Microbial diversity and biotechnological potential of terrestrial and aquatic environments from the remote South Atlantic Trindade Island, Brazil: Trends and Perspectives (#104995)

First submission

Guidance from your Editor

Please submit by 11 Sep 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the materials page.

- 7 Figure file(s)
- 2 Table file(s)
- 1 Raw data file(s)

Systematic review or meta analysis

- ! Have you checked our <u>policies</u>?
- Is the topic of the study relevant and meaningful?
- ! Are the results robust and believable?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Microbial diversity and biotechnological potential of terrestrial and aquatic environments from the remote South Atlantic Trindade Island, Brazil: Trends and Perspectives

Glen Jasper Yupanqui García ¹, Fernanda Badotti ², Alice Ferreira-Silva ³, Joyce Dutra ³, Kelmer Martins-Cunha ⁴, Rosimeire Gomes ³, Diogo Costa-Rezende ⁵, Thairine Mendes-Pereira ³, Carmen Delgado Barrera ⁶, Elisandro Ricardo Drechsler-Santos ⁷, Aristóteles Góes-Neto ^{Corresp. 1, 3}

Corresponding Author: Aristóteles Góes-Neto Email address: arigoesneto@gmail.com

Trindade Island, located in the middle of the South Atlantic Ocean, faces environmental challenges such as the threat of pollution and reduced biodiversity. This study synthesizes knowledge of the microbial community (Archaea, Bacteria, and Fungi) on the island, highlighting their ecological roles and biotechnological potential. A series of studies using shotgun metagenomic sequencing, 16S and ITS amplicon techniques has been compiled, revealing a rich microbial diversity in soil, seawater, and coral tissue samples. Dominant soil genera such as Acidothermus, Mycobacterium, and Conexibacter play potential roles in cellulose degradation, hydrocarbon bioremediation, and soil ecosystem cycling. Water samples showed dominance of *Prochlorococcus* and *Pelagibacter*, which are important for marine carbon fixation. Coral-associated Bacteria such as Streptomyces, Shewanella, and Mycobacterium are involved in antibiotic production, metal reduction, and pathogenesis. Soil fungal diversity includes Mortierella and Antarctomyces, while water samples show Aspergillus species. Coral samples display a predominance of the genus Aspergillus, with unexpected discoveries such as Paracoccidioides brasilienses and Scheffersomyces stipitis, raising the possibility of artifactual results, as well as Laccaria bicolor in water samples, and Antarctomyces psychrotrophyus in soil samples. Isolated bacterial strains show remarkable abilities in hydrocarbon degradation and biosurfactant production, which are essential for bioremediation in oil-contaminated environments. Strains such as Rhodococcus rhodochrous, Nocardia farcinica, Exiguobacterium, and Tistrella stand out for

¹ Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

² Graduate Program in Chemistry, Federal Center of Technological Education of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

Graduate Program in Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

⁴ Graduate Program in Plants, Algae, and Fungi, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil

Graduate Program in Botany, State University of Feira de Santana, State University of Feira de Santana, Feira de Santana, Bahia, Brazil

⁶ Graduate Program in Biochemistry, University of San Francisco Xavier of Chuquisaca, Sucre, Bolivia, Sucre, Bolivia

MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil

their biotechnological potential. This study highlights the importance of the microbial diversity of Trindade Island through molecular research to provide essential knowledge for biodiversity conservation and biotechnological applications, especially in petroleum-related sectors.

Microbial diversity and biotechnological potential of terrestrial and aquatic environments from the remote South Atlantic Trindade Island, Brazil: Trends and **Perspectives**

4 5

1

2

3

Glen Jasper Yupanqui García ¹, Fernanda Badotti ², Alice Ferreira-Silva ¹, Joyce Dutra ³, Kelmer 6 7 Martins-Cunha ⁴, Rosimeire Gomes ³, Diogo Costa-Rezende ⁵, Thairine Mendes-Pereira ³, 8

Carmen Delgado Barrera ⁶, Elisandro Ricardo Drechsler-Santos ⁷, Aristóteles Góes-Neto ^{1,3}

9

- (1) Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of 10
- Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. 11
- 12 (2) Graduate Program in Chemistry, Federal Center of Technological Education of Minas Gerais,
- 13 Belo Horizonte, Minas Gerais, Brazil
- (3) Graduate Program in Microbiology, Institute of Biological Sciences, Federal University of 14
- Minas Gerais, Belo Horizonte, Minas Gerais, Brazil 15
- (4) Graduate Program in Plants, Algae, and Fungi, Federal University of Santa Catarina, 16
- Florianópolis Santa Catarina, Brazil 17
- (5) Graduate Program in Botany, State University of Feira de Santana, Feira de Santana, Bahia, 18
- **Brazil** 19
- (6) Graduate Program in Biochemistry, University of San Francisco Xavier of Chuquisaca, 20
- 21 Sucre, Bolivia
- (7) MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, 22
- Florianópolis, Santa Catarina, Brazil 23

24 25

26

Abstract

272829

30

31

32 33

34

35 36

37

38

39

40 41

42

43 44

45

46

47 48

49

Trindade Island, located in the middle of the South Atlantic Ocean, faces environmental challenges such as the threat of pollution and reduced biodiversity. This study synthesizes knowledge of the microbial community (Archaea, Bacteria, and Fungi) on the island, highlighting their ecological roles and biotechnological potential. A series of studies using shotgun metagenomic sequencing, 16S and ITS amplicon techniques has been compiled, revealing a rich microbial diversity in soil, seawater, and coral tissue samples. Dominant soil genera such as Acidothermus, Mycobacterium, and Conexibacter play potential roles in cellulose degradation, hydrocarbon bioremediation, and soil ecosystem cycling. Water samples showed dominance of *Prochlorococcus* and *Pelagibacter*, which are important for marine carbon fixation. Coral-associated Bacteria such as Streptomyces, Shewanella, and Mycobacterium are involved in antibiotic production, metal reduction, and pathogenesis. Soil fungal diversity includes Mortierella and Antarctomyces, while water samples show Aspergillus species. Coral samples display a predominance of the genus Aspergillus, with unexpected discoveries such as Paracoccidioides brasilienses and Scheffersomyces stipitis, raising the possibility of artifactual results, as well as Laccaria bicolor in water samples, and Antarctomyces psychrotrophyus in soil samples. Isolated bacterial strains show remarkable abilities in hydrocarbon degradation and biosurfactant production, which are essential for bioremediation in oil-contaminated environments. Strains such as Rhodococcus rhodochrous, Nocardia farcinica, Exiguobacterium, and *Tistrella* stand out for their biotechnological potential. This study highlights the importance of the microbial diversity of Trindade Island through molecular research to provide essential knowledge for biodiversity conservation and biotechnological applications, especially in petroleum-related sectors.

50 51 52

Keywords: Trindade Island; Microbial composition; Metagenome; Bioprospection.

Introduction

Trindade Island, the largest one of the Trindade-Martim Vaz Archipelago, covers an area of approximately 10 km² in the South Atlantic Ocean and is located at the same latitude as the municipality of Vitória, Espírito Santo - Brazil, approximately 1,140 km from the coast (Camacho-Montealegre et al., 2019; Câmara et al., 2023). On Trindade Island, soils are generally fertile as a result of lithological, topographical, and biological activity influences, which are often closely linked (Clemente et al., 2009). The volcanic arc, to which Trindade Island belongs, is characterized by a high sodium content, providing a continuum of niche opportunities for salt-tolerant microorganisms (da Silva et al., 2015).

The island is home to a rich biota, including endemic and endangered species (Costa-Rezende et al., 2023). Nonetheless, the island faces several historical and recent environmental challenges that require immediate attention, as well as the implementation of effective strategies. Potential pollution from various sources threatens the integrity of this marine and insular ecosystem. These environmental threats include possible contamination with toxic metals resulting from fires, rock erosion, volcanic processes and sediment movement (Cariou et al., 2017; Santos-Silva et al., 2018), as well as the presence of plastic waste (Andrades et al., 2018; de Souza Petersen et al., 2016). Furthermore, the island is located close to the Campos Basin oil fields, which is an additional concern for the conservation of the marine environment and wildlife (Câmara et al., 2023; Rodrigues et al., 2018). In addition, human interventions, such as the introduction of goats from the years 1700s up to 2005, have led to a reduction in biodiversity due to their negative impact on the soil for pasturing and the consumption of native trees (Câmara et al., 2023; Costa-Rezende et al., 2023; Rodrigues et al., 2018; Silva & Alves, 2011).

In the environment, microorganisms are extremely important in ecological processes from the oceans to soils, such as biogeochemical cycles, climate regulation, carbon storage, disease propagation, and pollutant transformation, as well as can enhance functionality relationships among micro and macroorganisms (e.g. Ducklow, 2008; Escalas et al., 2019; Giller et al., 2004). Trindade Island has been the subject of studies on microbial diversity (eg. Câmara et al., 2023; Meirelles et al., 2015) and biotechnological potential (eg. da Silva et al., 2015; Rodrigues et al., 2015a; Rodrigues et al., 2018). Nevertheless, little is known about the relationship between the structural and functional diversity specific to Archaea, Bacteria, and Fungi on this Island (Costa-

84 Rezende et al., 2023).

There is a consensus that microbial diversity is linked to ecosystem functioning, meaning that communities with higher microbial richness improve ecosystem performance (e.g. Delgado-Baquerizo et al., 2016; Jing et al., 2015; Maherali et al., 2007; Semchenko et al., 2018). Archaea, Bacteria, and Fungi can represent unique species that perform specific functions and play fundamental roles in biodiversity conservation (Olofintila & Noel, 2023). These microorganisms can act as highly sensitive indicators of environmental pollution and contamination (Korneykova et al., 2021), playing a very important role in the protection of ecosystems, especially considering the imminent threat of contamination by oil and other pollutants (Câmara et al.,

- 93 2023; Rodrigues et al., 2018). Moreover, they may also have a high biotechnological potential,
- 94 including the ability to degrade pollutants through the production of specialized enzymes (Ghosh
- et al., 2020) and also the ability to degrade antibiotic substances (Lei et al., 2023), which can be
- 96 harmful in natural environments.
- 97 Based on this scenario, the aim of this study was to synthesize and interpret, in a systematic way,
- 98 the knowledge of the microbial communities (Archaea, Bacteria, and Fungi) of Trindade Island,
- 99 highlighting, when possible, the ecological role and biotechnological potential of the most
- 100 representative taxa.

Survey Methodology

103104

Data collection

- 105 This systematic review was based on the Preferred Reporting Items for Systematic Reviews and
- 106 Meta-Analyses (PRISMA) guidelines (Page et al., 2021). Records were searched on 2 August
- 107 2024 in the Scopus, Web of Science, PubMed, PubMed Central, Dimensions, and Google
- 108 Scholar databases using the Publish or Perish v8 tool (Harzing, 2007). The keywords used to
- 109 search for records were: "trindade island" AND (metagenomics OR shotgun OR [amplicons
- AND (16S OR 18S OR ITS OR "internal transcribed spacer")]. There were no restrictions on
- document type, language or publication date to avoid excluding relevant records.
- 112 The results of the database searches were exported in CSV format. The scripts *format_input.py*
- 113 (Jasper, 2023a) and *remove duplicates.py* (Jasper, 2023b) were used to select unique documents.
- 114 These scripts read the CSV files and filter out DOI-less and duplicate documents from the set of
- records (Dutra et al., 2023a,b; Gomes et al., 2023). The researchers García, G.J.Y. and Dutra,
- 116 J.d.C.F. reviewed both the unique and DOI-less documents to select the scientific articles that
- 117 met the selection criteria (Table 1). Disagreements in the selection of documents were resolved
- 118 by the researcher Gomes, R.F.
- 119 After the initial review of titles and abstracts, only studies that addressed Trindade Island using
- 120 shotgun metagenomics or amplicon sequencing were selected. These studies underwent a
- 121 thorough evaluation, applying well-defined inclusion and exclusion criteria (Table 1),
- 122 considering the collection area, sample type, methodologies used and the relevance of the results.
- 123 The following data were extracted from the selected documents: taxonomic abundance of
- 124 microorganisms (Archaea, Bacteria and Fungi) obtained by shotgun metagenomics and amplicon
- sequencing, type of substrate, samples or treatments, metagenomic approach, marker genes and
- sequencing platform used.

127128

Extraction of taxonomic data

- 129 The set of selected documents was used to extract taxonomic information on Archaea, Bacteria,
- and Fungi, both in the main text and in the supplementary materials. Because of the use of
- different taxonomic databases or different versions of the same database between the studies
- analyzed, it was necessary to standardize the nomenclature of the taxa, identify synonyms, and

- position in classification. This task was carried out using a local script written in Python v3.10.8, 133
- which consulted the Global Biodiversity Information Facility database (GBIF Secretariat, 2023) 134
- via its API. For taxa missing from the GBIF database, manual searches were performed in the 135
- NCBI Taxonomy database (Schoch et al., 2020). 136

Grouping samples

- 139 The sequences representing Archaea, Bacteria, and Fungi extracted from the papers assessed in
- 140 this study were grouped to simplify data analysis. For grouping, we considered the types of
- 141 substrates and the sequencing methods used. The analyzed samples were collected from various
- 142 sources, such as soil, water, and coral tissue, and were obtained by both culture-dependent
- 143 approaches (we attributed the suffix **DCul**) and culture-independent methodologies (we
- 144 attributed the suffix **ICul**).
- 145 In order to facilitate comparative analyses, we organized the samples into five distinct categories:
- (i) culture-independent soil samples (Three samples named PD5, PD6, PF7, see Table 2) were 146
- 147 named Soil ICul; (ii) culture-independent water samples (Three samples named
- 148 NOR Island W, PRI Island W, SAN Island W, see Table 2) were designated as Water ICul;
- 149 (iii) culture-independent coral tissue samples (Two samples named FAR Island C,
- NOR Island C, see Table 2) were named Coral ICul; (iv) culture-dependent soil sample (One 150
- sample named Crude Oil, see Table 2) were identified as Soil DCul; and, finally, (v) twelve 151
- treatments, from seawater samples (Named Oil, FLU, HEX, PHE, PHE+FLU, PHE+HEX, 152
- 153 PHE+OIL, PHE+PYR, PYR, see Table 2) were grouped under the Water DCul category. It is
- worth noting to highlight that taxonomic classification at the genus and species levels was only 154
- possible when cultivation-independent sequencing techniques were employed. 155
- The other kingdoms described in our study were not analyzed because the information recovered 156
- 157 was limited; however, these data were also extracted. For a better spatial understanding of the
- 158 samples, a static map adapted from Witovisk et al. (2018) and an interactive map based on OSM
- 159 (OpenStreetMap), and the Leaflet JavaScript library were generated.

160 161

Analysis of the communities of Archaea, Bacteria, and Fungi

- A series of analyses were performed on the five sets (Soil ICul, Water ICul, Coral ICul, 162
- 163 Soil DCul, and Water DCul) using R v4.2.1. The relative abundances of all taxonomic
- 164 categories were analyzed using bar graphs generated using the ggplot2 v3.4.3 package
- (Wickham, 2011). Shared (core) and unique (satellite) taxa were analyzed using Venn diagrams. 165
- generated using the venn v1.11 package (Dusa, 2018). The alpha and beta diversity analysis were 166
- performed with the abundances of the order category. Shannon indices were calculated with the 167
- 168 vegan v2.6.4 package (Dixon, 2003) and plotted with the ggplot2 v3.4.3 package. Principal
- coordinates analysis were generated using the packages vegan v2.6.4, ggrepel v0.9.3 169
- (Slowikowski et al., 2018), and ggplot2 v3.4.3. 170
- Analyzes of strong association networks between groups and taxa were calculated using the 171
- package indicspecies v1.7.14 (de Caceres et al., 2016), using the *multipatt* function with the 172

- point biserial correlation coefficient (r.g) to calculate the strength of association, which was considered statistically significant with a p < 0.05. Networks were constructed using Cytoscape
- v3.10.1 software (Shannon et al., 2003) with the edge-weighted sping-embedded layout. In the
- networks, the circles represent the taxa, the size of the circles represents the abundance of the
- taxa, the diamonds represent the sample groups, and the length of the edges represents the strength of the association; the smaller the edge, the stronger the sample-taxon association.
- 179 Non-parametric multivariate analyses were performed using the PERMANOVA test and the
- 180 Bray-Curtis dissimilarity index with 9999 permutations in PAST v4.11 software (Hammer &
- Harper, 2001). The aim was to compare the community structure between the sample groups. In
- 182 addition, the pairwise PERMANOVA model was used to assess statistically significant
- differences between pairs, with a significance level of p < 0.05.
- Rodrigues et al. (2015) and Da Silva et al. (2015) identified a group of bacterial isolates from
- partial sequencing of the 16S rRNA gene using the MegaBACE 1000 DNA Analysis System
- 186 (SANGER) platform (Table 2) but did not present abundance data; therefore, the abundance
- information was not included in the comparative analyses.
- 188 Additionally, to enrich the presentation of the profiles of the selected searches, a word cloud was
- 189 generated using the wordcloud v1.9.1.1 (Mueller, 2023) and pillow v9.4.0 (Clark, 2023)
- 190 libraries, based on the text of the selected articles.

Study selection

191

192

205

206

- The database search protocol yielded a total of 274 studies [Scopus (n = 24), Web of Science (n = 24), where n = 24 is the search protocol yielded a total of 274 studies [Scopus (n = 24)].
- 194 = 1), PubMed (n = 2), PubMed Central (n = 13), Dimensions (n = 98), and Google Scholar (n =
- 195 [136], of which 67 were excluded because they were duplicates. Two hundred and one unique
- 196 articles were included in the paired title analysis, of which eight studies were selected on
- methodology reading and included in our review (Fig. 1, Data S1, Data S2).
- 198 The researchers García, G.J.Y. and Dutra, J.d.C.F. agreed in their selection of documents, with
- 199 only two cases of disagreement, which were resolved by the researcher Gomes, R.F., who
- 200 accepted one of the documents and rejected the other because it did not meet the selection
- criteria (Table 1). Finally, the researchers selected eight documents that met the selection criteria
- 202 (Fig. 1, Table 2). Câmara et al. (2022) and Câmara et al. (2023) worked with the same samples
- and presented equivalent results; thus, the study of Câmara et al. (2022) was not included in the
- 204 discussion as it was redundant.

Profile of selected articles

- 207 After analyzing the selected articles, four of them focused on the study of bioremediation of
- 208 hydrocarbon contamination (da Silva et al., 2015; Morais et al., 2016; Rodrigues et al., 2015b;
- 209 Rodrigues et al., 2018) (Fig. 2). Most of the studies used sequencing of the 16S rRNA marker
- 210 gene as the approach. Furthermore, most of the articles analyzed soil and seawater samples
- 211 (Table 2, Fig. 3), with the exception of the study by Meirelles et al. (2015), which included

analyses of coral tissues (Table 2). For a more detailed visualization of the samples, an interactive map is available at: https://glenjasper.github.io/leaflet-trindade-island-review-map.

214215

Recovered communities of Archaea, Bacteria, and Fungi

The focus of this review was to analyze the communities of Archaea, Bacteria, and Fungi, but 216 the taxa of the other kingdoms, which are not part of this review, are included in Data S3. These 217 218 tables contain standardized information according to the GBIF and NCBI Taxonomy databases. 219 The selected articles presented results in different taxonomic categories. Meirelles et al. (2015) 220 and Câmara et al. (2023) reported up to the genus level, Rodrigues et al. (2018) displayed up to 221 the family level, and Morais et al. (2016) exhibited up to the order level. Rodrigues et al. (2015) 222 and da Silva et al. (2015) sequenced the 16S rRNA gene using the SANGER method and; 223 therefore, identified a small community of bacterial species. Thus, their results were only 224 considered in the discussion. Because of these differences in the presentation of taxonomic 225 results, comparative analyses were mainly performed at the phylum, order, family, and genus 226 level. Although the studies by Pylro et al. (2014) met our selection criteria, the authors did not 227 show taxonomic data and limited themselves to comparing amplicon analyses approaches. 228 Hence, this article could not be considered in our analyses.

229 230

231

236

237

238

239240

241242

243244

Bacterial predominance, high rates of unclassified sequences in soil, and high abundance of satellite in water and coral samples

Regarding the analysis of Archaea and Bacteria, the vast majority of the community was identified as Bacteria, with Archaea being practically non-existent in the groups: they were only detected in the environmental samples, and the highest relative abundance was detected in coral samples, barely exceeding 3% (Data S4).

The amount of unclassified reads is remarkable, especially for the Soil_ICul group. Within the group, at the family level, 36.12% of the reads were unclassified. At the genus level, the percentage of unclassified reads reached almost 70%, and at the species level 99.7% of the reads were unclassified, with only one species of Bacteria identified (*Dinghuibacter silviterrae*). Interestingly, for Water_ICul and Coral_ICul groups, around 8% of the reads were unclassified at family and genera levels, and decreased to less than 1% at the species level (more details in the Data S4). Nonetheless, the percentage of reads found in low abundance (<1%, <2%, or <3%) and thus classified as Other, was remarkably high in Water_ICul and Coral_ICul groups at species (Fig. S1I), genus (Fig. 4B), family (Fig. S1G) and order (Fig. S1E) classification levels.

245246

Distribution of Bacteria in sample groups

At the phylum level, the presence of Pseudomonadota was notable in all groups (Fig. 4A), except for Soil_DCul, in which the predominant phyla was Actinobacteriota (around 20%), followed by Pseudomonadota (17.3%), and Acidobacteriota (12%). In Soil_ICul, Actinobacteriota and Pseudomonadota were found in the same amount (around 26%), followed by Acidobacteriota (12.8%), Verrucomicrobiota (10.2%), and Chloroflexota (10.3%). In Water DCul the dominance

- of Pseudomonadota (81.7%) was remarkable. Besides, the phylum Bacteroidota (16.7%) was
- 253 also identified. In Water ICul Pseudomonadota (65.5%) was dominant, followed by
- 254 Cyanobacteria (19.3%) and Bacteroidota (5.5%). Finally, for Coral_ICul group, Pseudomonadota
- 255 prevailed (39.5%); however, many other phyla were detected in smaller amounts:
- 256 Actinobacteriota (9.3%), Firmicutes (8.8%), Bacteroidota (8.2%), Cyanobacteria (6%),
- 257 Chloroflexota (4.3%), Desulfobacterota (3.7%), Planctomycetota (3.6%), Myxococcota (2.5%),
- Acidobacteriota (2.4%), Poribacteria (2.3%), Verrucomicrobiota (2%), Thermoproteota (1.6%),
- and Deinococcota (1.1%).
- 260 In general, there was no predominant family of Bacteria in the groups, as the percentages were
- 261 similar, with the exception of the Water_DCul group. In the latter, the dominance of
- 262 Oceanospirillaceae (35.8%) was observed, followed by Alcanivoracaceae (16%)
- 263 Flavobacteriaceae (13.4%), and Rhodobacteraceae (12.2%). Rhodobacteraceae was detected in
- water and coral samples. In Water_ICul, Cyanobiaceae (14.5%) is slightly increased compared to
- 265 the others (Fig. S1G).
- 266 Acidothermus (around 10%) was the dominant genus in Soil ICul group, followed by
- 267 Mycobacterium (3%) and Conexibacter (2%). As mentioned, at the species level, only
- 268 Dinghuibacter silviterrae was detected (0.3%). In Water_ICul group, the genera
- 269 Prochlorococcus (around 15%), Vibrio (7%) and Pelagibacter (6.6%) predominated, as well as
- 270 the species *Prochlorococcus marinus* (14.3%). In the Coral_ICul group, there were no dominant
- 271 genera and a striking similarity of relative abundances between *Pseudomonas* (1.8%),
- 272 Streptomyces (1.7%), Mycobacterium (1.5%), Cyanothece (1.5%), Burkholderia (1.3%),
- 273 Geobacter (1.1%), Bacillus (1.1%), Roseobacter (1.1%), Solibacter (1.1%), Roseiflexus (1.1%),
- 274 Shewanella (1%), and Bacteroides (1%) (Fig. 4B).

Distribution of Fungi in the samples

- 277 Similarly to the results found for Bacteria and Archaea, around 80% of the reads belonging to
- Fungi were unclassified at the species level and 50% at the genus level for the Soil ICul group.
- 279 For the Water ICul and Coral ICul groups, taxa with lower abundance (<1%) had high
- presence, varying between 12% and 17%, in the family, genus, and species levels (Fig. 4D, Fig.
- 281 S1H, Fig. S1J).
- Fungi belonging to the phylum Ascomycota predominated in all groups, except for Soil DCul,
- 283 where Mucoromycota was the most abundant. Basidiomycota was the second most common
- 284 phylum found, except in Soil DCul (Fig. 4C). Aspergillus was the predominant genus in
- 285 Coral ICul (34.7%) and Water ICul (19%) groups; however, it was not found in Soil_ICul
- 286 group. In Soil ICul, the relative abundances of genera were similar, including Mortierella
- 287 (7.4%), Apiotrichum (6.3%), Antarctomyces (6.1%), Pseudogymnoascus (5%), and Coniochaeta
- 288 (4.5%). Antarctomyces psychrotrophicus (6.1%) and Mortierella huminis (4%) were the main
- species identified (Fig. 4D, Fig. S1J).
- 290 Many species of Aspergillus were found in the water samples, such as A. nidulans (4.8%), A.
- 291 fumigatus (4.8%), A. clavatus (2.9%), A. flavus (2.9%), and A. terreus (2.9%), all of them with

- 292 similar relative abundance. Still, among the most abundant species were Laccaria bicolor
- 293 (8.6%), Cryptococcus neoformans (6.6%), and Candida albicans (5.7%).
- 294 Aspergillus clavatus prevailed in coral samples (28.6%). Other species of Aspergillus identified
- 295 were A. ficheri (2.3%), A. flavus (2%), and A. nidulans (1.3%). Still, Paracoccidioides
- brasilienses (14%), Scheffersomyces stipitis (7.5%), and Talaromyces stipitatus (5.2%) were
- 297 found in relatively high amounts in coral samples.

Shared (core) and unique (satellite) taxa between sample groups

- 300 Venn diagram analyses highlighted the shared and unique taxa of representatives of the Archaea
- and Bacteria domains, as well as the Fungi kingdom, among the culture-independent (Soil_ICul,
- Water ICul, and Coral ICul) and culture-dependent (Soil DCul and Water DCul) groups for all
- 303 the taxonomic categories (Fig. S2, Data S5).
- 304 Based on the data analyzed from the groups of non-cultured and cultured samples, 50 phyla of
- Bacteria were identified, followed by six phyla of Archaea, and seven phyla of Fungi (Fig. 5A).
- 306 In addition, bacterial phyla were identified in all samples. In contrast, no archaeal or fungal phyla
- 307 were detected in the Water DCul group.
- 308 The groups of non-cultured and cultured samples shared six bacterial phyla (Actinobacteriota,
- 309 Bacteroidata, Cyanobacteria, Planctomycetota, Pseudomonadota, and Verrucomicrobiota), while
- 310 the groups Soil_ICul and Soil_DCul had uniqueness in six and 13 bacterial phyla, respectively
- 311 (Fig. 5A).
- 312 The Water ICul and Coral ICul groups shared four phyla of Archaea (Halobacteriota,
- 313 Methanobacteriota, Thermoplasmatota, and Thermoproteota) while the Soil DCul group
- 314 displayed uniqueness in two phyla of Archaea (Euryarchaeota and Parvarchaeota). The
- 315 Soil_ICul, Soil_DCul, Water_ICul, and Coral_ICul groups shared two phyla of Fungi
- 316 (Ascomycota and Basidiomycota). Only the Soil_ICul group exibited uniqueness in relation to
- 317 two phyla of Fungi (Mucoromycota and Glomeromycota) (Fig. 5A).
- 318 Figure S8C shows that the five groups shared three orders of Bacteria (Burkholderiales,
- 319 Rhizobiales, and Xanthomonadales). The Coral ICul, Water ICul, Water DCul, Soil ICul, and
- 320 Soil DCul groups have two, two, three, 19, and two exclusive bacterial families, respectively.
- 321 The Coral ICul, Water ICul, and Soil ICul groups have one, one, and 45 exclusive fungal
- 322 families respectively. Only the Coral ICul group had two unique archaeal families. It is worth
- 323 noting that the Soil DCul and Water DCul groups only had Bacteria at the family level, with
- 324 four families (Burkholderiales, Rhizobiales, Sphingomonadales, and Xanthomonadales) shared
- 325 between these groups.
- When analyzing genera, no results in this taxonomic category were presented by the studies
- 327 using culture-dependent methods. Among the bacterial genera, the Water ICul group stood out
- 328 for its remarkable diversity, with 555 genera identified, followed by the Coral ICul and
- 329 Soil ICul groups with 526 and 34 genera respectively (Fig. 5B, Data S5). These three groups
- 330 shared 15 genera (Acidothermus, Acinetobacter, Burkholderia, Chthoniobacter, Conexibacter,
- 331 Flavobacterium, Haliangium, Legionella, Mucilaginibacter, Mycobacterium, Paraburkholderia,

- 332 Pedosphaera, Phenylobacterium, Pseudomonas, and Rhodomicrobium) and 502 genera were
- shared between the Coral ICul and Water ICul groups. In addition, the Coral ICul, Water ICul, 333
- and Soil ICul groups had 24, 53 and 19 exclusive bacterial genera, respectively. 334
- For the archaeal genera, the Coral ICul group presented 47 genera, 14 of which were unique. In 335
- 336 contrast, the Water ICul group showed 36 archaeal genera, of which three were exclusive
- (Ignisphaera, Metallosphaera, and Methanolacinia) (Fig. 5B). When analyzing the fungal 337
- genera, a total of 202 genera were observed. The Coral ICul, Water ICul, and Soil ICul groups 338
- had six shared genera (Aspergillus, Candida, Chaetomium, Malassezia, Saccharomyces, and 339
- *Talaromyces*) and 12, seven, and 153 exclusive genera, respectively (Fig. 5B). 340

Analysis of alpha and beta diversity and correlation of sample groups

Alpha diversity analysis showed distinctive results for each group. The Water DCul group 343

exhibited an average Shannon index of 1.109, pointing to relatively low diversity in this 344 345

particular environment. In contrast, the Sol DCul group showed a Shannon index of 1.889,

indicating moderate diversity. On the other hand, both the Sol ICul and Water ICul groups 346

revealed average Shannon indices of 2.639 and 2.7 respectively, suggesting substantially higher 347

diversity compared to the culture-dependent groups, Finally, the Coral ICul group stood out with 348

an average Shannon index of 4.094, underlining the presence of significantly rich biodiversity in 349

- culture-independent coral samples (Fig. 6A). 350
- In the analysis of beta diversity in the taxonomic category of order, represented by the Principal 351
- Coordinates Analysis (PCoA) (Fig. 6B), one can observe the formation of groupings between 352
- samples based on the sample type. It is worth mentioning that the Water ICul and Coral ICul 353
- 354 sample groups were close, not showing statistically significant differences according to the
- PERMANOVA analyses (Data S6) whereas only the Water DCul group showed statistical 355
- differences from the Soil ICul (p = 0.0051), Water ICul (p = 0.0042), and Coral ICul (p = 0.0042), and Coral ICul (p = 0.0051) 356
- 0.0186) groups. 357
- 358 In the network of strong associations by phylum, the Coral ICul group had the highest number
- of associated phyla, as it showed no significant association with only five phyla. (Fig. 7A). As 359
- expected, coral samples exibited a greater number of shared associations with water samples 360
- (Water ICul) than with soil samples (Soil ICul and Soil DCul), as well as with water samples 361
- 362 (Water ICul and Water DCul), and these results are consistent with the PERMANOVA
- 363 analyses. Unexpectedly, the Soil ICul and Soil DCul groups did not show much overlap in their
- 364 associations, with the Soil ICul group displaying more associations with coral samples
- (Coral ICul). 365
- 366 The Water DCul and Soil DCul groups have a smaller number of associated phyla, with the soil
- phyla correlating with Ascomycota, Actinobacteriota, and Acidobacteriota, and the water phyla 367
- correlating only with Pseudomonadota. Usually, bacterial phyla dominated the associations with 368
- all substrates and methods while Fungi were represented by only two phyla (Ascomycota and 369
- 370 Basidiomycota) associated with Soil ICul and Soil DCul samples,
- 371 Methanobacteriota and Halobacteriota were the only phyla representing Archaea and are only

PeerJ

372

Ascomycota and Pseudomonadota did not display significant associations with all substrates and 373 methods. Actinobacteriota, Chlamydiota, and Pseudomonadota were the phyla with the highest 374 number of associations, being associated with three of the five types of substrates and methods. 375 376 The patterns of associations at order level are similar to those observed at phylum level, with the Coral ICul group showing the highest number of associations. The culture-based samples show 377 the same pattern of fewer associations with different orders. The Coral ICul and Water ICul 378 groups showed a large number of common associations while the soil samples showed no 379 380 overlap in associations (Fig. S3). At the genus level, only the non-cultured samples identified communities of Archaea, Bacteria, 381 and Fungi (Soil ICul, Water ICul, and Coral ICul). The coral samples exhibited a greater 382 number of significantly associated genera, including most of the archaeal genera present in the 383 association network, followed by the water samples. The water and coral samples share a large 384 385 number of associations, the majority of which are representatives of Bacteria, with a comparatively small number of associated genera representing Archaea and Fungi. Among the 386 significantly associated genera only with the non-cultured water samples, the bacterial genera 387 Prochlorococcus, Pelagibacter, Pseudoalteromonas, and Alteromonas were the most abundant 388 389 while, for the coral samples, the most abundant bacterial genera were Cyanothece, Streptomyces, Mycobacterium, and Geobacter (Fig. 7B). Soil samples exhibited lower diversity compared to 390 other substrates and few bacterial genera are significantly associated, but the most abundant 391 bacterial genera were Acidothermus and Mycobacterium. On the other hand, more than half of 392

associated with the Coral ICul group. Despite being more abundant (Fig. 7A), the phyla

394 395 396

397

398

399

400

401 402

403 404

405 406

407 408

393

Biotechnological potential of bacterial isolates identified by partial sequencing of the 16S rRNA gene

with Mortierella and Lipomyces displaying high abundance (Fig. 7B).

the fungal genera recovered are significantly associated only with non-cultured soil samples,

Rodrigues et al. (2015) identified a number of bacterial strains and species capable of degrading different types of hydrocarbons. Using isolates from water samples, the species *Rhodococcus rhodochrous* and *Nocardia farcinica* were found to degrade a wide range of hydrocarbons, including aliphatic, aromatic and PAH compounds. These compounds included toluene, octane, xylene, naphthalene, phenanthrene, pyrene, hexadecane, anthracene, eicosane, tetracosane, triacontane, and pentacontane. The species *Cellulosimicrobium cellulans* and *Microbacterium lacticum* were able to degrade the hydrocarbons hexadecane and naphthalene respectively. In addition to these strains, strains belonging to the genera *Exiguobacterium*, *Microbacterium*, and *Tistrella* also showed the ability to selectively degrade some types of hydrocarbons (anthracene, hexadecane, naphthalene, tetracosane, octane, phenanthrene, pyrene, and xylene). Moreover, Da Silva et al. (2015) identified a group of strains belonging to the genus *Bacillus*, isolated from soil samples, which showed the ability to produce biosurfactants under high salinity conditions.

409 410

diosyncrasies of the selected studies

412

411

Despite the restricted molecular screening of the Trindade Island, this review focused 413 specifically on six studies that had used DNA sequencing, either from culture-dependent or 414 culture-independent methods, from environmental samples collected on Trindade Island. 415 Amongst them, two investigations worked with culture-independent samples (Câmara et al., 416 417 2023; Meirelles et al., 2015) and four with culture-dependent samples (da Silva et al., 2015; Morais et al., 2016; Rodrigues et al., 2015b; Rodrigues et al., 2018). Five studies were based on 418 419 marker gene sequencing (16S rRNA and/or ITS) (Câmara et al., 2023; da Silva et al., 2015; 420 Morais et al., 2016; Rodrigues et al., 2015b; Rodrigues et al., 2018), and only one used shotgun metagenomic sequencing (Meirelles et al., 2015). The most commonly used platform was 421 Illumina MiSeq, followed by Ion Torrent, and SANGER. Although the molecular data regarding 422 the diversity of taxa at the Trindade Island is limited, Costa-Rezende et al. (2023) conducted an 423 extensive bibliographic review of the last 100 years of studies on Trindade Island, identifying 424 425 312 references, mainly in the fields of biology, health sciences, and agriculture. Within this period, the first scientific record related to biology dates back to 1922 (Barreto 1922), but the 426

first study based on DNA analysis was only published in 2014 (Pylro et al., 2014).

The only study with a shotgun metagenomic approach used pyrosequencing (454). There is an opportunity to improve metagenomic sequencing of environmental samples with newer technologies, such as short-read sequencing (Illumina platform) or long-read sequencers (ONT platform), which can provide more comprehensive and detailed insights in subsequent studies.

Furthermore, only three genomic studies presented the draft genomes of the Bacteria

433 Rhodococcus rhodochrous TRN7 (Rodrigues et al., 2016), Nocardia farcinica TRH1 (Rodrigues 434 et al., 2017), and Staphylococcus warneri TRPF4 (Freitas et al., 2020).

The studies included in this review provide a comprehensive overview of the richness and complexity of microbial and eukaryotic communities, such as Fungi, on Trindade Island, and

436 reveal the influence of environmental factors on the health of marine and terrestrial ecosystems.

This research has important implications for understanding the natural mechanisms for managing and restoring natural niches on the island and in similar regions.

In the selected studies, it is clear that representatives of the Bacteria domain were the most 440 extensively characterized. Nonetheless, many taxa could not be assigned to genus and species 441 442 categories for Bacteria, Archaea, and Fungi, particularly in soil samples (Soil ICul). This is an 443 inherent limitation of studies on the molecular identification of microorganisms from 444 environmental samples due to a number of reasons widely discussed in the literature, including the number of species of microorganisms that have not been formally described and scientifically 445 446 characterized, and limitations inherent in the scope of the databases used for identification 447 (Konstantinidis et al., 2017; Lu et al., 2017; Marcelino et al., 2020; Seol et al., 2019). Additionally, a significant correlation was observed between the water and coral samples, which 448 449 was to be expected given that several samples were collected under the same conditions (location

and depth).

450

In order to better understand the biotechnological potential of these communities, we considered discussing the most abundant and common microorganisms, and, thus, simplifying the analysis, highlighting the most abundant taxa and isolated bacterial strains.

454 455

456

Roles and characteristics of the main Bacteria and Fungi found in soil, water, and coral samples (culture-independent method)

The most abundant bacterial genera identified in the soil samples were *Acidothermus*, *Mycobacterium* e *Conexibacter*. *Acidothermus* has recently been described as a thermophilic Bacteria producing thermostable cellulolytic enzymes (Ghosh et al., 2020). This group of enzymes are capable of hydrolyzing plant biomass into its constituent monomers and; therefore, are promising alternatives for a wide variety of industrial applications following sustainability principles (Yeoman et al., 2010).

Mycobacteria constitute a diverse and well-studied group of Actinobacteria. They are virtually 463 found in all environments; however, water and soil are considered their preferred habitats 464 465 (Hruska & Kaevska, 2012, Walsh et al., 2019). Members of this group have been associated with human diseases of importance to public health worldwide. Nonetheless, most are non-466 pathogenic, and some mycobacteria are actually beneficial to human health (Fox et al., 2017). 467 468 Still, strains of Mycobacterium have metabolic capabilities useful for the biodegradation of 469 environmental pollutants (Hennessee et al., 2009) or as industrial biocatalysts (van Beilen et al., 2005). A recent study conducted by Gu et al. (2023) evaluated the capacity of indigenous 470 microorganisms of soil to adapt and degrade phenanthrene (PHE). Among the bioaugmented 471 genera, the authors found increased relative abundances of Mycobacterium. The native 472 population of microorganisms in soils are considered the most efficient organisms for the 473 474 biodegradation of contaminants since they are adapted to the local biotic and abiotic stresses.

The first representative of the genus *Conexibacter (C. woesei)* was isolated from temperate forest 475 soil in Gerenzano (Italy), and was classified as a deep-rooting member of the class 476 477 Actinobacteria. Besides its distinct phylogenetic position, Conexibacter showed unusual 478 chemotaxonomic characteristics (Monciardini et al., 2003). Conexibacter woesei cells are small short rods, which motility is given by peritrichous flagella. They are obligate aerobes, and play 479 roles in biogeochemical cycles, reducing nitrate to nitrite, and carbon cycling in soil ecosystems 480 (Monciardini et al., 2003, Pukall et al., 2010; Seki et al., 2012). To date, only two species of the 481 genera are known. The second, named C. arvalis, was described by Seki et al. (2012) and 482 483 showed 98.6% similarity with C. woesei. Regarding biotechnological applications, a recent study (Lei et al., 2023) demonstrated the potential of the strain Conexibacter sp. LD01 to degrade 484 lincomycin, an antibiotic highly resistant to degradation, and, thus, a serious environmental 485 486 problem.

Regarding Fungi, the predominant species in the soil were *Mortierella humilis and* Antarctomyces psychrotrophicus, and, at the genus level, Apiotrichum, Pseudogymnoascus, and Coniochaeta.

PeerJ

490 New species of the filamentous Fungi Mortierella (Mucoromycotina) are continually being discovered. It is considered the most common soil-inhabiting Fungi but is not limited to this 491 substrate, being widespread in various environments (Ozimek & Hanaka, 2020; Wagner et al., 492 2013). The omnipresence of such strains must be related to its broad biochemical repertory and 493 494 the many roles they play in the different environments. The growing interest in *Mortierella* spp. is mainly because it acts as a plant growth-promoting Fungi by increasing plant nutrient uptake 495 (Tamayo & Osorio, 2018). M. humilis produces a variety of enzymes acting in the degradation of 496 complex carbon sources like cellulose, chitin, and xylans (Blanchette, 2000). Moreover, M. 497 humilis has been reported as a producer of fatty acids useful in medicine, pharmacology, 498 499 cosmetics, and food industry (Nguyen et al., 2019), as well as shows potential to be used in the biorecovery of metalloids, such as selenium and tellurium (Liang et al., 2019). In a recent study, 500 Jiao et al. (2023) reported higher abundance of M. humilis in the rhizosphere of pine diseased 501 502 hosts compared to healthy hosts. Since this species is known for its capacity to produce 503 substances with antipathogenic activities, the reported microbiome change may be related with 504 the activation of the plant's immune system to fight against the pathogen infection. In the soils of the giant fern forest (Desejado-Fazendinha), fungal sequences belonging to the species M. 505 humilis were abundantly identified (Câmara et al., 2023). The presence of this species might 506 507 suggest a contributory potential for the regeneration of dominant plant species, such as Cyathea delgadii. 508

The genus Antarctomyces includes only two species so far, A. psychrotrophicus and A. 509 pellizariae, both isolated, for the first time, in Antarctica. Outside Antarctica, A. 510 psychrotrophicus was identified in soil samples of the Brazilian Trindade Island (Câmara et al., 511 512 2023) and from fermentation cellars of a liquor manufacturer located in Luan city, China. The function of A. psychrotrophicus in the Chinese liquor is still unclear and needs further research 513 (Pu & Yan, 2022). A. psychrotrophicus is one of the dominant species isolated from several 514 different substrates in Antarctica, and the key determinant for its freeze tolerance is the secretion 515 516 of antifreeze protein (AFP). Some studies have focused on the molecular characterization, physiological role, and intriguing evolutionary aspects of AFPs from A. psychrotrophicus (Arai 517 et al., 2019; Xiao et al., 2010). More recently, the capacity of A. psychrotrophicus to produce 518 antibacterial and antifungal compounds has also been shown (Nikitin et al., 2022). The presence 519 520 of *Antarctomyces*, a typical psychrophilic Fungi, usually isolated in Antarctica is both curious and rather strange, and might be considered with caution since a contamination or artifactual 521 result cannot be discarded. 522

The genus *Apiotrichum* (type species *A. porosum*) is an anamorphic basidiomycetous yeast closely related to the genera *Trichosporon* and *Hyalodendron*. The genus currently contains 20 species globally distributed, including a number of soil-associated species (Liu et al., 2015). Different ecological functions are attributed to the also globally distributed species of the genus *Pseudogymnoascus*. They can act as saprophytic, cellulolytic, and are well adapted to cold environments (Rice et al., 2006). Additionally, *Coniochaeta* is a genus of ascomycotan yeasts typically associated with soil, water, and wood (Weber, 2002). There is also evidence of

endophytic association with plants without causing damage to the host (Harrington et al., 2019),

as well as species involved in clinical infections, which has increased the interest in the genus

532 (Khan et al., 2013).

In water samples, the bacterial genera Prochlorococcus (P. marinus) and Pelagibacter dominated. Prochlorococcus is a genus of cyanobacteria very abundant in the sunlight zone of tropical oceans. The cells are very small (0.5 to 0.7 µm) and the nutritional requirement is minimal (Biller et al., 2015). Such physiological characteristics, associated to its capacity to use sulfolipides instead of phospholipids in their membranes confer adaptive advantages to this microorganism (Van Mooy et al., 2006). Prochlorococcus play an important role in oxygen production and carbon cycle. Along with Synechococcus, another genus of cyanobacteria, is responsible for approximately 50% of marine carbon fixation. Besides, *Prochlorococcus* is a fundamental primary supplier in the oceanic food webs. The only species described within the genus is *P. marinus* (Fu et al., 2007).

Candidatus pelagibacter ubique or SAR11 belongs to the phylum Pseudomonadota and was isolated in 2002 (Rappé et al., 2002). The term "Candidatus" is used for proposed species that are not validated according to the bacteriological code. Pelagibacter, along with Prochlorococcus, and Synechococcus are among the main representatives of the marine picoplankton, and share many characteristics with the genus Prochlorococcus. It also plays a major role in the Earth's carbon cycle and is one of the smallest self-replicating cells known (Giovannoni et al., 2005). The factors that regulate the metabolic requirements of SAR11 are still largely unknown. Tripp et al. (2008) reported a very unusual requirement for reduced sulfur compounds. It is hypothesized that species of the genus have been molded by evolution in a low nutrient ecosystem, such as the Sargasso Sea where it was first discovered in 1990.

Among the Fungi detected in water, many species of the ascomycotan genera *Aspergillus* were found, such as *A. clavatus*, *A. flavus*, *A. fumigatus*, *A. nidulans*, and *A. terreus*. *Aspergillus* is a very large genus containing around 250 species of wide geographic distribution. Its taxonomic classification is very complex and is constantly being revised. They are currently classified into seven subgenera that are subdivided into complexes of related species (Geiser et al., 2007). In general, *Aspergillus* are known as opportunistic pathogens of humans, animals and plants. They are commercially important for its capacity of producing enzymes and organic acids, and may also act as spoilage organisms. Several species produce mycotoxins, such as aflatoxins, and many other secondary metabolites (Varga et al., 2011). All the *Aspergillus* species identified in this study have been reported in the literature as pathogens of humans and animals and are commonly isolated from soil (Hedayati et al., 2007; Samson et al., 2011).

Besides *Aspergillum* species, *Laccaria bicolor*, *Candida albicans*, and *Cryptococcus neoformans* were identified in water. *Laccaria bicolor* (*Basidiomycota*) is an ectomycorrhizal fungus associated with a range of trees of the temperate and boreal forests of North America. It was the first ectomycorrhizal fungus to have its genome sequenced and is considered a model organism for symbiotic genetics studies (Martin & Selosse, 2008). The presence of typically terrestrial Fungi, such as *L. bicolor* in aquatic environments in environmental sampling has already been

reported (Hassett et al., 2019) at the genus level. Nevertheless, it might be an artifact of analytical procedures, especially in taxonomic annotation, possibly caused by the still limited knowledge we have of aquatic Fungi (Amend et al., 2019; Bärlocher & Boddy, 2016; Pagani et al., 2023). Both *Candida albicans* (Ascomycota) and *Cryptococcus neoformans* (Basidiomycota) are Fungi associated with opportunistic diseases, and are of particular concern in HIV-positive patients (Mora et al., 2012).

In coral samples, the bacterial genera Streptomyces, Shewanella, and Mycobacterium were the 576 most dominant. Streptomyces are gram-positive filamentous actinomycete Bacteria. The genera 577 comprise more than 700 species, commonly found in soil and decaying vegetation, and present 578 579 very large genomes with high GC content (Nikolaidis et al., 2023). Streptomyces are known by a complex secondary metabolism, and produce the vast majority of the clinically useful antibiotics 580 of natural origin, such as streptomycin, neomycin and chloramphenicol (Bibb, 2013). The 581 presence of *Streptomyces* in coral samples is not a novelty, and new species have been described 582 583 (Buangrab et al., 2022), as well as its potential to produce new antibiotics have been explored 584 (Zhang et al., 2020).

Shewanella is an ubiquitous gram-negative bacterial genus of mostly aquatic Pseudomonadota. 585 The physiological and respiratory versatility of *Shewanella* allows for its wide distribution along 586 a range of ecological niches. Shewanella strains have the ability of degrading a wide variety of 587 chemical pollutants (Fredrickson et al., 2008) and may reduce a wide range of metals (Zou et al., 588 2019). The impressive metabolic versatility of *Shewanella* species still includes the production of 589 enzymes (Lemaire et al., 2019), their use in bioenergy generation (Mukherjee et al., 2020), and 590 denitrifying activity (Deng et al., 2014). Species of Shewanella have been previously isolated 591 592 from the tropical coral genus Favia (Shnit-Orland et al., 2010) and deep-sea Anthothela coral species (Lawler et al., 2016). The aforementioned studies demonstrated that Shewanella plays an 593 important role to the overall health of the host by its antibacterial properties, which provide 594

The metabolic capabilities displayed by the genus *Mycobacterium* in soil have already had previously described. Regarding coral, there is only one study reporting *Mycobacterium haemophilum* as the causal agent of human subcutaneous infection acquired from a coral injury in Thailand (Smith et al., 2003). Furthermore, in their review article about the emergence of mycobacteriosis in aquatic invertebrates, Davidovich et al. (2020) propose that global climate warming may be influencing microorganisms resistance and host susceptibility.

Aspergillus fungal species (mainly *A. clavatus*) prevailed in the samples of coral studied. This genus has frequently been isolated from coral, including samples from northeast Brazilian reefs (Paulino et al., 2020). Fungi are known as potential symbionts or pathogens of marine organisms, and the number of reports of fungal species associated with infections in corals have increased in frequency and severity (Góes-Neto et al., 2020). The most studied case is the aspergillosis caused by *Aspergillus sydowii*. Among the factors that may facilitate the emergence of this pathogen, increased temperatures stands out, which appears to increase the multiplication and

protection from pathogenic or opportunistic Bacteria.

- resistance of the microorganism and reduce host's resistance (Alker et al., 2001, Kim et al., 2006;
- 610 Soler-Hurtado et al., 2016).
- Paracoccidioides brasilienses represented around 16% of the Fungi sequences identified in the
- 612 coral samples. P. brasiliensis is one of the etiologic agents of paracoccidioidomycosis (PCM), an
- endemic human mycosis that mainly affects Brazil (Stürme et al., 2011). On the other hand, the
- 614 yeast Scheffersomyces stipitis (formerly Pichia stipitis) is commonly known for its capacity to
- 615 ferment D-xylose to ethanol and has been extensively studied for its promising industrial
- 616 applications (Santosh et al., 2017). To date, neither of the two Fungi, P. brasiliensis and S.
- 617 *stipitis*, had been identified in association with corals, and as well as other aforementioned fungal
- 618 taxa (e.g.: Antarctomyces psychrotrophicus and Laccaria bicolor), P. brasiliensis must be
- 619 regarded as a contamination or artifactual result.

622

Roles and characteristics of the main Bacteria isolated of water and soil samples

- 623 Some bacterial strains isolated from water and soil samples have demonstrated the ability to
- 624 degrade hydrocarbons or produce biosurfactants, which are highly relevant to bioremediation
- applications, especially given the island's proximity to oil basins in Brazil.
- 626 Rhodococcus rhodochrous is a Gram-positive bacterium with bioremediation potential, acting as
- 627 a biodegradation agent for hydrocarbons such as toluene, octane, xylene, naphthalene,
- 628 phenanthrene, pyrene, hexadecane, anthracene, eicosane, tetracosane, triacontane, and
- 629 pentacontane. This species could be used in the pharmaceutical industry as a biocatalyst for
- pharmaceutical waste (Busch et al., 2019; Ivshina et al., 2022). Moreover, R. rhodochrous is able
- 631 to inhibit the growth of the fungus Pseudogymnoascus destructans, which causes white-nose
- 632 syndrome (WNS), a disease that affects bats (Lemieux-Labonté et al., 2017).
- 633 The Nocardia farcinica species was also able to degrade the same range of hydrocarbons
- 634 biodegraded by the *R. rhodochrous* species (Rodrigues et al., 2015b). *N. farcinica* is a bacterium
- of great importance in causing infections in humans and, as well as other species of the genus
- 636 Nocardia, can cause brain abscesses in immunocompromised (Galacho-Harriero et al., 2017) and
- 637 non-immunocompromised patients (Song et al., 2021). In France, a significant increase in the
- occurrence of this species was observed between 2010 and 2014, particularly in patients who
- 639 developed nocardiosis. This trend seems to correlate with the increasing use of solid organ
- 640 transplantation (SOT) (Lebeaux et al., 2019).
- 641 The species Cellulosimicrobium cellulans has the potential to biodegrade the hydrocarbon
- hexadecane (Rodrigues et al., 2015b), as well as high molecular weight hydrocarbons from diesel
- oil (Nkem et al., 2019), including hydrocarbons from biodiesel (Bertel-Sevilla et al., 2020). Its
- 644 biodegradation potential has also been demonstrated in rice cultivation experiments, showing its
- ability to degrade the highly selective, hormonal, and long-lasting low-toxicity herbicide known
- as quinclorac (QNC) while stimulating effective rice growth (Huang et al., 2021).
- 647 The species *Microbacterium lacticum* shows remarkable potential as a biodegrader of the
- 648 hydrocarbon naphthalene (Rodrigues et al., 2015b). M. lacticum is also able to utilise

- hydrocarbons (kerosene, petrol, motor oil, used oil, and crude oil) as a source of carbon and energy for the production of lysine (Ezemba, 2016), an essential amino acid that is very important for children and growing animals, as well as for the immune system. *M. lacticum* species, in combination with other species such as *Stenotrophomonas rhizophila*, *Bacillus licheniformis*, and *Calidifontibacter indicus*, are biofilm formers in the dairy industry, which is a major problem due to its spoilage potential and prevalence (Sadiq et al., 2023).
- At least 17 species are known from the genus Exiguobacterium (Kasana & Pandey, 2018), each 655 with the ability to grow in a variety of environments with different pH and temperature ranges. 656 657 These characteristics mean that many isolates are targets for exploitation in various biotechnological and industrial applications, such as production of enzymes (protease, 658 pullulanase, amylase, lipase), bioremediation (naphthalene, hexadecane, xylene), and 659 biodegradation of toxic substances present in the environment, as well as stimulation of plant 660 growth to increase agricultural productivity (Kasana & Pandey, 2018; Pandey, 2020; Rodrigues 661 662 et al., 2015b).
- The genus *Tistrella* is represented by only two species: *T. bauzanensis* and *T. mobilis*, which 663 occur in high abundance in marine ecosystems. Rodrigues et al. (2015) demonstrated the 664 biodegradation potential of *Tistrella* strains for the hydrocarbons phenanthrene, pyrene, 665 tetracosane, naphthalene, hexadecane, and octane. Tistrella is known to be the only bacterium 666 capable of producing didemnin, a cyclic depsipeptide compound with potential as an antitumour, 667 and antiviral drug candidate. Recently, Tang et al. (2023) produced didemnin B using Tistrella 668 strains and, subsequently, converted didemnin B to plitidepsin by chemical synthesis. Plitidepsin, 669 besides being an anticancer drug, has also gained prominence as a potential agent in the 670 671 treatment of COVID-19 with a Phase III clinical trial (Tang et al., 2023).
- Da Silva et al. (2015) identified a group of strains of the genus Bacillus, including three 672 subspecies Bacillus subtilis subsp. 673 D, and Bacillus subtilis subsp. spizizenii, with the ability to produce biosurfactants under high 674 675 salinity conditions. These results have promising biosurfactant applications in saline environments, such as oil recovery, remediation of environments contaminated with oil and 676 derivatives, cleaning of oil storage tanks, and in wastewater treatment processes. The use of 677 Bacteria strains with a wide range of tolerance to abiotic factors, including a wide range of pH, 678 679 salinity, and the presence of and petroleum compounds, is critical to the viability and productivity of strains in environmental applications, conditions that normally inactivate most 680 synthetic surfactants (Krucon et al., 2023; Shavandi et al., 2011). 681
- Furthermore, a comparative genetics study by Dunlap et al. (2020) suggests that the four subspecies *Bacillus subtilis* subsp. *subtilis*, *Bacillus subtilis* subsp. *spizizenii*, *Bacillus subtilis* subsp. *inaquosorum*, and *Bacillus subtilis* subsp. *estercoris* should possibly be classified as species due to the distinct production of bioactive secondary metabolites, highlighting the complexity and broad potential of this genus in biotechnology and environmental research.
- Although research using DNA sequencing on environmental samples from Trindade island is still relatively scarce, there is a clear growth trend in the so-called "molecular era". Nonetheless,

to obtain deeper knowledge about the island's diverse habitats, which are unique environments, it is essential to direct more efforts towards developing projects in this direction. This information is extremely relevant, considering the uniqueness of this space, from which we still have a lot to learn.

Conclusion

 In this study, we presented a comprehensive and detailed description of the main Bacteria, Archaea, and Fungi identified in soil, water, and coral samples from Trindade Island, as well as their potential biotechnological. We covered the most relevant literature and recent discoveries on those taxa. Overall, our results indicate a cryptic microbial diversity in several environments that can be influenced by anthropogenic impact, a great microbial diversity of isolates not yet identified at the species level, as well as, a promising potential use of this microbial diversity for oil bioremediation, hydrocarbon degradation, and production of biosurfactants.

Additionally, our review provide recommendations for: i) developing studies that expand our knowledge of diversity through advances in metagenomics from a spatial and temporal perspective, ii) investigating endemic taxonomic novelties, iii) identifying potential environmental threats and exploring biotechnological solutions that can contribute to the conservation of the island, and iv) studies that explore the biological potential of microbiota for biotechnological applications in various industries, including the oil industry.

As there still is a remarkable gap of our understanding of soil community ecology of Trindade island, our research group is currently conducting an integrative study of both taxonomical and functional diversity of soil microorganisms, using shotgun metagenomics, associated with highly characterized physicochemical analyses in distinct vegetational areas of this fascinating and isolated island of the South Atlantic.

Supplemental Information

- Supplemental Figure S1: Bar graph of Superkingdom/Kingdom (a, b), Class (c, d), Order (e, f), Family (g, h), and Species (i, j) taxonomic categories of Archaea, Bacteria, and Fungi by grouped samples.
- Supplemental Figure S2: Venn diagram of the categories of Phylum (a), Class (b), Order (c), Family (d), Genus (e) and Species (f) of Archaea, Bacteria and Fungi of the grouped samples.
- **Supplemental Figure S3**: Strong association network between Archaeal, Bacterial and Fungal orders and grouped samples.
- **Supplemental Data S1**: Records obtained from database searches: Scopus, Web of Science, PubMed, PubMed Central, Dimensions, and Google Scholar (PoP)
- Supplemental Data S2: Unique records, without DOI and duplicates
- Supplemental Data S3: Tables of absolute abundances by taxonomic category
- Supplemental Data S4: Tables of relative abundances by taxonomic category

- Supplemental Data S5: Absence and presence tables for Venn diagrams
 - Supplemental Data S6: Results of PERMANOVA analyses

Author Contributions

Conceptualization: Glen Jasper Yupanqui García, Joyce da Cruz Ferraz Dutra, Aristóteles 733 734 Góes-Neto; Methodology: Glen Jasper Yupanqui García, Alice Ferreira-Silva, Fernanda Badotti, Joyce da Cruz Ferraz Dutra, Kelmer Martins-Cunha, Rosimeire Floripes Gomes, Carmen 735 Delgado Barrera; Formal analysis and investigation: Glen Jasper Yupangui García, Alice 736 737 Ferreira-Silva, Fernanda Badotti, Joyce da Cruz Ferraz Dutra, Kelmer Martins-Cunha, Rosimeire Floripes Gomes, Diogo Henrique Costa-Rezende, Thairine Mendes-Pereira, Carmen Delgado 738 Barrera: Writing - original draft preparation: Glen Jasper Yupangui García, Alice Ferreira-739 740 Silva, Fernanda Badotti, Joyce da Cruz Ferraz Dutra, Kelmer Martins-Cunha, Rosimeire Floripes 741 Gomes, Diogo Henrique Costa-Rezende, Thairine Mendes-Pereira, Carmen Delgado Barrera, Aristóteles Góes-Neto; Writing - review and editing: Glen Jasper Yupangui García, Alice 742 Ferreira-Silva, Fernanda Badotti, Joyce da Cruz Ferraz Dutra, Kelmer Martins-Cunha, Rosimeire 743 Floripes Gomes, Diogo Henrique Costa-Rezende, Thairine Mendes-Pereira, Carmen Delgado 744 Barrera, Elisandro Ricardo Drechsler-Santos, Aristóteles Góes-Neto; Supervision: Glen Jasper 745

747 748

746

749 Funding

This study received support from the Brazilian National Council of Technological and Scientific Development (CNPq) and the Coordination of Improvement of Higher Education Personnel (CAPES). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Yupangui García, Aristóteles Góes-Neto. All authors have read and agreed to the published

754 755

Acknowledgments

version of the manuscript.

We would like to thank the Graduate Programmes of Bioinformatics and Microbiology of the Universidade Federal de Minas Gerais (UFMG), ProRectory of Research of Federal University of Minas Gerais, Universidade Federal de Paraíba (UFPB), Centro Federal de Educação Tecnológica de Minas Gerais (CEFETMG), Universidade Federal de Santa Catarina (UFSC), Universidade Estadual de Feira de Santana (UEFS), Universidade Federal de Viçosa (UFV), and Universidad de San Francisco Xavier de Chuquisaca (USFX).

762 763

Conflicts of Interest

The authors declare no conflict of interest

764 765

766 **References**

- 767 Alker AP, Smith GW, Kim K (2001) Characterization of Aspergillus sydowii (Thom et Church),
- a fungal pathogen of Caribbean Sea fan corals. Hydrobiologia 460(1/3):105–111.
- 769 https://doi.org/10.1023/a:1013145524136
- Amend A, Burgaud G, Cunliffe M, et al (2019) Fungi in the Marine Environment: Open
- 771 questions and unsolved problems. mBio 10(2). https://doi.org/10.1128/mbio.01189-18
- Andrades R, Santos RG, Joyeux JC, et al (2018) Marine debris in Trindade Island, a remote
- island of the South Atlantic. Marine Pollution Bulletin 137:180–184.
- 774 https://doi.org/10.1016/j.marpolbul.2018.10.003
- Arai T, Fukami D, Hoshino T, et al (2019) Ice binding proteins from the fungus Antarctomyces
- psychrotrophicus possibly originate from two different bacteria through horizontal gene transfer.
- 777 The FEBS Journal 286(5):946–962. <u>https://doi.org/10.1111/febs.14725</u>
- 778 Bärlocher F, Boddy L (2016) Aquatic fungal ecology how does it differ from terrestrial?
- 779 Fungal Ecology 19:5–13. https://doi.org/10.1016/j.funeco.2015.09.001
- 780 Barreto ALdB (1922) Revisão da família Cucullanidae barreto, 1916. Memórias do Instituto
- 781 Oswaldo Cruz 14:68–87. https://doi.org/10.1590/S0074-02761922000100003
- 782 Bertel-Sevilla A, Cervantes-Ceballos L, Tirado-Ballestas I, et al (2020) Biodegradation of
- 783 biodiesel-oil by Cellulosimicrobium sp. isolated from Colombian Caribbean soils.
- 784 Environmental Technology 41(18):2337–2349. https://doi.org/10.1080/09593330.2018.1564798
- 785 Bibb MJ (2013) Understanding and manipulating antibiotic production in actinomycetes.
- 786 Biochemical Society Transactions 41(6):1355–1364. https://doi.org/10.1042/bst20130214
- 787 Biller SJ, Berube PM, Lindell D, et al (2015) Prochlorococcus: the structure and function of
- 788 collective diversity. Nature Reviews Microbiology 13(1):13–27.
- 789 https://doi.org/10.1038/nrmicro3378
- 790 Blanchette RA (2000) A review of microbial deterioration found in archaeological wood from
- 791 different environments. International Biodeterioration and Biodegradation 46(3):189–204.
- 792 https://doi.org/10.1016/s0964-8305(00)00077-9
- 793 Buangrab K, Sutthacheep M, Yeemin T, et al (2022) Streptomyces corallincola and Kineosporia
- 794 corallincola sp. nov., two new coral-derived marine actinobacteria. International Journal of
- 795 Systematic and Evolutionary Microbiology 72(2). https://doi.org/10.1099/ijsem.0.005249
- 796 Busch, Hagedoorn, Hanefeld (2019) Rhodococcus as a versatile biocatalyst in organic synthesis.
- 797 International Journal of Molecular Sciences 20(19):4787. https://doi.org/10.3390/ijms20194787
- 798 Camacho-Montealegre CM, Rodrigues EM, Tótola MR (2019) Microbial diversity and
- 799 bioremediation of rhizospheric soils from Trindade Island Brazil. Journal of Environmental
- 800 Management 236:358–364. https://doi.org/10.1016/j.jenvman.2019.02.013
- 801 Câmara PEAS, Bones FLV, Lopes FAC, et al (2023) DNA metabarcoding reveals cryptic
- 802 diversity in forest soils on the isolated brazilian Trindade Island, South Atlantic, Microbial
- 803 Ecology 85(3):1056–1071. https://doi.org/10.1007/s00248-022-02018-4

- 804 Câmara PS, Bones F, Lopes F, et al (2022) DNA metabarcoding reveals cryptic geographically-
- influenced microbial diversity after anthropogenic impact in original forest soils on the isolated
- Trindade Island, South Atlantic. Microbial Ecology https://doi.org/10.21203/rs.3.rs-1215067/v1
- 807 Cariou E, Guivel C, La C, et al (2017) Lead accumulation in oyster shells, a potential tool for
- 808 environmental monitoring. Marine Pollution Bulletin 125(1–2):19–29.
- 809 https://doi.org/10.1016/j.marpolbul.2017.07.075
- 810 Clark JA (2023) Pillow: Python Imaging Library. https://github.com/python-pillow/Pillow.
- 811 (Accessed 21 July 2023)
- 812 Clemente EdP, Schaefer CEG, Oliveira FS, et al (2009) Topossequência de solos na Ilha da
- 813 Trindade, Atlântico Sul. Revista Brasileira de Ciência do Solo 33(5):1357–1371.
- 814 https://doi.org/10.1590/s0100-06832009000500028
- 815 Costa-Rezende DH, Martins-Cunha K, Monteiro M, et al (2023) Lost in the voidness of the
- atlantic ocean: A synthesis of publication trends, biological diversity, and conservation in
- 817 Trindade Island. Biodiversidade Brasileira BioBrasil 13(1).
- 818 https://doi.org/10.37002/biobrasil.v13i1.2201
- Da Silva FSP, Pylro VS, Fernandes PL, et al (2015) Unexplored Brazilian oceanic island host
- high salt tolerant biosurfactant-producing bacterial strains. Extremophiles 19(3):561–572.
- 821 https://doi.org/10.1007/s00792-015-0740-7
- 822 Davidovich N, Morick D, Carella F (2020) Mycobacteriosis in aquatic invertebrates: A review of
- its emergence. Microorganisms 8(8):1249. https://doi.org/10.3390/microorganisms8081249
- De Caceres M, Jansen F, De Caceres MM (2016) Package 'indicators 8(1).
- 825 https://emf-creaf.github.io/indicspecies. (Accessed 21 July 2023)
- B26 De Souza Petersen E, Krüger L, Dezevieski A, et al (2016) Incidence of plastic debris in sooty
- 827 tern nests: A preliminary study on Trindade Island, a remote area of Brazil. Marine Pollution
- 828 Bulletin 105(1):373–376. https://doi.org/10.1016/j.marpolbul.2016.02.036
- 829 Delgado-Baquerizo M, Maestre FT, Reich PB, et al (2016) Microbial diversity drives
- 830 multifunctionality in terrestrial ecosystems. Nature Communications 7(1).
- 831 https://doi.org/10.1038/ncomms10541
- 832 Deng J, Brettar I, Luo C, et al (2014) Stability, genotypic and phenotypic diversity of Shewanella
- baltica in the redox transition zone of the Baltic Sea. Environmental Microbiology 16(6):1854–
- 834 1866. https://doi.org/10.1111/1462-2920.12344
- Dixon P (2003) VEGAN, a package of r functions for community ecology. Journal of Vegetation
- 836 Science 14(6):927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
- Ducklow H (2008) Microbial services: challenges for microbial ecologists in a changing world.
- Aguatic Microbial Ecology 53:13–19. https://doi.org/10.3354/ame01220
- 839 Dunlap CA, Bowman MJ, Zeigler DR (2020) Promotion of Bacillus subtilis subsp. inaquosorum,
- 840 Bacillus subtilis subsp. spizizenii and Bacillus subtilis subsp. stercoris to species status. Antonie
- van Leeuwenhoek 113(1):1–12. https://doi.org/10.1007/s10482-019-01354-9
- Dusa A (2018) Package 'venn'. Version 19. https://github.com/dusadrian/venn. (Accessed 21
- 843 July 2023)

- Dutra J, Gomes R, García GJY, et al (2023a) Corrosion-influencing microorganisms in
- petroliferous regions on a global scale: systematic review, analysis, and scientific synthesis of
- los amplicon metagenomic studies. PeerJ 11:e14642. https://doi.org/10.7717/peerj.14642
- Dutra JdCF, Passos MF, García GJY, et al (2023b) Anaerobic digestion using cocoa residues as
- 848 substrate: Systematic review and meta-analysis. Energy for Sustainable Development 72:265–
- 849 277. https://doi.org/10.1016/j.esd.2022.12.007
- 850 Escalas A, Hale L, Voordeckers JW, et al (2019) Microbial functional diversity: From concepts
- 851 to applications. Ecology and Evolution 9(20):12000–12016. https://doi.org/10.1002/ece3.5670
- 852 Ezemba CC, Ozokpo CA, Anakwenze VN, et al (2016) Lysine production of Microbacterium
- lacticum by submerged fermentation using various hydrocarbon, sugar and nitrogen sources.
- 854 Advances in Microbiology 06(11):797–810. https://doi.org/10.4236/aim.2016.611078
- 855 Fox JH, Hassell JE, Siebler PH, et al (2017) Preimmunization with a heat-killed preparation of
- 856 Mycobacterium vaccae enhances fear extinction in the fear-potentiated startle paradigm. Brain,
- 857 Behavior, and Immunity 66:70–84. https://doi.org/10.1016/j.bbi.2017.08.014
- 858 Fredrickson JK, Romine MF, Beliaev AS, et al (2008) Towards environmental systems biology
- 859 of Shewanella. Nature Reviews Microbiology 6(8):592–603.
- 860 <u>https://doi.org/10.1038/nrmicro1947</u>
- Freitas FdS, Vidigal PMP, Sigueira TdP, et al (2020) The draft genome of Staphylococcus
- warneri trpf4, a bacteriocin producer with potent activity against the causative agent of
- 863 Legionnaires' Disease. 3 Biotech 10(5). https://doi.org/10.1007/s13205-020-02231-3
- Fu F, Warner ME, Zhang Y, et al (2007) Effects of increased temperature and co2 on
- photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus
- 866 (cyanobacteria). Journal of Phycology 43(3):485–496. https://doi.org/10.1111/j.1529-
- 867 8817.2007.00355.x
- 868 Galacho-Harriero A, Delgado-López PD, Ortega-Lafont MP, et al (2017) Nocardia farcinica
- brain abscess: Report of 3 cases. World Neurosurgery 106:1053.e15–1053.e24.
- 870 https://doi.org/10.1016/j.wneu.2017.07.033
- 871 GBIF Secretariat (2023) GBIF Backbone Taxonomy. https://doi.org/10.15468/39omei,
- 872 (Accessed 21 July 2023)
- 873 Geiser D, Klich M, Frisvad J, et al (2007) The current status of species recognition and
- 874 identification in aspergillus. Studies in Mycology 59:1–10.
- 875 <u>https://doi.org/10.3114/sim.2007.59.01</u>
- 876 Giller P, Hillebrand H, Berninger U, et al (2004) Biodiversity effects on ecosystem functioning:
- emerging issues and their experimental test in aquatic environments. Oikos 104(3):423–436.
- 878 https://doi.org/10.1111/j.0030-1299.2004.13253.x
- 879 Ghosh S, Lepcha K, Basak A, et al (2020) Thermophiles and thermophilic hydrolases, Elsevier,
- 880 p 219–236. https://doi.org/10.1016/b978-0-12-818322-9.00016-2
- 881 Giovannoni SJ, Tripp HJ, Givan S, et al (2005) Genome streamlining in a cosmopolitan oceanic
- bacterium. Science 309(5738):1242–1245. https://doi.org/10.1126/science.1114057

- 883 Góes-Neto A, Marcelino VR, Verbruggen H, et al (2020) Biodiversity of endolithic fungi in
- coral skeletons and other reef substrates revealed with 18S rDNA metabarcoding. Coral Reefs
- 885 39(1):229–238. <u>https://doi.org/10.1007/s00338-019-01880-y</u>
- 886 Gomes RF, García GJY, Dutra JdCF, et al (2023) Metabolically active microbial communities in
- 887 oilfields: A systematic review and synthesis of RNA preservation, extraction, and sequencing
- methods. Applied Microbiology 3(4):1144–1163. https://doi.org/10.3390/applmicrobiol3040079
- 889 Gu H, Yan J, Liu Y, et al (2023) Autochthonous bioaugmentation accelerates phenanthrene
- 890 degradation in acclimated soil. Environmental Research 224:115543.
- 891 https://doi.org/10.1016/j.envres.2023.115543
- Hammer Ø, Harper DA (2001) Past: paleontological statistics software package for educaton and
- 893 data anlysis. Palaeontologia electronica 4(1):1.
- 894 https://www.nhm.uio.no/english/research/resources/past. (Accessed 21 July 2023)
- Harrington AH, Olmo-Ruiz Md, U'Ren JM, et al (2019) Coniochaeta endophytica sp. nov., a
- 896 foliar endophyte associated with healthy photosynthetic tissue of Platycladus orientalis
- 897 (cupressaceae). Plant and Fungal Systematics 64(1):65–79. https://doi.org/10.2478/pfs-2019-
- 898 0008
- Harzing A (2007) Publish or perish, available. https://harzing.com/resources/publish-or-perish.
- 900 (Accessed 21 July 2023)
- Hassett BT, Vonnahme TR, Peng X, et al (2019) Global diversity and geography of planktonic
- 902 marine fungi. Botanica Marina 63(2):121–139. https://doi.org/10.1515/bot-2018-0113
- 903 Hedayati MT, Pasqualotto AC, Warn PA, et al (2007) Aspergillus flavus: human pathogen,
- allergen and mycotoxin producer. Microbiology 153(6):1677–1692.
- 905 https://doi.org/10.1099/mic.0.2007/007641-0
- 906 Hennessee CT, Seo JS, Alvarez AM, et al (2009) Polycyclic aromatic hydrocarbon-degrading
- 907 species isolated from hawaiian soils: Mycobacterium crocinum sp. nov., Mycobacterium pallens
- 908 sp. nov., Mycobacterium rutilum sp. nov., Mycobacterium rufum sp. nov. and Mycobacterium
- aromaticivorans sp. nov. International Journal of Systematic and Evolutionary Microbiology
- 910 59(2):378–387. https://doi.org/10.1099/ijs.0.65827-0
- 911 Hruska K, Kaevska M (2012) Mycobacteria in water, soil, plants and air: a review. Veterinární
- 912 medicína 57(12):623–679. https://doi.org/10.17221/6558-vetmed
- 913 Huang S, Pan J, Tuwang M, et al (2021) Isolation, screening, and degradation characteristics of a
- 914 quinclorac-degrading bacterium, strain d, and its potential for bioremediation of rice fields
- 915 polluted by quinclorac. Microbiology Spectrum 9(2). https://doi.org/10.1128/spectrum.00398-21
- 916 Ivshina I, Bazhutin G, Tyumina E (2022) Rhodococcus strains as a good biotool for neutralizing
- 917 pharmaceutical pollutants and obtaining therapeutically valuable products: Through the past into
- 918 the future. Frontiers in Microbiology 13. https://doi.org/10.3389/fmicb.2022.967127
- 919 Jasper G (2023a) format input.py: Script to format CSV tabulated files exported from databases:
- 920 Scopus, Web of Science, PubMed, PubMed Central, Dimensions or Google Scholar (exported
- 921 with Publish or Perish). https://github.com/LBMCF/format-input. (Accessed 21 July 2023)

- 922 Jasper G (2023b) remove duplicates.py: Script to unify formatted database files: Scopus, Web of
- 923 Science, PubMed, PubMed Central, Dimensions or Google Scholar (exported with Publish or
- 924 Perish). https://github.com/LBMCF/remove-duplicates. (Accessed 21 July 2023)
- 925 Jiao Z, Gao Z, Liao Y, et al (2023) Effects of pine wilt disease on rhizosphere microbiota and
- 926 fine root fungi: Insights into enzyme activity, ectomycorrhizal infection and microbial
- 927 composition. Forests 14(9):1884. https://doi.org/10.3390/f14091884
- 928 Jing X, Sanders NJ, Shi Y, et al (2015) The links between ecosystem multifunctionality and
- above and belowground biodiversity are mediated by climate. Nature Communications 6(1).
- 930 https://doi.org/10.1038/ncomms9159
- 931 Kasana RC, Pandey CB (2018) Exiguobacterium: an overview of a versatile genus with potential
- 932 in industry and agriculture. Critical Reviews in Biotechnology 38(1):141–156.
- 933 https://doi.org/10.1080/07388551.2017.1312273
- 934 Khan Z, Gené J, Ahmad S, et al (2013) Coniochaeta polymorpha, a new species from
- endotracheal aspirate of a preterm neonate, and transfer of lecythophora species to coniochaeta.
- 936 Antonie van Leeuwenhoek 104(2):243–252. https://doi.org/10.1007/s10482-013-9943-z
- 937 Kim K, Alker A, Shuster K, et al (2006) Longitudinal study of aspergillosis in sea fan corals.
- Diseases of Aquatic Organisms 69:95–99. https://doi.org/10.3354/dao069095
- 939 Konstantinidis KT, Rosselló-Móra R, Amann R (2017) Uncultivated microbes in need of their
- 940 own taxonomy. The ISME Journal 11(11):2399–2406. https://doi.org/10.1038/ismej.2017.113
- 941 Korneykova MV, Vasenev VI, Nikitin DA, et al (2021) Urbanization affects soil microbiome
- 942 profile distribution in the Russian Arctic region. International Journal of Environmental Research
- 943 and Public Health 18(21):11665. https://doi.org/10.3390/ijerph182111665
- 944 Krucoń T, Ruszkowska Z, Pilecka W, et al (2023). Bioprospecting of the Antarctic Bacillus
- 945 subtilis strain for potential application in leaching hydrocarbons and trace elements from
- 946 contaminated environments based on functional and genomic analysis. Environmental Research
- 947 227:115785. https://doi.org/10.1016/j.envres.2023.115785
- 948 Lawler SN, Kellogg CA, France SC, et al (2016) Coral-associated bacterial diversity is
- onserved across two deep-sea anthothela species. Frontiers in Microbiology 7.
- 950 https://doi.org/10.3389/fmicb.2016.00458
- 951 Lebeaux D, Bergeron E, Berthet J, et al (2019) Antibiotic susceptibility testing and species
- 952 identification of nocardia isolates: a retrospective analysis of data from a french expert
- 953 laboratory, 2010–2015. Clinical Microbiology and Infection 25(4):489–495.
- 954 https://doi.org/10.1016/j.cmi.2018.06.013
- 955 Lei H, Zhang J, Huang J, et al (2023) New insights into lincomycin biodegradation by
- 956 Conexibacter sp. LD01: Genomics characterization, biodegradation kinetics and pathways.
- 957 Journal of Hazardous Materials 441:129824. https://doi.org/10.1016/j.jhazmat.2022.129824
- 958 Lemaire ON, Honoré FA, Tempel S, et al (2019) Shewanella decolorationis LDS1 chromate
- 959 resistance. Applied and Environmental Microbiology 85(18). https://doi.org/10.1128/aem.00777-
- 960 19

- 961 Lemieux-Labonté V, Simard A, Willis CKR, et al (2017) Enrichment of beneficial bacteria in the
- 962 skin microbiota of bats persisting with white-nose syndrome. Microbiome 5(1).
- 963 <u>https://doi.org/10.1186/s40168-017-0334-y</u>
- Liang X, Perez MAMJ, Nwoko KC, et al (2019) Fungal formation of selenium and tellurium
- 965 nanoparticles. Applied Microbiology and Biotechnology 103(17):7241–7259.
- 966 https://doi.org/10.1007/s00253-019-09995-6
- 2015 Liu XZ, Wang QM, G"oker M, et al (2015) Towards an integrated phylogenetic classification of
- 968 the tremellomycetes. Studies in Mycology 81(1):85–147.
- 969 <u>https://doi.org/10.1016/j.simyco.2015.12.001</u>
- 970 Lu J, Breitwieser FP, Thielen P, et al (2017) Bracken: estimating species abundance in
- 971 metagenomics data. PeerJ Computer Science 3:e104. https://doi.org/10.7717/peerj-cs.104
- 972 Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and
- 973 ecosystem functioning. Science 316(5832):1746–1748. https://doi.org/10.1126/science.1143082
- 974 Marcelino VR, Clausen PTLC, Buchmann JP, et al (2020) CCMetagen: comprehensive and
- 975 accurate identification of eukaryotes and prokaryotes in metagenomic data. Genome Biology
- 976 21(1). https://doi.org/10.1186/s13059-020-02014-2
- 977 Martin F, Selosse M (2008) The Laccaria genome: a symbiont blueprint decoded. New
- 978 Phytologist 180(2):296–310. https://doi.org/10.1111/j.1469-8137.2008.02613.x
- 979 Meirelles PM, Amado-Filho GM, Pereira-Filho GH, et al (2015) Baseline assessment of
- 980 mesophotic reefs of the Vitória-Trindade seamount chain based on water quality, microbial
- 981 diversity, benthic cover and fish biomass data. PLOS ONE 10(6):e0130084.
- 982 https://doi.org/10.1371/journal.pone.0130084
- 983 Monciardini P, Cavaletti L, Schumann P, et al (2003) Conexibacter woesei gen. nov., sp. nov., a
- 984 novel representative of a deep evolutionary line of descent within the class Actinobacteria.
- 985 International Journal of Systematic and Evolutionary Microbiology 53(2):569–576.
- 986 https://doi.org/10.1099/ijs.0.02400-0
- 987 Mora DJ, da Cunha Colombo ER, Ferreira-Paim K, et al (2012) Clinical, epidemiological and
- 988 outcome features of patients with cryptococcosis in Uberaba, Minas Gerais, Brazil.
- 989 Mycopathologia 173(5–6):321–327. https://doi.org/10.1007/s11046-011-9504-9
- 990 Morais D, Pylro V, Clark IM, et al (2016) Responses of microbial community from tropical
- pristine coastal soil to crude oil contamination. PeerJ 4:e1733. https://doi.org/10.7717/peerj.1733
- 992 Mueller A (2023) word cloud library: A little word cloud generator in Python.
- 993 https://github.com/amueller/word_cloud. (Accessed 21 July 2023)
- 994 Mukherjee M, Zaiden N, Teng A, et al (2020) Shewanella biofilm development and engineering
- 995 for environmental and bioenergy applications. Current Opinion in Chemical Biology 59:84–92.
- 996 https://doi.org/10.1016/j.cbpa.2020.05.004
- 997 Nguyen TTT, Park SW, Pangging M, et al (2019) Molecular and morphological confirmation of
- 998 three undescribed species of Mortierella from Korea. Mycobiology 47(1):31–39.
- 999 https://doi.org/10.1080/12298093.2018.1551854

- 1000 Nikitin DA, Sadykova VS, Kuvarina AE, et al (2022) Enzymatic and antimicrobial activities in
- polar strains of microscopic soil fungi. Doklady Biological Sciences 507(1):380–393.
- 1002 <u>https://doi.org/10.1134/s0012496622060151</u>
- 1003 Nikolaidis M, Hesketh A, Frangou N, et al (2023) A panoramic view of the genomic landscape
- of the genus Streptomyces. Microbial Genomics 9(6). https://doi.org/10.1099/mgen.0.001028
- Nkem BM, Halimoon N, Yusoff FM, et al (2019) Isolation and optimization of diesel-oil
- 1006 biodegradation using Cellulosimicrobium cellulans from tarball. Pertanika Journal of Science &
- 1007 Technology 27(3).
- 1008 http://www.pertanika.upm.edu.my/resources/files/Pertanika%20PAPERS/JST%20Vol.%2027%2
- 1009 <u>0(3)%20Jul.%202019/02%20JST(S)-0482-2019.pdf</u>. (Accessed 10 November 2023)
- 1010 Olofintila OE, Noel ZA (2023) Soybean and cotton spermosphere soil microbiome shows
- dominance of soilborne copiotrophs. Microbiology Spectrum 11(4).
- 1012 https://doi.org/10.1128/spectrum.00377-23
- 1013 Ozimek E, Hanaka A (2020) Mortierella species as the plant growth-promoting fungi present in
- the agricultural soils. Agriculture 11(1):7. https://doi.org/10.3390/agriculture11010007
- 1015 Pagani DM, Ventura SPR, Vu D, et al (2023) Unveiling fungal community structure along
- 1016 different levels of anthropic disturbance in a South American subtropical lagoon. Journal of
- 1017 Fungi 9(9):890. https://doi.org/10.3390/jof9090890
- 1018 Page MJ, McKenzie JE, Bossuyt PM, et al (2021) The PRISMA 2020 statement: An updated
- 1019 guideline for reporting systematic reviews. International Journal of Surgery 88:105906.
- 1020 https://doi.org/10.1016/j.ijsu.2021.105906
- 1021 Pandey N (2020) Exiguobacterium, Elsevier, p 169–183. https://doi.org/10.1016/b978-0-12-
- 1022 823414-3.00010-1
- 1023 Paulino GVB, Félix CR, Landell MF (2020) Diversity of filamentous fungi associated with coral
- and sponges in coastal reefs of northeast Brazil. Journal of Basic Microbiology 60(2):103–111.
- 1025 https://doi.org/10.1002/jobm.201900394
- 1026 Pu S, Yan S (2022) Fungal diversity profiles in pit mud samples from chinese strong-flavour
- 1027 liquor pit. Foods 11(22):3544. https://doi.org/10.3390/foods11223544
- 1028 Pukall R, Lapidus A, Glavina Del Rio T, et al (2010) Complete genome sequence of
- 1029 Conexibacter woesei type strain (ID131577t). Standards in Genomic Sciences 2(2):212–219.
- 1030 https://doi.org/10.4056/sigs.751339
- 1031 Pylro VS, Roesch LFW, Morais DK, et al (2014) Data analysis for 16S microbial profiling from
- different benchtop sequencing platforms. Journal of Microbiological Methods 107:30–37.
- 1033 https://doi.org/10.1016/j.mimet.2014.08.018
- 1034 Rappé MS, Connon SA, Vergin KL, et al (2002) Cultivation of the ubiquitous sar11 marine
- 1035 bacterioplankton clade. Nature 418(6898):630–633. https://doi.org/10.1038/nature00917
- 1036 Rice AV, Currah RS (2006) Two new species of Pseudogymnoascus with Geomyces anamorphs
- and their phylogenetic relationship with Gymnostellatospora. Mycologia 98(2):307–318.
- 1038 https://doi.org/10.1080/15572536.2006.11832703

- 1039 Rodrigues EM, Kalks KH, Fernandes PL, et al (2015a) Bioremediation strategies of
- 1040 hydrocarbons and microbial diversity in the Trindade Island shoreline Brazil. Marine
- 1041 Pollution Bulletin 101(2):517–525. https://doi.org/10.1016/j.marpolbul.2015.10.063
- 1042 Rodrigues EM, Kalks KH, Tótola MR (2015b) Prospect, isolation, and characterization of
- microorganisms for potential use in cases of oil bioremediation along the coast of Trindade
- 1044 Island, Brazil. Journal of Environmental Management 156:15–22.
- 1045 https://doi.org/10.1016/j.jenvman.2015.03.016
- 1046 Rodrigues EM, Pylro VS, Dobbler PT, et al (2016) Draft genome of Rhodococcus rhodochrous
- 1047 TRN7, isolated from the coast of Trindade Island, Brazil. Genome Announcements 4(2).
- 1048 <u>https://doi.org/10.1128/genomea.01707-15</u>
- 1049 Rodrigues EM, Vidigal PMP, Pylro VS, et al (2017) Draft genome of Nocardia farcinica TRH1,
- 1050 a linear and polycyclic aromatic hydrocarbon-degrading bacterium isolated from the coast of
- 1051 Trindade Island, Brazil. Brazilian Journal of Microbiology 48(3):391–392.
- 1052 https://doi.org/10.1016/j.bjm.2016.09.014
- 1053 Rodrigues EM, Morais DK, Pylro VS, et al (2018) Aliphatic hydrocarbon enhances
- 1054 phenanthrene degradation by autochthonous prokaryotic communities from a pristine seawater.
- 1055 Microbial Ecology 75(3):688–700. https://doi.org/10.1007/s00248-017-1078-8
- 1056 Sadiq FA, De Reu K, Burmølle M, et al (2023) Synergistic interactions in multispecies biofilm
- 1057 combinations of bacterial isolates recovered from diverse food processing industries. Frontiers in
- 1058 Microbiology 14. https://doi.org/10.3389/fmicb.2023.1159434
- Samson R, Peterson S, Frisvad J, et al (2011) New species in Aspergillus section Terrei. Studies
- 1060 in Mycology 69:39–55. https://doi.org/10.3114/sim.2011.69.04
- 1061 Santos-Silva M, Machado E, Wallner-Kersanach M, et al (2018) Background levels of trace
- elements in brown and red seaweeds from Trindade, a remote island in South Atlantic Ocean.
- 1063 Marine Pollution Bulletin 135:923–931. https://doi.org/10.1016/j.marpolbul.2018.08.019
- Santosh I, Ashtavinayak P, Amol D, et al (2017) Enhanced bioethanol production from different
- sugarcane bagasse cultivars using coculture of Saccharomyces cerevisiae and Scheffersomyces
- 1066 (Pichia) stipitis. Journal of Environmental Chemical Engineering 5(3):2861–2868.
- 1067 https://doi.org/10.1016/j.jece.2017.05.045
- 1068 Schoch CL, Ciufo S, Domrachev M, et al (2020) NCBI Taxonomy: a comprehensive update on
- curation, resources and tools. Database 2020. https://doi.org/10.1093/database/baaa062
- 1070 Seki T, Matsumoto A, Shimada R, et al (2012) Conexibacter arvalis sp. nov., isolated from a
- 1071 cultivated field soil sample. International Journal of Systematic and Evolutionary Microbiology
- 1072 62(Pt 10):2400–2404. https://doi.org/10.1099/ijs.0.036095-0
- 1073 Semchenko M, Leff JW, Lozano YM, et al (2018) Fungal diversity regulates plant-soil feedbacks
- in temperate grassland. Science Advances 4(11), https://doi.org/10.1126/sciadv.aau4578
- 1075 Seol D, Jhang SY, Kim H, et al (2019) Accurate and strict identification of probiotic species
- based on coverage of whole-metagenome shotgun sequencing data. Frontiers in Microbiology
- 1077 10. https://doi.org/10.3389/fmicb.2019.01683

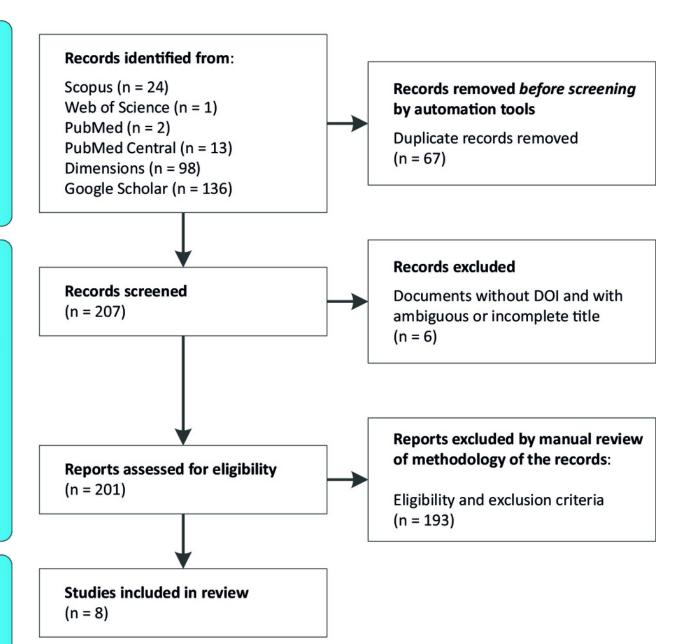
- 1078 Shannon P, Markiel A, Ozier O, et al (2003) Cytoscape: A software environment for integrated
- models of biomolecular interaction networks. Genome Research 13(11):2498–2504.
- 1080 https://doi.org/10.1101/gr.1239303
- 1081 Shavandi M, Mohebali G, Haddadi A, et al (2011) Emulsification potential of a newly isolated
- 1082 biosurfactant-producing bacterium, Rhodococcus sp. strain TA6. Colloids and Surfaces B:
- 1083 Biointerfaces 82(2):477–482. https://doi.org/10.1016/j.colsurfb.2010.10.005
- 1084 Shnit-Orland M, Sivan A, Kushmaro A (2010) Shewanella corallii sp. nov., a marine bacterium
- 1085 isolated from a Red Sea coral. International Journal of Systematic and Evolutionary
- 1086 Microbiology 60(10):2293–2297. https://doi.org/10.1099/ijs.0.015768-0
- 1087 Silva NGd, Alves RJV (2011) The eradication of feral goats and its impact on plant biodiversity
- a milestone in the history of Trindade Island, Brazil. Rodriguésia 62(3):717–719.
- 1089 https://doi.org/10.1590/2175-7860201162315
- 1090 Slowikowski K, Schep A, Hughes S, et al (2018) Package ggrepel. Automatically position non-
- overlapping text labels with ggplot2. https://github.com/slowkow/ggrepel. (Accessed 21 July
- 1092 2023)
- 1093 Smith S, Taylor GD, Fanning EA (2003) Chronic cutaneous Mycobacterium haemophilum
- infection acquired from coral injury. Clinical Infectious Diseases 37(7):e100–e101.
- 1095 https://doi.org/10.1086/377267
- 1096 Soler-Hurtado MM, Sandoval-Sierra JV, Machordom A, et al (2016) Aspergillus sydowii and
- other potential fungal pathogens in gorgonian octocorals of the Ecuadorian Pacific. PLOS ONE
- 1098 11(11):e0165992. https://doi.org/10.1371/journal.pone.0165992
- 1099 Song J, Dong L, Ding Y, et al (2021) A case report of brain abscess caused by Nocardia
- 1100 farcinica. European Journal of Medical Research 26(1). https://doi.org/10.1186/s40001-021-
- 1101 00562-2
- 1102 Stürme MH, Puccia R, Goldman GH, et al (2011) Molecular biology of the dimorphic fungi
- 1103 Paracoccidioides spp. Fungal Biology Reviews 25(2):89–97.
- 1104 https://doi.org/10.1016/j.fbr.2011.04.002
- 1105 Tamayo-Vélez A, Osorio NW (2018) Soil fertility improvement by litter decomposition and
- inoculation with the fungus Mortierella sp. in avocado plantations of Colombia. Communications
- in Soil Science and Plant Analysis 49(2):139–147.
- 1108 https://doi.org/10.1080/00103624.2017.1417420
- 1109 Tang X, Zhang H, Hui Z, et al (2023) Global screening and genetic engineering of Tistrella
- enable sustainable production of didemnin drugs. https://doi.org/10.21203/rs.3.rs-2879035/v1
- 1111 Tripp HJ, Kitner JB, Schwalbach MS, et al (2008) SAR11 marine bacteria require exogenous
- 1112 reduced sulphur for growth. Nature 452(7188):741–744. https://doi.org/10.1038/nature06776
- 1113 Van Beilen JB, Holtackers R, Lu"scher D, et al (2005) Biocatalytic production of perillyl alcohol
- 1114 from limonene by using a novel Mycobacterium sp. cytochrome p450 alkane hydroxylase
- expressed in Pseudomonas putida. Applied and Environmental Microbiology 71(4):1737–1744.
- 1116 https://doi.org/10.1128/aem.71.4.1737-1744.2005

- 1117 Van Mooy BAS, Rocap G, Fredricks HF, et al (2006) Sulfolipids dramatically decrease
- 1118 phosphorus demand by Picocyanobacteria in oligotrophic marine environments. Proceedings of
- 1119 the National Academy of Sciences 103(23):8607–8612.
- 1120 https://doi.org/10.1073/pnas.0600540103
- 1121 Varga J, Frisvad J, Samson R (2011) Two new aflatoxin producing species, and an overview of
- 1122 Aspergillus section flavi. Studies in Mycology 69:57–80. https://doi.org/10.3114/sim.2011.69.05
- 1123 Wagner L, Stielow B, Hoffmann K, et al (2013) A comprehensive molecular phylogeny of the
- 1124 Mortierellales (Mortierellomycotina) based on nuclear ribosomal DNA. Persoonia Molecular
- 1125 Phylogeny and Evolution of Fungi 30(1):77–93. https://doi.org/10.3767/003158513x666268
- Walsh CM, Gebert MJ, Delgado-Baquerizo M, et al (2019) A global survey of mycobacterial
- diversity in soil. Applied and Environmental Microbiology 85(17).
- 1128 https://doi.org/10.1128/aem.01180-19
- 1129 Weber E (2002) The Lecythophora-Coniochaeta complex: I. Morphological studies on
- 1130 Lecythophora species isolated from Picea abies. Nova Hedwigia 74(1–2):159–185.
- 1131 https://doi.org/10.1127/0029-5035/2002/0074-0159
- 1132 Wickham H (2011) ggplot2. WIREs Computational Statistics 3(2):180–185.
- 1133 https://doi.org/10.1002/wics.147
- 1134 Witovisk L, Alves RJ, Guimarães AR, et al (2018) The dead forest on Trindade Island was not
- 1135 monospecific, says the wood. IAWA Journal 39(1):114–S3. https://doi.org/10.1163/22941932-
- 1136 20170183
- 1137 Xiao N, Suzuki K, Nishimiya Y, et al (2010) Comparison of functional properties of two fungal
- antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. The FEBS
- 1139 Journal 277(2):394–403. https://doi.org/10.1111/j.1742-4658.2009.07490.x
- 1140 Yeoman CJ, Han Y, Dodd D, et al (2010) Thermostable Enzymes as Biocatalysts in the Biofuel
- 1141 Industry, Elsevier, p 1–55. https://doi.org/10.1016/s0065-2164(10)70001-0
- 1142 Zhang Z, Zhou T, Harunari E, et al (2020) Iseolides A–C, antifungal macrolides from a coral-
- derived actinomycete of the genus Streptomyces. The Journal of Antibiotics 73(8):534–541.
- 1144 https://doi.org/10.1038/s41429-020-0304-7
- 2014 Zou L, Huang Yh, Long Ze, et al (2019) On-going applications of Shewanella species in
- 1146 microbial electrochemical system for bioenergy, bioremediation and biosensing. World Journal
- of Microbiology and Biotechnology 35(1). https://doi.org/10.1007/s11274-018-2576-7
- 1148

Figure 1

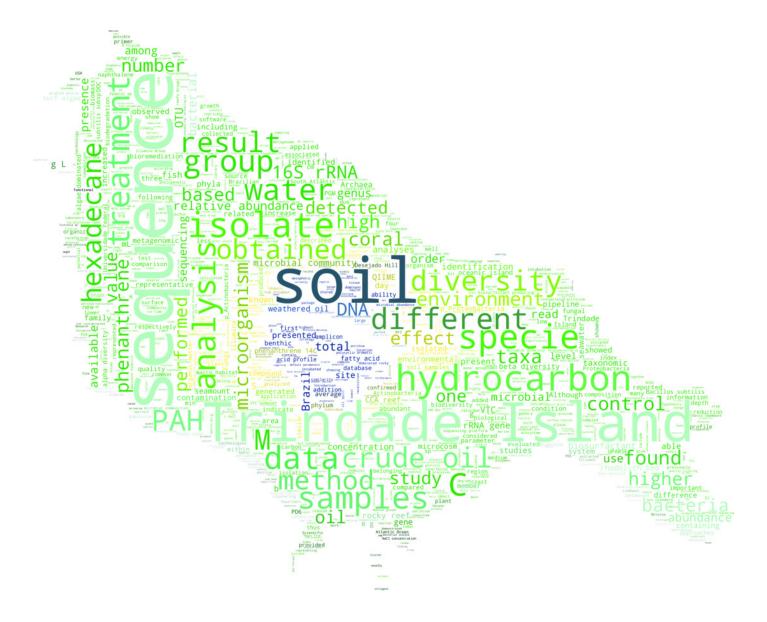
PRISMA flowchart of studies identified by database searches

This figure comprises the PRISMA flowchart of studies identified by database searches.

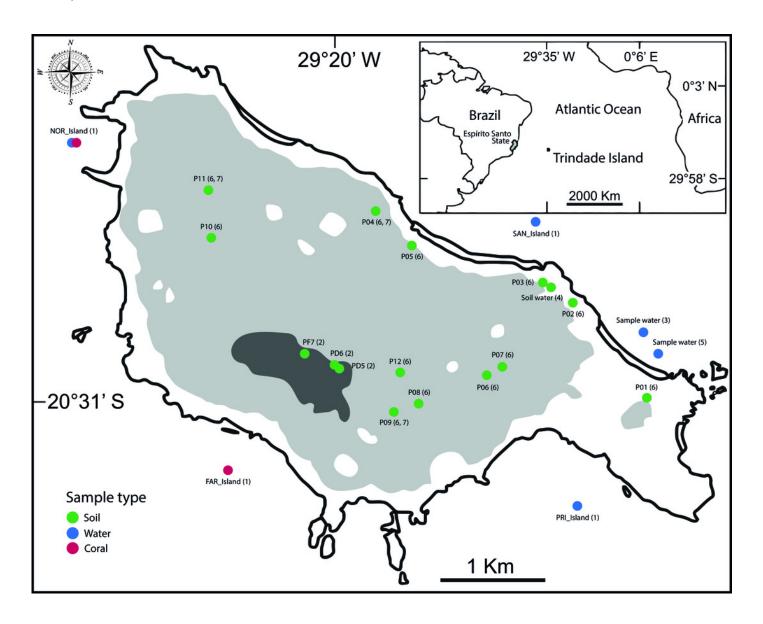


Identification

Screening

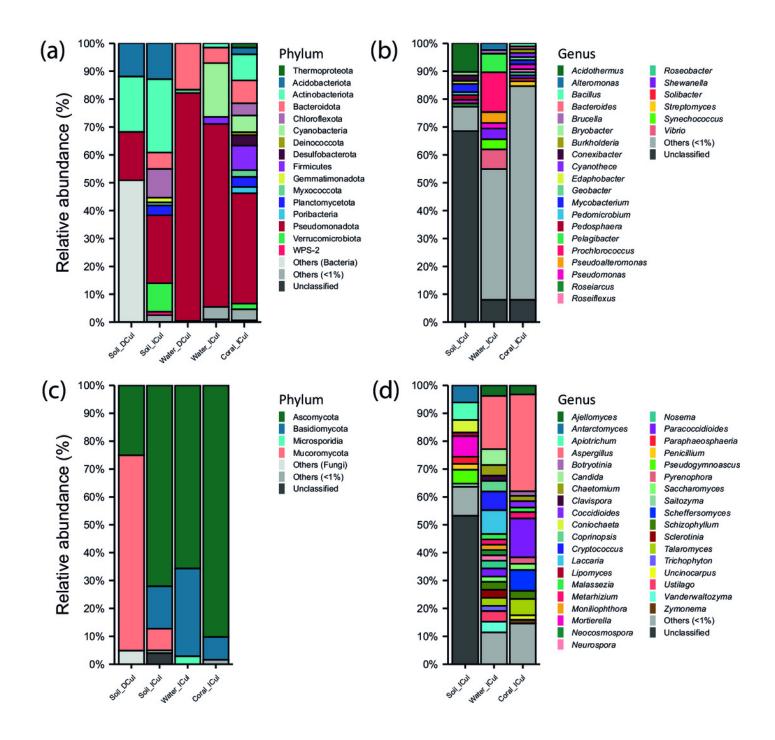


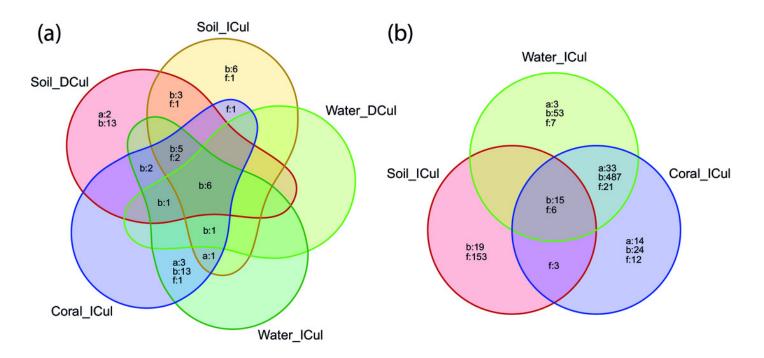
Identification of studies via databases and registers


Word cloud highlighting the profile of the articles included in the review.

This figure depicts a word cloud highlighting the profile of the articles included in the review.

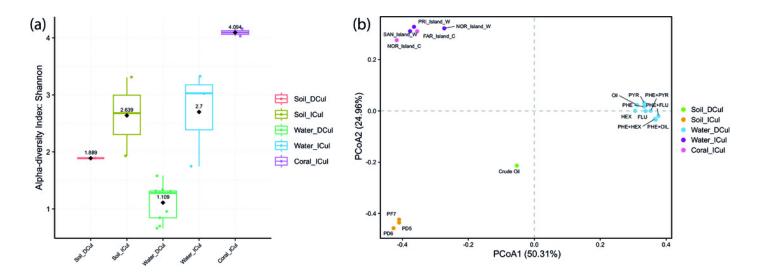
Map showing the locations of all types of samples analyzed in the selected articles.


This figure encompasses a map showing the locations of all types of samples analyzed in the selected articles. (1): Meirelles et al., 2015, (2): Câmara et al., 2023, (3): Rodrigues et al., 2018, (4): Morais et al., 2016, (5): Rodrigues et al., 2015b, (6): da Silva et al., 2015, (7): Pylro et al., 2014.


Taxonomic distribution of the Archaea, Bacteria, and Fungi identified and described in the samples of soil, water, and corals evaluated in the papers under analysis.

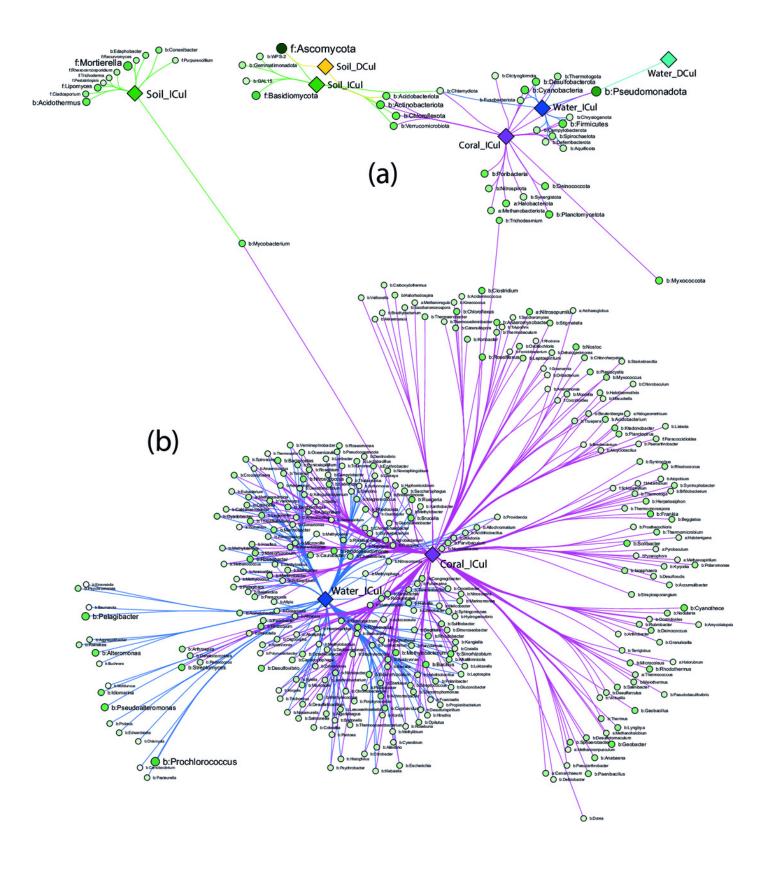
This figure shows the taxonomic distribution of the Archaea, Bacteria, and Fungi identified and described in the samples of soil, water, and corals evaluated in the papers under analysis. Phyla (a) and Genera (b) of Archaea and Bacteria, and Phyla (c) and Genera (d) of Fungi.

Sharedness and uniqueness of phyla (left) and genera (right) of Archaea (a:), Bacteria (b:), and Fungi (f:) between groups of culture-independent and culture-dependent samples.


This figure presents the sharedness and uniqueness of phyla (left) and genera (right) of Archaea (a:), Bacteria (b:), and Fungi (f:) between groups of culture-independent and culture-dependent samples.

Alpha (a) and beta (b) diversity of culture-dependent and culture-independent samples.

This figure encompasses both alpha (a) and beta (b) diversity of culture-dependent and culture-independent samples.



Network of strong associations between the phyla (a) and genera (b) of Archaea, Bacteria, and Fungi with the sample groups.

This figure depicts the network of strong associations between the phyla (a) and genera (b) of Archaea, Bacteria, and Fungi with the sample groups.

Table 1(on next page)

Eligibility criteria for the inclusion of articles in the systematic review.

This table comprises the eligibility criteria for the inclusion of articles in the systematic review.

1 **Table 1**. Eligibility criteria for the inclusion of studies in the systematic review.

Eligibility criteria				
Sampling location	Trindade Island, Brazil			
Sample type	Any substrate			
Sequencing type	Shotgun metagenomics, amplicons 16S rRNA,			
	18S rRNA or ITS			
Focus taxa	Studies must focus on the domains Bacteria,			
	Archaea, or the kingdom Fungi			
Study	Original			
Exclusion criteria				
Sampling location	Studies not conducted on Trindade Island, Brazil			
Sample type	Studies that do not involve substrate samples or			
	focus on human hosts			
Sequencing type	Studies not using shotgun metagenomics, or			
	amplicons for 16S rRNA, 18S rRNA, or ITS			
Focus taxa	Studies that do not focus on Bacteria, Archaea, or			
	Fungi, or that focus on other domains/kingdoms			
Study	Review articles, meta-analyses, editorials, or other			
	non-original studies			

Table 2(on next page)

Studies included in the systematic review.

This table shows the studies included in the systematic review.

1

 Table 2. Studies included in the systematic review.

Article	Taxa studied	Substrate	Samples/Treat	Study	Approach	Marker	Sequencing
			ments	method		gene	platform
Meirelles et al., 2015	Archaea,	Water and	NOR_Island_W,	Culture-	WGS	-	454 GS
	Bacteria,	Coral	PRI_Island_W,	independent	metagenomics		FLX
	Eukaryota	tissue	SAN_Island_W,	(ICul)			Titanium
	(Fungi,		FAR_Island_C,				
	Metazoa,		NOR_Island_C				
	Protozoa,						
	Viridiplantae						
), Viruses						
Câmara et al., 2023	Archaea,	Soil	PD5, PD6, PF7	Culture-	Amplicon	16S	Illumina
	Bacteria,			independent		rRNA,	MiSeq
	Eukaryota			(ICul)		ITS	
	(Fungi,						
	Metazoa,						
	Protozoa,						
	Chromista,						
	Viridiplantae						
)						
Rodrigues et al., 2018	Archaea,	Water	Water sample /	Culture-	Amplicon	16S	Ion Torrent
	Bacteria		Oil, FLU, HEX,	dependent		rRNA	PGM
			PHE,	(DCul)			
			PHE+FLU,				
			PHE+HEX,				
			PHE+OIL,				
			PHE+PYR,				
			PYR				
Morais et al., 2016	Archaea,	Soil	Crude Oil	Culture-	Amplicon	16S	Illumina

	Bacteria, Fungi			dependent (DCul)		rRNA, ITS	MiSeq
Rodrigues et al., 2015b	Bacteria	Water	Water sample / TRH1, TRH2, TRH3, TRH4, TRN1, TRN2, TRN3, TRN4, TRN5, TRN6, TRN7, TRN8, TRN9, TRN10, TRN11	Culture- dependent (DCul)	Amplicon	16S rRNA	MegaBACE 1000 DNA Analysis System
da Silva et al., 2015	Bacteria	Soil	P01, P02, P03, P04, P05, P06, P07, P08, P09, P10, P11, P12 / TR7, TR8, TR10, TR12, TR13, TR14, TR17, TR19, TR22, TR27, TR27II, TR35II, TR47II, TR59II	Culture- dependent (DCul)	Amplicon	16S rRNA	MegaBACE 1000 DNA Analysis System
Pylro et al., 2014	Archaea, Bacteria	Soil	P04, P09, P11	Culture- independent (ICul)	Amplicon	16S rRNA	Illumina MiSeq/Ion Torrent PGM
Câmara et al., 2022 (a)	Archaea, Bacteria, Eukaryota	Soil	PD5, PD6, PF7	Culture- independent (ICul)	Amplicon	16S rRNA, ITS	Illumina MiSeq

(a) Article excluded from the discussion because it is equivalent to the research by Câmara et al. (2023).

2