual searches were performed in the
NCBI Taxonomy database (Schoch et al., 2020).

Grouping samples

The sequences representing Archaea, Bacteria, and Fungi extracted from the papers assessed in
this study were grouped to simplify data analysis. For grouping, we considered the types of
substrates and the sequencing methods used. The analyzed samples were collected from various
sources, such as soil, water, and coral tissue, and were obtained by both culture-dependent
approaches (we attributed the suffix DCul) and culture-independent methodologies (we
attributed the suffix ICul).

In order to facilitate comparative analyses, we organized the samples into five distinct categories:
(1) culture-independent soil samples (Three samples named PDS5, PD6, PF7, see Table 2) were
named Soil ICul; (ii) culture-independent water samples (Three samples named
NOR Island W, PRI Island W, SAN Island W, see Table 2) were designated as Water_ICul;
(ii1) culture-independent coral tissue samples (Two samples named FAR Island C,
NOR Island C, see Table 2) were named Coral_ICul; (iv) culture-dependent soil sample (One
sample named Crude Oil, see Table 2) were identified as Soil DCul; and, finally, (v) twelve
treatments, from seawater samples (Named Oil, FLU, HEX, PHE, PHE+FLU, PHE+HEX,
PHE+OIL, PHE+PYR, PYR, see Table 2) were grouped under the Water_ DCul category. It is
worth noting to highlight that taxonomic classification at the genus and species levels was only
possible when cultivation-independent sequencing techniques were employed.

The other kingdoms described in our study were not analyzed because the information recovered
was limited; however, these data were also extracted. For a better spatial understanding of the
samples, a static map adapted from Witovisk et al. (2018) and an interactive map based on OSM
(OpenStreetMap), and the Leaflet JavaScript library were generated.

Analysis of the communities of Archaea, Bacteria, and Fungi

A series of analyses were performed on the five sets (Soil ICul, Water ICul, Coral ICul,
Soil DCul, and Water DCul) using R v4.2.1. The relative abundances of all taxonomic
categories were analyzed using bar graphs generated using the ggplot2 v3.4.3 package
(Wickham, 2011). Shared (core) and unique (satellite) taxa were analyzed using Venn diagrams,
generated using the venn v1.11 package (Dusa, 2018). The alpha and beta diversity analysis were
performed with the abundances of the order category. Shannon indices were calculated with the
vegan v2.6.4 package (Dixon, 2003) and plotted with the ggplot2 v3.4.3 package. Principal
coordinates analysis were generated using the packages vegan v2.6.4, ggrepel v0.9.3
(Slowikowski et al., 2018), and ggplot2 v3.4.3.

Analyzes of strong association networks between groups and taxa were calculated using the
package indicspecies v1.7.14 (de Caceres et al., 2016), using the multipatt function with the
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point biserial correlation coefficient (r.g) to calculate the strength of association, which was
considered statistically significant with a p < 0.05. Networks were constructed using Cytoscape
v3.10.1 software (Shannon et al., 2003) with the edge-weighted sping-embedded layout. In the
networks, the circles represent the taxa, the size of the circles represents the abundance of the
taxa, the diamonds represent the sample groups, and the length of the edges represents the
strength of the association; the smaller the edge, the stronger the sample-taxon association.
Non-parametric multivariate analyses were performed using the PERMANOVA test and the
Bray-Curtis dissimilarity index with 9999 permutations in PAST v4.11 software (Hammer &
Harper, 2001). The aim was to compare the community structure between the sample groups. In
addition, the pairwise PERMANOVA model was used to assess statistically significant
differences between pairs, with a significance level of p < 0.05.

Rodrigues et al. (2015) and Da Silva et al. (2015) identified a group of bacterial isolates from
partial sequencing of the 16S rRNA gene using the MegaBACE 1000 DNA Analysis System
(SANGER) platform (Table 2) but did not present abundance data; therefore, the abundance
information was not included in the comparative analyses.

Additionally, to enrich the presentation of the profiles of the selected searches, a word cloud was
generated using the wordcloud v1.9.1.1 (Mueller, 2023) and pillow v9.4.0 (Clark, 2023)
libraries, based on the text of the selected articles.

Study selection

The database search protocol yielded a total of 274 studies [Scopus (n = 24), Web of Science (n
= 1), PubMed (n = 2), PubMed Central (n = 13), Dimensions (n = 98), and Google Scholar (n =
136)], of which 67 were excluded because they were duplicates. Two hundred and one unique
articles were included in the paired title analysis, of which eight studies were selected on
methodology reading and included in our review (Fig. 1, Data S1, Data S2).

The researchers Garcia, G.J.Y. and Dutra, J.d.C.F. agreed in their selection of documents, with
only two cases of disagreement, which were resolved by the researcher Gomes, R.F., who
accepted one of the documents and rejected the other because it did not meet the selection
criteria (Table 1). Finally, the researchers selected eight documents that met the selection criteria
(Fig. 1, Table 2). Camara et al. (2022) and Camara et al. (2023) worked with the same samples
and presented equivalent results; thus, the study of Camara et al. (2022) was not included in the
discussion as it was redundant.

Profile of selected articles

After analyzing the selected articles, four of them focused on the study of bioremediation of
hydrocarbon contamination (da Silva et al., 2015; Morais et al., 2016; Rodrigues et al., 2015b;
Rodrigues et al., 2018) (Fig. 2). Most of the studies used sequencing of the 16S rRNA marker
gene as the approach. Furthermore, most of the articles analyzed soil and seawater samples
(Table 2, Fig. 3), with the exception of the study by Meirelles et al. (2015), which included
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analyses of coral tissues (Table 2). For a more detailed visualization of the samples, an
interactive map is available at: https://glenjasper.github.io/leaflet-trindade-island-review-map.

Recovered communities of Archaea, Bacteria, and Fungi

The focus of this review was to analyze the communities of Archaea, Bacteria, and Fungi, but
the taxa of the other kingdoms, which are not part of this review, are included in Data S3. These
tables contain standardized information according to the GBIF and NCBI Taxonomy databases.
The selected articles presented results in different taxonomic categories. Meirelles et al. (2015)
and Camara et al. (2023) reported up to the genus level, Rodrigues et al. (2018) displayed up to
the family level, and Morais et al. (2016) exhibited up to the order level. Rodrigues et al. (2015)
and da Silva et al. (2015) sequenced the 16S rRNA gene using the SANGER method and;
therefore, identified a small community of bacterial species. Thus, their results were only
considered in the discussion. Because of these differences in the presentation of taxonomic
results, comparative analyses were mainly performed at the phylum, order, family, and genus
level. Although the studies by Pylro et al. (2014) met our selection criteria, the authors did not
show taxonomic data and limited themselves to comparing amplicon analyses approaches.
Hence, this article could not be considered in our analyses.

Bacterial predominance, high rates of unclassified sequences in soil, and high abundance of
satellite in water and coral samples

Regarding the analysis of Archaea and Bacteria, the vast majority of the community was
identified as Bacteria, with Archaea being practically non-existent in the groups: they were only
detected in the environmental samples, and the highest relative abundance was detected in coral
samples, barely exceeding 3% (Data S4).

The amount of unclassified reads is remarkable, especially for the Soil ICul group. Within the
group, at the family level, 36.12% of the reads were unclassified. At the genus level, the
percentage of unclassified reads reached almost 70%, and at the species level 99.7% of the reads
were unclassified, with only one species of Bacteria identified (Dinghuibacter silviterrae).
Interestingly, for Water ICul and Coral ICul groups, around 8% of the reads were unclassified
at family and genera levels, and decreased to less than 1% at the species level (more details in
the Data S4). Nonetheless, the percentage of reads found in low abundance (<1%, <2%, or <3%)
and thus classified as Other, was remarkably high in Water ICul and Coral ICul groups at
species (Fig. S11), genus (Fig. 4B), family (Fig. S1G) and order (Fig. S1E) classification levels.

Distribution of Bacteria in sample groups

At the phylum level, the presence of Pseudomonadota was notable in all groups (Fig. 4A), except
for Soil_DCul, in which the predominant phyla was Actinobacteriota (around 20%), followed by
Pseudomonadota (17.3%), and Acidobacteriota (12%). In Soil ICul, Actinobacteriota and
Pseudomonadota were found in the same amount (around 26%), followed by Acidobacteriota
(12.8%), Verrucomicrobiota (10.2%), and Chloroflexota (10.3%). In Water DCul the dominance
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of Pseudomonadota (81.7%) was remarkable. Besides, the phylum Bacteroidota (16.7%) was
also identified. In Water ICul Pseudomonadota (65.5%) was dominant, followed by
Cyanobacteria (19.3%) and Bacteroidota (5.5%). Finally, for Coral ICul group, Pseudomonadota
prevailed (39.5%); however, many other phyla were detected in smaller amounts:
Actinobacteriota (9.3%), Firmicutes (8.8%), Bacteroidota (8.2%), Cyanobacteria (6%),
Chloroflexota (4.3%), Desulfobacterota (3.7%), Planctomycetota (3.6%), Myxococcota (2.5%),
Acidobacteriota (2.4%), Poribacteria (2.3%), Verrucomicrobiota (2%), Thermoproteota (1.6%),
and Deinococcota (1.1%).

In general, there was no predominant family of Bacteria in the groups, as the percentages were
similar, with the exception of the Water DCul group. In the latter, the dominance of
Oceanospirillaceae  (35.8%) was observed, followed by Alcanivoracaceae (16%),
Flavobacteriaceae (13.4%), and Rhodobacteraceae (12.2%). Rhodobacteraceae was detected in
water and coral samples. In Water ICul, Cyanobiaceae (14.5%) is slightly increased compared to
the others (Fig. S1G).

Acidothermus (around 10%) was the dominant genus in Soil ICul group, followed by
Mycobacterium (3%) and Conexibacter (2%). As mentioned, at the species level, only
Dinghuibacter  silviterrae was detected (0.3%). In Water ICul group, the genera
Prochlorococcus (around 15%), Vibrio (7%) and Pelagibacter (6.6%) predominated, as well as
the species Prochlorococcus marinus (14.3%). In the Coral ICul group, there were no dominant
genera and a striking similarity of relative abundances between Pseudomonas (1.8%),
Streptomyces (1.7%), Mycobacterium (1.5%), Cyanothece (1.5%), Burkholderia (1.3%),
Geobacter (1.1%), Bacillus (1.1%), Roseobacter (1.1%), Solibacter (1.1%), Roseiflexus (1.1%),
Shewanella (1%), and Bacteroides (1%) (Fig. 4B).

Distribution of Fungi in the samples

Similarly to the results found for Bacteria and Archaea, around 80% of the reads belonging to
Fungi were unclassified at the species level and 50% at the genus level for the Soil ICul group.
For the Water ICul and Coral ICul groups, taxa with lower abundance (<1%) had high
presence, varying between 12% and 17%, in the family, genus, and species levels (Fig. 4D, Fig.
S1H, Fig. S1J).

Fungi belonging to the phylum Ascomycota predominated in all groups, except for Soil DCul,
where Mucoromycota was the most abundant. Basidiomycota was the second most common
phylum found, except in Soil DCul (Fig. 4C). Aspergillus was the predominant genus in
Coral_ICul (34.7%) and Water ICul (19%) groups; however, it was not found in Soil ICul
group. In Soil ICul, the relative abundances of genera were similar, including Mortierella
(7.4%), Apiotrichum (6.3%), Antarctomyces (6.1%), Pseudogymnoascus (5%), and Coniochaeta
(4.5%). Antarctomyces psychrotrophicus (6.1%) and Mortierella huminis (4%) were the main
species identified (Fig. 4D, Fig. S1J).

Many species of Aspergillus were found in the water samples, such as A. nidulans (4.8%), A.
fumigatus (4.8%), A. clavatus (2.9%), A. flavus (2.9%), and 4. terreus (2.9%), all of them with

Peer] reviewing PDF | (2024:08:104995:0:1:NEW 23 Aug 2024)



PeerJ

292
293
294
295
296
297
208
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

similar relative abundance. Still, among the most abundant species were Laccaria bicolor
(8.6%), Cryptococcus neoformans (6.6%), and Candida albicans (5.7%).

Aspergillus clavatus prevailed in coral samples (28.6%). Other species of Aspergillus identified
were A. ficheri (2.3%), A. flavus (2%), and A. nidulans (1.3%). Still, Paracoccidioides
brasilienses (14%), Scheffersomyces stipitis (7.5%), and Talaromyces stipitatus (5.2%) were
found in relatively high amounts in coral samples.

Shared (core) and unique (satellite) taxa between sample groups

Venn diagram analyses highlighted the shared and unique taxa of representatives of the Archaea
and Bacteria domains, as well as the Fungi kingdom, among the culture-independent (Soil _ICul,
Water ICul, and Coral ICul) and culture-dependent (Soil DCul and Water DCul) groups for all
the taxonomic categories (Fig. S2, Data S5).

Based on the data analyzed from the groups of non-cultured and cultured samples, 50 phyla of
Bacteria were identified, followed by six phyla of Archaea, and seven phyla of Fungi (Fig. 5A).
In addition, bacterial phyla were identified in all samples. In contrast, no archaeal or fungal phyla
were detected in the Water DCul group.

The groups of non-cultured and cultured samples shared six bacterial phyla (Actinobacteriota,
Bacteroidata, Cyanobacteria, Planctomycetota, Pseudomonadota, and Verrucomicrobiota), while
the groups Soil ICul and Soil DCul had uniqueness in six and 13 bacterial phyla, respectively
(Fig. 5A).

The Water ICul and Coral ICul groups shared four phyla of Archaea (Halobacteriota,
Methanobacteriota, Thermoplasmatota, and Thermoproteota) while the Soil DCul group
displayed uniqueness in two phyla of Archaea (Euryarchaeota and Parvarchaeota). The
Soil ICul, Soil DCul, Water ICul, and Coral ICul groups shared two phyla of Fungi
(Ascomycota and Basidiomycota). Only the Soil ICul group exibited uniqueness in relation to
two phyla of Fungi (Mucoromycota and Glomeromycota) (Fig. 5A).

Figure S8C shows that the five groups shared three orders of Bacteria (Burkholderiales,
Rhizobiales, and Xanthomonadales). The Coral ICul, Water ICul, Water DCul, Soil ICul, and
Soil_DCul groups have two, two, three, 19, and two exclusive bacterial families, respectively.
The Coral ICul, Water ICul, and Soil ICul groups have one, one, and 45 exclusive fungal
families respectively. Only the Coral ICul group had two unique archaeal families. It is worth
noting that the Soil DCul and Water DCul groups only had Bacteria at the family level, with
four families (Burkholderiales, Rhizobiales, Sphingomonadales, and Xanthomonadales) shared
between these groups.

When analyzing genera, no results in this taxonomic category were presented by the studies
using culture-dependent methods. Among the bacterial genera, the Water ICul group stood out
for its remarkable diversity, with 555 genera identified, followed by the Coral ICul and
Soil ICul groups with 526 and 34 genera respectively (Fig. 5B, Data S5). These three groups
shared 15 genera (Acidothermus, Acinetobacter, Burkholderia, Chthoniobacter, Conexibacter,
Flavobacterium, Haliangium, Legionella, Mucilaginibacter, Mycobacterium, Paraburkholderia,
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Pedosphaera, Phenylobacterium, Pseudomonas, and Rhodomicrobium) and 502 genera were
shared between the Coral ICul and Water ICul groups. In addition, the Coral ICul, Water ICul,
and Soil ICul groups had 24, 53 and 19 exclusive bacterial genera, respectively.

For the archaeal genera, the Coral ICul group presented 47 genera, 14 of which were unique. In
contrast, the Water ICul group showed 36 archaeal genera, of which three were exclusive
(Ignisphaera, Metallosphaera, and Methanolacinia) (Fig. 5B). When analyzing the fungal
genera, a total of 202 genera were observed. The Coral ICul, Water ICul, and Soil ICul groups
had six shared genera (Aspergillus, Candida, Chaetomium, Malassezia, Saccharomyces, and
Talaromyces) and 12, seven, and 153 exclusive genera, respectively (Fig. 5B).

Analysis of alpha and beta diversity and correlation of sample groups

Alpha diversity analysis showed distinctive results for each group. The Water DCul group
exhibited an average Shannon index of 1.109, pointing to relatively low diversity in this
particular environment. In contrast, the Sol DCul group showed a Shannon index of 1.889,
indicating moderate diversity. On the other hand, both the Sol ICul and Water ICul groups
revealed average Shannon indices of 2.639 and 2.7 respectively, suggesting substantially higher
diversity compared to the culture-dependent groups. Finally, the Coral ICul group stood out with
an average Shannon index of 4.094, underlining the presence of significantly rich biodiversity in
culture-independent coral samples (Fig. 6A).

In the analysis of beta diversity in the taxonomic category of order, represented by the Principal
Coordinates Analysis (PCoA) (Fig. 6B), one can observe the formation of groupings between
samples based on the sample type. It is worth mentioning that the Water ICul and Coral ICul
sample groups were close, not showing statistically significant differences according to the
PERMANOVA analyses (Data S6) whereas only the Water DCul group showed statistical
differences from the Soil ICul (p = 0.0051), Water ICul (p = 0.0042), and Coral ICul (p =
0.0186) groups.

In the network of strong associations by phylum, the Coral ICul group had the highest number
of associated phyla, as it showed no significant association with only five phyla. (Fig. 7A). As
expected, coral samples exibited a greater number of shared associations with water samples
(Water_ICul) than with soil samples (Soil ICul and Soil DCul), as well as with water samples
(Water ICul and Water DCul), and these results are consistent with the PERMANOVA
analyses. Unexpectedly, the Soil ICul and Soil DCul groups did not show much overlap in their
associations, with the Soil ICul group displaying more associations with coral samples
(Coral_ICul).

The Water DCul and Soil _DCul groups have a smaller number of associated phyla, with the soil
phyla correlating with Ascomycota, Actinobacteriota, and Acidobacteriota, and the water phyla
correlating only with Pseudomonadota. Usually, bacterial phyla dominated the associations with
all substrates and methods while Fungi were represented by only two phyla (Ascomycota and
Basidiomycota) associated with Soil ICul and Soil DCul samples, respectively.
Methanobacteriota and Halobacteriota were the only phyla representing Archaea and are only
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associated with the Coral ICul group. Despite being more abundant (Fig. 7A), the phyla
Ascomycota and Pseudomonadota did not display significant associations with all substrates and
methods. Actinobacteriota, Chlamydiota, and Pseudomonadota were the phyla with the highest
number of associations, being associated with three of the five types of substrates and methods.
The patterns of associations at order level are similar to those observed at phylum level, with the
Coral ICul group showing the highest number of associations. The culture-based samples show
the same pattern of fewer associations with different orders. The Coral ICul and Water ICul
groups showed a large number of common associations while the soil samples showed no
overlap in associations (Fig. S3).

At the genus level, only the non-cultured samples identified communities of Archaea, Bacteria,
and Fungi (Soil ICul, Water ICul, and Coral ICul). The coral samples exhibited a greater
number of significantly associated genera, including most of the archaeal genera present in the
association network, followed by the water samples. The water and coral samples share a large
number of associations, the majority of which are representatives of Bacteria, with a
comparatively small number of associated genera representing Archaea and Fungi. Among the
significantly associated genera only with the non-cultured water samples, the bacterial genera
Prochlorococcus, Pelagibacter, Pseudoalteromonas, and Alteromonas were the most abundant
while, for the coral samples, the most abundant bacterial genera were Cyanothece, Streptomyces,
Mycobacterium, and Geobacter (Fig. 7B). Soil samples exhibited lower diversity compared to
other substrates and few bacterial genera are significantly associated, but the most abundant
bacterial genera were Acidothermus and Mycobacterium. On the other hand, more than half of
the fungal genera recovered are significantly associated only with non-cultured soil samples,
with Mortierella and Lipomyces displaying high abundance (Fig. 7B).

Biotechnological potential of bacterial isolates identified by partial sequencing of the 16S
rRNA gene

Rodrigues et al. (2015) identified a number of bacterial strains and species capable of degrading
different types of hydrocarbons. Using isolates from water samples, the species Rhodococcus
rhodochrous and Nocardia farcinica were found to degrade a wide range of hydrocarbons,
including aliphatic, aromatic and PAH compounds. These compounds included toluene, octane,
xylene, naphthalene, phenanthrene, pyrene, hexadecane, anthracene, eicosane, tetracosane,
triacontane, and pentacontane. The species Cellulosimicrobium cellulans and Microbacterium
lacticum were able to degrade the hydrocarbons hexadecane and naphthalene respectively. In
addition to these strains, strains belonging to the genera Exiguobacterium, Microbacterium, and
Tistrella also showed the ability to selectively degrade some types of hydrocarbons (anthracene,
hexadecane, naphthalene, tetracosane, octane, phenanthrene, pyrene, and xylene). Moreover, Da
Silva et al. (2015) identified a group of strains belonging to the genus Bacillus, isolated from soil
samples, which showed the ability to produce biosurfactants under high salinity conditions.
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gosyncrasies of the selected studies

Despite the restricted molecular screening of the Trindade Island, this review focused
specifically on six studies that had used DNA sequencing, either from culture-dependent or
culture-independent methods, from environmental samples collected on Trindade Island.
Amongst them, two investigations worked with culture-independent samples (Camara et al.,
2023; Meirelles et al., 2015) and four with culture-dependent samples (da Silva et al., 2015;
Morais et al., 2016; Rodrigues et al., 2015b; Rodrigues et al., 2018). Five studies were based on
marker gene sequencing (16S rRNA and/or ITS) (Camara et al., 2023; da Silva et al., 2015;
Morais et al., 2016; Rodrigues et al., 2015b; Rodrigues et al., 2018), and only one used shotgun
metagenomic sequencing (Meirelles et al., 2015). The most commonly used platform was
[llumina MiSeq, followed by Ion Torrent, and SANGER. Although the molecular data regarding
the diversity of taxa at the Trindade Island is limited, Costa-Rezende et al. (2023) conducted an
extensive bibliographic review of the last 100 years of studies on Trindade Island, identifying
312 references, mainly in the fields of biology, health sciences, and agriculture. Within this
period, the first scientific record related to biology dates back to 1922 (Barreto 1922), but the
first study based on DNA analysis was only published in 2014 (Pylro et al., 2014).

The only study with a shotgun metagenomic approach used pyrosequencing (454). There is an
opportunity to improve metagenomic sequencing of environmental samples with newer
technologies, such as short-read sequencing (Illumina platform) or long-read sequencers (ONT
platform), which can provide more comprehensive and detailed insights in subsequent studies.
Furthermore, only three genomic studies presented the draft genomes of the Bacteria
Rhodococcus rhodochrous TRN7 (Rodrigues et al., 2016), Nocardia farcinica TRH1 (Rodrigues
et al., 2017), and Staphylococcus warneri TRPF4 (Freitas et al., 2020).

The studies included in this review provide a comprehensive overview of the richness and
complexity of microbial and eukaryotic communities, such as Fungi, on Trindade Island, and
reveal the influence of environmental factors on the health of marine and terrestrial ecosystems.
This research has important implications for understanding the natural mechanisms for managing
and restoring natural niches on the island and in similar regions.

In the selected studies, it is clear that representatives of the Bacteria domain were the most
extensively characterized. Nonetheless, many taxa could not be assigned to genus and species
categories for Bacteria, Archaea, and Fungi, particularly in soil samples (Soil ICul). This is an
inherent limitation of studies on the molecular identification of microorganisms from
environmental samples due to a number of reasons widely discussed in the literature, including
the number of species of microorganisms that have not been formally described and scientifically
characterized, and limitations inherent in the scope of the databases used for identification
(Konstantinidis et al., 2017; Lu et al., 2017; Marcelino et al., 2020; Seol et al., 2019).
Additionally, a significant correlation was observed between the water and coral samples, which
was to be expected given that several samples were collected under the same conditions (location
and depth).
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In order to better understand the biotechnological potential of these communities, we considered
discussing the most abundant and common microorganisms, and, thus, simplifying the analysis,
highlighting the most abundant taxa and isolated bacterial strains.

Roles and characteristics of the main Bacteria and Fungi found in soil,
water, and coral samples (culture-independent method)

The most abundant bacterial genera identified in the soil samples were Acidothermus,
Mycobacterium e Conexibacter. Acidothermus has recently been described as a thermophilic
Bacteria producing thermostable cellulolytic enzymes (Ghosh et al., 2020). This group of
enzymes are capable of hydrolyzing plant biomass into its constituent monomers and; therefore,
are promising alternatives for a wide variety of industrial applications following sustainability
principles (Yeoman et al., 2010).

Mpycobacteria constitute a diverse and well-studied group of Actinobacteria. They are virtually
found in all environments; however, water and soil are considered their preferred habitats
(Hruska & Kaevska, 2012, Walsh et al., 2019). Members of this group have been associated with
human diseases of importance to public health worldwide. Nonetheless, most are non-
pathogenic, and some mycobacteria are actually beneficial to human health (Fox et al., 2017).
Still, strains of Mycobacterium have metabolic capabilities useful for the biodegradation of
environmental pollutants (Hennessee et al., 2009) or as industrial biocatalysts (van Beilen et al.,
2005). A recent study conducted by Gu et al. (2023) evaluated the capacity of indigenous
microorganisms of soil to adapt and degrade phenanthrene (PHE). Among the bioaugmented
genera, the authors found increased relative abundances of Mycobacterium. The native
population of microorganisms in soils are considered the most efficient organisms for the
biodegradation of contaminants since they are adapted to the local biotic and abiotic stresses.

The first representative of the genus Conexibacter (C. woesei) was isolated from temperate forest
soil in Gerenzano (Italy), and was classified as a deep-rooting member of the class
Actinobacteria. Besides its distinct phylogenetic position, Comnexibacter showed unusual
chemotaxonomic characteristics (Monciardini et al., 2003). Conexibacter woesei cells are small
short rods, which motility is given by peritrichous flagella. They are obligate aerobes, and play
roles in biogeochemical cycles, reducing nitrate to nitrite, and carbon cycling in soil ecosystems
(Monciardini et al., 2003, Pukall et al., 2010; Seki et al., 2012). To date, only two species of the
genera are known. The second, named C. arvalis, was described by Seki et al. (2012) and
showed 98.6% similarity with C. woesei. Regarding biotechnological applications, a recent study
(Lei et al., 2023) demonstrated the potential of the strain Conexibacter sp. LDO1 to degrade
lincomycin, an antibiotic highly resistant to degradation, and, thus, a serious environmental
problem.

Regarding Fungi, the predominant species in the soil were Mortierella humilis and
Antarctomyces psychrotrophicus, and, at the genus level, Apiotrichum, Pseudogymnoascus, and
Coniochaeta.
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New species of the filamentous Fungi Mortierella (Mucoromycotina) are continually being
discovered. It is considered the most common soil-inhabiting Fungi but is not limited to this
substrate, being widespread in various environments (Ozimek & Hanaka, 2020; Wagner et al.,
2013). The omnipresence of such strains must be related to its broad biochemical repertory and
the many roles they play in the different environments. The growing interest in Mortierella spp.
is mainly because it acts as a plant growth-promoting Fungi by increasing plant nutrient uptake
(Tamayo & Osorio, 2018). M. humilis produces a variety of enzymes acting in the degradation of
complex carbon sources like cellulose, chitin, and xylans (Blanchette, 2000). Moreover, M.
humilis has been reported as a producer of fatty acids useful in medicine, pharmacology,
cosmetics, and food industry (Nguyen et al., 2019), as well as shows potential to be used in the
biorecovery of metalloids, such as selenium and tellurium (Liang et al., 2019). In a recent study,
Jiao et al. (2023) reported higher abundance of M. humilis in the rhizosphere of pine diseased
hosts compared to healthy hosts. Since this species is known for its capacity to produce
substances with antipathogenic activities, the reported microbiome change may be related with
the activation of the plant's immune system to fight against the pathogen infection. In the soils of
the giant fern forest (Desejado-Fazendinha), fungal sequences belonging to the species M.
humilis were abundantly identified (Camara et al., 2023). The presence of this species might
suggest a contributory potential for the regeneration of dominant plant species, such as Cyathea
delgadii.

The genus Antarctomyces includes only two species so far, A. psychrotrophicus and A.
pellizariae, both isolated, for the first time, in Antarctica. Outside Antarctica, A.
psychrotrophicus was identified in soil samples of the Brazilian Trindade Island (Camara et al.,
2023) and from fermentation cellars of a liquor manufacturer located in Luan city, China. The
function of 4. psychrotrophicus in the Chinese liquor is still unclear and needs further research
(Pu & Yan, 2022). A. psychrotrophicus is one of the dominant species isolated from several
different substrates in Antarctica, and the key determinant for its freeze tolerance is the secretion
of antifreeze protein (AFP). Some studies have focused on the molecular characterization,
physiological role, and intriguing evolutionary aspects of AFPs from A4. psychrotrophicus (Arai
et al., 2019; Xiao et al., 2010). More recently, the capacity of A. psychrotrophicus to produce
antibacterial and antifungal compounds has also been shown (Nikitin et al., 2022). The presence
of Antarctomyces, a typical psychrophilic Fungi, usually isolated in Antarctica is both curious
and rather strange, and might be considered with caution since a contamination or artifactual
result cannot be discarded.

The genus Apiotrichum (type species A. porosum) is an anamorphic basidiomycetous yeast
closely related to the genera Trichosporon and Hyalodendron. The genus currently contains 20
species globally distributed, including a number of soil-associated species (Liu et al., 2015).
Different ecological functions are attributed to the also globally distributed species of the genus
Pseudogymnoascus. They can act as saprophytic, cellulolytic, and are well adapted to cold
environments (Rice et al., 2006). Additionally, Coniochaeta is a genus of ascomycotan yeasts
typically associated with soil, water, and wood (Weber, 2002). There is also evidence of
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endophytic association with plants without causing damage to the host (Harrington et al., 2019),
as well as species involved in clinical infections, which has increased the interest in the genus
(Khan et al., 2013).

In water samples, the bacterial genera Prochlorococcus (P. marinus) and Pelagibacter
dominated. Prochlorococcus is a genus of cyanobacteria very abundant in the sunlight zone of
tropical oceans. The cells are very small (0.5 to 0.7 um) and the nutritional requirement is
minimal (Biller et al., 2015). Such physiological characteristics, associated to its capacity to use
sulfolipides instead of phospholipids in their membranes confer adaptive advantages to this
microorganism (Van Mooy et al., 2006). Prochlorococcus play an important role in oxygen
production and carbon cycle. Along with Synechococcus, another genus of cyanobacteria, is
responsible for approximately 50% of marine carbon fixation. Besides, Prochlorococcus is a
fundamental primary supplier in the oceanic food webs. The only species described within the
genus is P. marinus (Fu et al., 2007).

Candidatus pelagibacter ubique or SAR11 belongs to the phylum Pseudomonadota and was
isolated in 2002 (Rappé et al., 2002). The term "Candidatus" is used for proposed species that
are not validated according to the bacteriological code. Pelagibacter, along with
Prochlorococcus, and Synechococcus are among the main representatives of the marine
picoplankton, and share many characteristics with the genus Prochlorococcus. It also plays a
major role in the Earth's carbon cycle and is one of the smallest self-replicating cells known
(Giovannoni et al., 2005). The factors that regulate the metabolic requirements of SAR11 are still
largely unknown. Tripp et al. (2008) reported a very unusual requirement for reduced sulfur
compounds. It is hypothesized that species of the genus have been molded by evolution in a low
nutrient ecosystem, such as the Sargasso Sea where it was first discovered in 1990.

Among the Fungi detected in water, many species of the ascomycotan genera Aspergillus were
found, such as 4. clavatus, A. flavus, A. fumigatus, A. nidulans, and A. terreus. Aspergillus is a
very large genus containing around 250 species of wide geographic distribution. Its taxonomic
classification is very complex and is constantly being revised. They are currently classified into
seven subgenera that are subdivided into complexes of related species (Geiser et al., 2007). In
general, Aspergillus are known as opportunistic pathogens of humans, animals and plants. They
are commercially important for its capacity of producing enzymes and organic acids, and may
also act as spoilage organisms. Several species produce mycotoxins, such as aflatoxins, and
many other secondary metabolites (Varga et al., 2011). All the Aspergillus species identified in
this study have been reported in the literature as pathogens of humans and animals and are
commonly isolated from soil (Hedayati et al., 2007; Samson et al., 2011).

Besides Aspergillum species, Laccaria bicolor, Candida albicans, and Cryptococcus neoformans
were identified in water. Laccaria bicolor (Basidiomycota) is an ectomycorrhizal fungus
associated with a range of trees of the temperate and boreal forests of North America. It was the
first ectomycorrhizal fungus to have its genome sequenced and is considered a model organism
for symbiotic genetics studies (Martin & Selosse, 2008). The presence of typically terrestrial
Fungi, such as L. bicolor in aquatic environments in environmental sampling has already been
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reported (Hassett et al., 2019) at the genus level. Nevertheless, it might be an artifact of
analytical procedures, especially in taxonomic annotation, possibly caused by the still limited
knowledge we have of aquatic Fungi (Amend et al., 2019; Bérlocher & Boddy, 2016; Pagani et
al., 2023). Both Candida albicans (Ascomycota) and Cryptococcus neoformans (Basidiomycota)
are Fungi associated with opportunistic diseases, and are of particular concern in HIV-positive
patients (Mora et al., 2012).

In coral samples, the bacterial genera Streptomyces, Shewanella, and Mycobacterium were the
most dominant. Streptomyces are gram-positive filamentous actinomycete Bacteria. The genera
comprise more than 700 species, commonly found in soil and decaying vegetation, and present
very large genomes with high GC content (Nikolaidis et al., 2023). Streptomyces are known by a
complex secondary metabolism, and produce the vast majority of the clinically useful antibiotics
of natural origin, such as streptomycin, neomycin and chloramphenicol (Bibb, 2013). The
presence of Streptomyces in coral samples is not a novelty, and new species have been described
(Buangrab et al., 2022), as well as its potential to produce new antibiotics have been explored
(Zhang et al., 2020).

Shewanella is an ubiquitous gram-negative bacterial genus of mostly aquatic Pseudomonadota.
The physiological and respiratory versatility of Shewanella allows for its wide distribution along
a range of ecological niches. Shewanella strains have the ability of degrading a wide variety of
chemical pollutants (Fredrickson et al., 2008) and may reduce a wide range of metals (Zou et al.,
2019). The impressive metabolic versatility of Shewanella species still includes the production of
enzymes (Lemaire et al., 2019), their use in bioenergy generation (Mukherjee et al., 2020), and
denitrifying activity (Deng et al., 2014). Species of Shewanella have been previously isolated
from the tropical coral genus Favia (Shnit-Orland et al., 2010) and deep-sea Anthothela coral
species (Lawler et al., 2016). The aforementioned studies demonstrated that Shewanella plays an
important role to the overall health of the host by its antibacterial properties, which provide
protection from pathogenic or opportunistic Bacteria.

The metabolic capabilities displayed by the genus Mycobacterium in soil have already had
previously described. Regarding coral, there is only one study reporting Mycobacterium
haemophilum as the causal agent of human subcutaneous infection acquired from a coral injury
in Thailand (Smith et al., 2003). Furthermore, in their review article about the emergence of
mycobacteriosis in aquatic invertebrates, Davidovich et al. (2020) propose that global climate
warming may be influencing microorganisms resistance and host susceptibility.

Aspergillus fungal species (mainly 4. clavatus) prevailed in the samples of coral studied. This
genus has frequently been isolated from coral, including samples from northeast Brazilian reefs
(Paulino et al., 2020). Fungi are known as potential symbionts or pathogens of marine organisms,
and the number of reports of fungal species associated with infections in corals have increased in
frequency and severity (Goes-Neto et al., 2020). The most studied case is the aspergillosis
caused by Aspergillus sydowii. Among the factors that may facilitate the emergence of this
pathogen, increased temperatures stands out, which appears to increase the multiplication and
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resistance of the microorganism and reduce host's resistance (Alker et al., 2001, Kim et al., 2006;
Soler-Hurtado et al., 2016).

Paracoccidioides brasilienses represented around 16% of the Fungi sequences identified in the
coral samples. P. brasiliensis is one of the etiologic agents of paracoccidioidomycosis (PCM), an
endemic human mycosis that mainly affects Brazil (Stiirme et al., 2011). On the other hand, the
yeast Scheffersomyces stipitis (formerly Pichia stipitis) is commonly known for its capacity to
ferment D-xylose to ethanol and has been extensively studied for its promising industrial
applications (Santosh et al., 2017). To date, neither of the two Fungi, P. brasiliensis and S.
stipitis, had been identified in association with corals, and as well as other aforementioned fungal
taxa (e.g.: Antarctomyces psychrotrophicus and Laccaria bicolor), P. brasiliensis must be
regarded as a contamination or artifactual result.

Roles and characteristics of the main Bacteria isolated of water and soil
samples

Some bacterial strains isolated from water and soil samples have demonstrated the ability to
degrade hydrocarbons or produce biosurfactants, which are highly relevant to bioremediation
applications, especially given the island's proximity to oil basins in Brazil.

Rhodococcus rhodochrous is a Gram-positive bacterium with bioremediation potential, acting as
a biodegradation agent for hydrocarbons such as toluene, octane, xylene, naphthalene,
phenanthrene, pyrene, hexadecane, anthracene, eicosane, tetracosane, triacontane, and
pentacontane. This species could be used in the pharmaceutical industry as a biocatalyst for
pharmaceutical waste (Busch et al., 2019; Ivshina et al., 2022). Moreover, R. rhodochrous is able
to inhibit the growth of the fungus Pseudogymnoascus destructans, which causes white-nose
syndrome (WNS), a disease that affects bats (Lemieux-Labonté¢ et al., 2017).

The Nocardia farcinica species was also able to degrade the same range of hydrocarbons
biodegraded by the R. rhodochrous species (Rodrigues et al., 2015b). N. farcinica is a bacterium
of great importance in causing infections in humans and, as well as other species of the genus
Nocardia, can cause brain abscesses in immunocompromised (Galacho-Harriero et al., 2017) and
non-immunocompromised patients (Song et al., 2021). In France, a significant increase in the
occurrence of this species was observed between 2010 and 2014, particularly in patients who
developed nocardiosis. This trend seems to correlate with the increasing use of solid organ
transplantation (SOT) (Lebeaux et al., 2019).

The species Cellulosimicrobium cellulans has the potential to biodegrade the hydrocarbon
hexadecane (Rodrigues et al., 2015b), as well as high molecular weight hydrocarbons from diesel
oil (Nkem et al., 2019), including hydrocarbons from biodiesel (Bertel-Sevilla et al., 2020). Its
biodegradation potential has also been demonstrated in rice cultivation experiments, showing its
ability to degrade the highly selective, hormonal, and long-lasting low-toxicity herbicide known
as quinclorac (QNC) while stimulating effective rice growth (Huang et al., 2021).

The species Microbacterium lacticum shows remarkable potential as a biodegrader of the
hydrocarbon naphthalene (Rodrigues et al., 2015b). M. lacticum is also able to utilise
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hydrocarbons (kerosene, petrol, motor oil, used oil, and crude oil) as a source of carbon and
energy for the production of lysine (Ezemba, 2016), an essential amino acid that is very
important for children and growing animals, as well as for the immune system. M. lacticum
species, in combination with other species such as Stenotrophomonas rhizophila, Bacillus
licheniformis, and Calidifontibacter indicus, are biofilm formers in the dairy industry, which is a
major problem due to its spoilage potential and prevalence (Sadiq et al., 2023).

At least 17 species are known from the genus Exiguobacterium (Kasana & Pandey, 2018), each
with the ability to grow in a variety of environments with different pH and temperature ranges.
These characteristics mean that many isolates are targets for exploitation in various
biotechnological and industrial applications, such as production of enzymes (protease,
pullulanase, amylase, lipase), bioremediation (naphthalene, hexadecane, xylene), and
biodegradation of toxic substances present in the environment, as well as stimulation of plant
growth to increase agricultural productivity (Kasana & Pandey, 2018; Pandey, 2020; Rodrigues
etal., 2015b).

The genus Tistrella is represented by only two species: 7. bauzanensis and T. mobilis, which
occur in high abundance in marine ecosystems. Rodrigues et al. (2015) demonstrated the
biodegradation potential of Tistrella strains for the hydrocarbons phenanthrene, pyrene,
tetracosane, naphthalene, hexadecane, and octane. Tistrella is known to be the only bacterium
capable of producing didemnin, a cyclic depsipeptide compound with potential as an antitumour,
and antiviral drug candidate. Recently, Tang et al. (2023) produced didemnin B using Tistrella
strains and, subsequently, converted didemnin B to plitidepsin by chemical synthesis. Plitidepsin,
besides being an anticancer drug, has also gained prominence as a potential agent in the
treatment of COVID-19 with a Phase III clinical trial (Tang et al., 2023).

Da Silva et al. (2015) identified a group of strains of the genus Bacillus, including three
subspecies Bacillus subtilis subsp. subtilis subgroup A, Bacillus subtilis subsp. subtilis subgroup
D, and Bacillus subtilis subsp. spizizenii, with the ability to produce biosurfactants under high
salinity conditions. These results have promising biosurfactant applications in saline
environments, such as oil recovery, remediation of environments contaminated with oil and
derivatives, cleaning of oil storage tanks, and in wastewater treatment processes. The use of
Bacteria strains with a wide range of tolerance to abiotic factors, including a wide range of pH,
salinity, and the presence of and petroleum compounds, is critical to the viability and
productivity of strains in environmental applications, conditions that normally inactivate most
synthetic surfactants (Krucon et al., 2023; Shavandi et al., 2011).

Furthermore, a comparative genetics study by Dunlap et al. (2020) suggests that the four
subspecies Bacillus subtilis subsp. subtilis, Bacillus subtilis subsp. spizizenii, Bacillus subtilis
subsp. inaquosorum, and Bacillus subtilis subsp. estercoris should possibly be classified as
species due to the distinct production of bioactive secondary metabolites, highlighting the
complexity and broad potential of this genus in biotechnology and environmental research.
Although research using DNA sequencing on environmental samples from Trindade island is
still relatively scarce, there is a clear growth trend in the so-called "molecular era". Nonetheless,
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to obtain deeper knowledge about the island's diverse habitats, which are unique environments, it
is essential to direct more efforts towards developing projects in this direction. This information
is extremely relevant, considering the uniqueness of this space, from which we still have a lot to
learn.

Conclusion

In this study, we presented a comprehensive and detailed description of the main Bacteria,
Archaea, and Fungi identified in soil, water, and coral samples from Trindade Island, as well as
their potential biotechnological. We covered the most relevant literature and recent discoveries
on those taxa. Overall, our results indicate a cryptic microbial diversity in several environments
that can be influenced by anthropogenic impact, a great microbial diversity of isolates not yet
identified at the species level, as well as, a promising potential use of this microbial diversity for
oil bioremediation, hydrocarbon degradation, and production of biosurfactants.

Additionally, our review provide recommendations for: 1) developing studies that expand our
knowledge of diversity through advances in metagenomics from a spatial and temporal
perspective, 1i) investigating endemic taxonomic novelties, iii) identifying potential
environmental threats and exploring biotechnological solutions that can contribute to the
conservation of the island, and iv) studies that explore the biological potential of microbiota for
biotechnological applications in various industries, including the oil industry.

As there still is a remarkable gap of our understanding of soil community ecology of Trindade
island, our research group is currently conducting an integrative study of both taxonomical and
functional diversity of soil microorganisms, using shotgun metagenomics, associated with highly
characterized physicochemical analyses in distinct vegetational areas of this fascinating and
isolated island of the South Atlantic.
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Figure 1

PRISMA flowchart of studies identified by database searches

This figure comprises the PRISMA flowchart of studies identified by database searches.
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Figure 2

Word cloud highlighting the profile of the articles included in the review.

This figure depicts a word cloud highlighting the profile of the articles included in the review.
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Figure 3

Map showing the locations of all types of samples analyzed in the selected articles.

This figure encompasses a map showing the locations of all types of samples analyzed in the
selected articles. (1): Meirelles et al., 2015, (2): Camara et al., 2023, (3): Rodrigues et al.,
2018, (4): Morais et al., 2016, (5): Rodrigues et al., 2015b, (6): da Silva et al., 2015, (7): Pylro
et al., 2014.
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Figure 4

Taxonomic distribution of the Archaea, Bacteria, and Fungi identified and described in
the samples of soil, water, and corals evaluated in the papers under analysis.

This figure shows the taxonomic distribution of the Archaea, Bacteria, and Fungi identified
and described in the samples of soil, water, and corals evaluated in the papers under

analysis. Phyla (a) and Genera (b) of Archaea and Bacteria, and Phyla (c) and Genera (d) of

Fungi.
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Figure 5

Sharedness and uniqueness of phyla (left) and genera (right) of Archaea (a:), Bacteria
(b:), and Fungi (f:) between groups of culture-independent and culture-dependent
samples.

This figure presents the sharedness and uniqueness of phyla (left) and genera (right) of

Archaea (a:), Bacteria (b:), and Fungi (f:) between groups of culture-independent and culture-

dependent samples.
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Figure 6

Alpha (a) and beta (b) diversity of culture-dependent and culture-independent samples.

This figure encompasses both alpha (a) and beta (b) diversity of culture-dependent and

culture-independent samples.
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Figure 7

Network of strong associations between the phyla (a) and genera (b) of Archaea,
Bacteria, and Fungi with the sample groups.

This figure depicts the network of strong associations between the phyla (a) and genera (b)

of Archaea, Bacteria, and Fungi with the sample groups.
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Table 1l(on next page)
Eligibility criteria for the inclusion of articles in the systematic review.

This table comprises the eligibility criteria for the inclusion of articles in the systematic

review.
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1 Table 1. Eligibility criteria for the inclusion of studies in the systematic review.
Eligibility criteria
Sampling location Trindade Island, Brazil
Sample type Any substrate
Sequencing type Shotgun metagenomics, amplicons 16S rRNA,
18S rRNA or ITS
Focus taxa Studies must focus on the domains Bacteria,

Archaea, or the kingdom Fungi
Study Original
Exclusion criteria

Sampling location  Studies not conducted on Trindade Island, Brazil

Sample type Studies that do not involve substrate samples or
focus on human hosts

Sequencing type Studies not using shotgun metagenomics, or
amplicons for 16S rRNA, 18S rRNA, or ITS

Focus taxa Studies that do not focus on Bacteria, Archaea, or
Fungi, or that focus on other domains/kingdoms

Study Review articles, meta-analyses, editorials, or other

non-original studies
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Table 2(on next page)

Studies included in the systematic review.

This table shows the studies included in the systematic review.

Peer] reviewing PDF | (2024:08:104995:0:1:NEW 23 Aug 2024)



PeerJ

Table 2. Studies included in the systematic review.

Article Taxa studied Substrate Samples/Treat Study Approach Marker Sequencing
ments method gene platform
Meirelles et al., 2015 Archaea, Water and NOR Island W, Culture- WGS - 454 GS
Bacteria, Coral PRI Island W, independent metagenomics FLX
Eukaryota tissue SAN Island W, (ICul) Titanium
(Fungi, FAR Island C,
Metazoa, NOR Island C
Protozoa,
Viridiplantae
), Viruses
Camara et al., 2023 Archaea, Soil PD5, PD6, PF7  Culture- Amplicon 16S [1lumina
Bacteria, independent rRNA, MiSeq
Eukaryota (ICul) ITS
(Fungi,
Metazoa,
Protozoa,
Chromista,
Viridiplantae
)
Rodrigues et al., 2018 Archaea, Water Water sample /  Culture- Amplicon 16S Ion Torrent
Bacteria Oil, FLU, HEX, dependent rRNA PGM
PHE, (DCul)
PHE+FLU,
PHE+HEX,
PHE+OIL,
PHE+PYR,
PYR

Morais et al., 2016 Archaea, Soil Crude Oil Culture- Amplicon 16S [1lumina
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Bacteria,
Fungi
Rodrigues et al., 2015b  Bacteria Water
da Silva et al., 2015 Bacteria Soil
Pylro et al., 2014 Archaea, Soil
Bacteria
Camara et al., 2022 @ Archaea, Soil
Bacteria,

Eukaryota

Water sample /
TRHI, TRH2,
TRH3, TRH4,
TRNI1, TRN2,
TRN3, TRN4,
TRNS, TRNG,
TRN7, TRNS,
TRN9, TRN10,
TRNI11

P01, P02, P03,
P04, P05, P06,
P07, P08, P09,
P10, P11, P12/
TR7, TRS,
TR10, TR12,
TR13, TR14,
TR17, TR19,
TR22, TR27,
TR271I, TR35II,
TRA47II, TR5911
P04, P09, P11

PDS, PD6, PF7

dependent
(DCul)
Culture-
dependent
(DCul)

Culture-
dependent
(DCul)

Culture-

independent
(ICul)

Culture-
independent
(ICul)

Amplicon

Amplicon

Amplicon

Amplicon

rRNA,
ITS
16S
rRNA

16S
rRNA

16S
rRNA

16S
rRNA,
ITS

MiSeq

MegaBACE
1000 DNA
Analysis
System

MegaBACE
1000 DNA
Analysis
System

Illumina
MiSeq/Ion
Torrent
PGM
Illumina
MiSeq
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(Fungi,
Metazoa,
Protozoa,
Chromista,
Viridiplantae

)

2 @ Article excluded from the discussion because it is equivalent to the research by Camara et al. (2023).
3
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