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ABSTRACT
The remote sensing ecological index (RSEI) is an important tool for assessing ecosystem
quality. However, its land surface temperature (LST) component poses challenges due
to complex calculations and mismatched spatial resolution with other indicators. This
study proposed an improved remote sensing ecological index (DRSEI). By replacing
the LST component in RSEI with the difference index (DI) (representing PM2.5
concentration), the new index better reflects air pollution’s impact on ecosystem
quality. The results demonstrated that DRSEI outperformed the RSEI in assessing
ecosystem quality in Chongqing’s urban area. It exhibited three advantages: stronger
correlation with the ecological index (EI), standard deviation values closer to EI’s
baseline, and lower root mean square error. The applicability of the DRSEI and RSEI
varied across different regions: the DRSEI proved to be more suitable for highly
urbanized areas, whereas the RSEI performed better in suburban regions. Further
analysis revealed that the spatial variability of indicators influenced their loadings in
principal component analysis, thereby affecting ecosystem quality assessment results.
This study emphasizes the importance of considering the spatial distribution of
indicators when constructing ecological indices. The findings suggest DRSEI could
effectively assess ecosystem quality in urbanized areas. This approach provides new
insights for urban ecological monitoring and environmental management.

Subjects Ecology, Ecosystem Science, Environmental Contamination and Remediation,
Environmental Impacts, Spatial and Geographic Information Science
Keywords Remote sensing ecological index, Ecological index, Ecosystem quality, Google Earth
engine, Chongqing city proper

INTRODUCTION
The ecological environment serves as the foundation for human existence, and it directly
impacts human health and socioeconomic development. Therefore, accurate assessment
of the ecosystem quality (EQ) has become a crucial issue. The ecosystem quality refers
to the ability of an ecosystem, within a specific time and spatial range, to maintain
structural integrity and functional stability through the reasonable distribution and
combination of its internal elements (PRC, 2015; PRC, 2021). It provides ecological
services to safeguard human well–being while also possessing the ability to respond to
and recover from external disturbances. The methods for evaluating EQ have evolved
with the continuous development of data and technology. Many institutions and scholars
worldwide have conducted extensive research in this field. Internationally, one of the
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most widely used models is the Pressure-State-Response (PSR) model, jointly proposed
by the Organisation for Economic Co-operation and Development (OECD) and the
United Nations Environment Programme (UNEP) (OECD, 1993; Tavosi et al., 2025). In
China, the ecological index (EI) was introduced in 2015 (PRC, 2015), followed by the trial
implementation of the ecosystem quality index (EQI) in 2021 (PRC, 2021). The PSR model
requires indicators that cover multiple dimensions, including pressure, state, and response.
However, the acquisition of these indicators often faces challenges such as data scarcity
and difficulty in collection. Similarly, both EI and EQI encounter issues related to data
acquisition, complex indicator construction, and spatial scale limitations. To address these
issues, Xu (2013a) introduced the remote sensing ecological index (RSEI), which integrates
four indicators: greenness, humidity, dryness, and heat. Unlike the EI and the EQI, the RSEI
is a fully remote sensing–based composite index with easily obtainable indicators, without
requiring manual weight assignment, and visualizable results. The RSEI’s applications span
diverse ecosystems: grasslands (Du et al., 2024; Song, Luo & Duan, 2019), wetlands (Jing
et al., 2020; Qureshi et al., 2020), urban areas (Huang et al., 2021; Xu, 2013b), arid regions
(Gao et al., 2020; Xia et al., 2022), basins (Wang & Ge, 2022; Yuan et al., 2021), and mining
areas (Nie et al., 2021; Zhu et al., 2020).

Although the RSEI model has been widely applied since its introduction, it has not been
without flaws (Zhong & Xu, 2021). Since its inception, the model has attracted significant
attention from researchers, who have proposed various improvements. However, the
effectiveness and rationality of these improvements have been a topic of controversy in
different studies. For example, some research attempted to enhance the RSEI by increasing
the number of principal components (Song, Luo & Duan, 2019). However, Xu, the original
author of the RSEI model, demonstrated through experiments that increasing the number
of principal components not only reduced the proportion of the first principal component
but also failed to increase the information content of the original RSEI. On the contrary, it
led to interference between the components, thus not significantly improving the model’s
performance. Modifying the combination of ecological factors is currently one of the
most common ways to improve the model (Xu & Deng, 2022). Researchers added other
indicators to the RSEI framework based on different research objectives. For instance,
Wan et al. (2021) argued that particulate matter in the air influences the urban ecological
environment, added the difference index (DI), representing PM2.5 concentration, to the
RSEI to construct the RSEINew for urban ecological environment research. The results
showed that the average correlation of the RSEINew with other indicators was higher
than the RSEI. However, the authors’ validation of RSEINew focused solely on principal
component analysis. While they examined contribution rates and factor loadings, they
omitted critical comparisons between RSEINew/RSEI and established indices like EI or EQI.
This validation was neither sufficient nor comprehensive, leaving uncertainty regarding
whether the RSEINew has higher evaluation accuracy than the RSEI. Zhang et al. (2023)
noted the lack of quantitative research combining air pollutant indicators with ecological
environment status in EQ monitoring. Therefore, the aerosol optical depth (AOD) was
incorporated into the RSEI, resulting in the improved remote sensing ecological index
(ARSEI) to study the ecosystem quality of Xi’an. However, the authors only justified
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the rationality of the ARSEI by comparing the differences between the ARSEI and the
RSEI, without verifying whether the ARSEI had higher evaluation accuracy than the RSEI.
Similarly, Wang et al. (2022), recognizing the growing air pollution issue, incorporated
the air pollution index (API) into the RSEI to develop the AQRSEI. By comparing the
spatiotemporal visualization outputs of AQRSEI and RSEI models within ecological
restoration regions, the author demonstrated that AQRSEI exhibits enhanced sensitivity
in detecting spatiotemporal ecological variations. However,Wang et al. (2022) also did not
compare the AQRSEI with the EI or other standard indices, lacking a quantitative metric
to assess the improvements of the AQRSEI over the RSEI. While these studies have made
certain improvements to the RSEI model, they generally lack comprehensive validation of
the improvement effects.

Some scholars have incorporated indicators that highlight regional characteristics based
on the specific features of different study areas. For example, the rocky desertification
index (RI) (Ye & Kuang, 2022), Salinity (SI–T) and land degradation indicators (Wang et
al., 2020), the net primary productivity of vegetation (NPP) (Fan et al., 2021), the human
activity intensity index (IPOI) (Yang et al., 2021), and population density data (POP) (Zhao
et al., 2022). This improvement aims to more comprehensively reflect the complexity of
the ecological environment. However, these methods are usually applied only to specific
regions. For example, the RI index is primarily used in the karst areas of southeastern
Chongqing, while the SI-T and land degradation indicators are mainly applied in the Ulan
Buh Desert. Similarly, studies that have modified the RSEI by incorporating NPP, IPOI,
and POP have also been limited to a single study area. However, ecological issues such
as rocky desertification and desertification are not confined to a single region; they occur
across different latitudes, climatic conditions, and levels of human disturbance. Due to
variations in natural and human environments among different regions, most existing
studies on RSEI improvement methods lack systematic validation of their applicability
across diverse geographical settings. This limitation restricts the generalization and broader
applicability of these improved methods.

Building on the improvement methods proposed by various scholars, this study aims
to refine the RSEI by adjusting its indicator composition. The original RSEI aligns with
EI’s framework through three key correspondences: (1) NDVI as greenness (matching
EI’s vegetation coverage), (2) WET index (equivalent to EI’s hydrographic network), and
(3) NDSI representing dryness (analogous to EI’s land degradation indicator). Notably,
EI’s pollution load index lacks a counterpart in the RSEI framework. The RSEI originally
adopted land surface temperature (LST) as the heat indicator because its developers argued
that, although heat indicators had not received sufficient attention in China’s ecological
monitoring andwere not included in environmental statistical yearbooks, thermal pollution
(e.g., the urban heat island effect) remains an important factor (Xu, 2013a). However, with
the continuous advancement of urbanization, air pollution control has become a core
priority in China’s ‘‘ecological civilization’’ initiatives (Feng et al., 2019). Furthermore, the
2015 revision of the EI assigned the highest weight to air quality compliance in the urban
ecological status index, highlighting the significant role of air pollution in urban ecological
quality assessments. Therefore, when evaluating urban ecological quality, the impact of
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air pollution should be considered. To reduce model complexity, we replaced the heat
indicator with an air pollution metric in the RSEI framework. This substitution aims to
better capture air pollution’s ecological impacts without introducing additional variables.

The selection of air quality indicators also requires careful consideration. The most
commonly used remote sensing product representing air quality is the aerosol optical
depth (AOD) (Feng, Yang & Li, 2023; Liu et al., 2022; Zhang et al., 2023). However, Xu
(2008) highlighted a limitation: coarse-resolution products inadequately capture urban
aerosol dynamics. Due to spatial variations in factors such as buildings, transportation
infrastructure, and population density, the aerosol distribution may vary at even finer
spatial scales within urban areas (Xu et al., 2018). Although Sentinel–2 Satellite data
provide higher spatial resolution AOD products than other satellites, their time series has
been too short for long-term AOD studies (Li et al., 2019). Similarly, while Sentinel-5P’s
atmospheric pollution index (API) product includes four gaseous pollutants (NO2, SO2,
O3, and CO), it also suffers from coarse resolution and a short time series (Wang & Ge,
2022). In comparison, the difference index (DI) offers distinct advantages. It effectively
captures PM2.5 concentrations while maintaining spatial resolution compatibility with
other indicators. Furthermore, its computational simplicity (Feng, Feng & Feng, 2018)
makes it particularly suitable for integrated analysis. This may provide a breakthrough for
improving the RSEI. Therefore, we developed the DI to represent air quality parameters
and constructed a novel remote sensing ecological index, the DRSEI. Given that PM2.5

pollution dominates Chongqing’s air pollution, and that high PM2.5 concentration areas
are concentrated in the central urban district (Chen et al., 2022; Xiong et al., 2022), this
study selected Chongqing’s main urban area as the research area. The objective was to
explore the DRSEI’s effectiveness in improving urban EQ assessment and to evaluate the
EQ of Chongqing’s central urban district. The findings of this study could support the
urban ecological management. Portions of this text were previously published as part of a
preprint (https://doi.org/10.21203/rs.3.rs-4756211/v1).

MATERIALS & METHODS
Study area
The municipal area in Chongqing covers an area of 82,400 km2 and is divided into three
main functional zones: the city proper, the Three Gorges Reservoir area in the northeast,
and the Wuling Mountain area in the southeast. Chongqing’s city proper comprises
21 districts, including the central urban area (Yuzhong, Dadukou, Jiangbei, Nan’an,
Shapingba, Jiulongpo, Beibei, Yubei, and Ba’nan) and the main urban area (Fuling,
Changshou, Jiangjin, Hechuan, Yongchuan, Nanchuan, Qijiang, Dazu, Bishan, Tongliang,
Tongnan, and Rongchang), covering a total area of 28,700 km2 (Fig. 1). Accounting for
35% of Chongqing’s land area, this region accommodates 66% of the city’s permanent
residents and 74% of the city’s urban population, and it contributes 77% of the regional
GDP. It is characterized by a relatively high level of urbanization and is closely linked to
urban development.
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Figure 1 Location of the city proper in Chongqing.
Full-size DOI: 10.7717/peerj.19297/fig-1

Data and preprocessing
In this study, data for the city proper in Chongqing were collected for the years 2002, 2006,
2010, 2014, 2018, and 2022. Table 1 summarizes the key data used in this study (land cover
data and statistical data for calculating the EI values). Due to the similarity of the annual
trends of the RSEI and the average summer RSEI values, the data for June to August in
each target year were selected (Ji et al., 2022; Zhang et al., 2021).

All image processing was performed on Google Earth Engine (GEE) using Landsat
5 (LC05) and Landsat 8 (LC08) data. The specific dataset identifiers were: LAND-
SAT/LT05/C02/T1_L2 for Landsat 5 (EROS, 2020a), and LANDSAT/LC08/C02/T1_L2
for Landsat 8 (EROS, 2020b). Prior to release, both satellite datasets underwent radiometric
calibration and atmospheric correction. These preprocessing steps effectively eliminated
sensor response variations, temporal imaging differences, and atmospheric interference,
ensuring accurate representation of surface reflectance. LC05 and LC08 images were
calibrated from sensor radiance to surface reflectance using the Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS) (Masek et al., 2006) and the Landsat
Surface Reflectance Code (LaSRC) (Vörösmarty, Pahl-Wostl & Bhaduri, 2013), respectively.
These datasets underwent preprocessing steps.

Due to Chongqing’s humid and rainy climate, the images were often affected by clouds.
To address cloud contamination, we implemented the Fmask algorithm for cloud removal
(Foga et al., 2017; Mateo-García et al., 2018; Zhu &Woodcock, 2012). In GEE, Fmask is
encapsulated as a convenient function, allowing cloud and cloud shadow masking by
extracting the ‘‘StateQA’’ band. After cloud removal, the images were composited using
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Table 1 Detailed description of the data.

Data types Source

Vector map data Alibaba Cloud Visualization Platform
(https://web.archive.org/web/20250409042050/https:
//datav.aliyun.com/portal/school/atlas/area_selector, accessed
April 2)

LC05 Google Earth Engine (https://developers.google.com/earth-
engine/datasets/catalog/LANDSAT_LT05_C02_T1_L2,
accessed April 16)

LC08 Google Earth Engine (https://developers.google.com/earth-
engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2,
accessed April 19)

Land cover data The China Land Cover Dataset
(http://doi.org/10.5281/zenodo.4417809, accessed May
8)
The Chongqing Water Resources Bureau
(https://data.stats.gov.cn/english/, accessed June 3)
The Chongqing ecological environment bureau
(https://data.stats.gov.cn/english/, accessed June 17)

Statistical
data

The Chongqing statistics bureau
(https://data.stats.gov.cn/english/, accessed June 29)

the median value. The effectiveness of cloud removal was evaluated through cloud cover
calculations and visual analysis. Specifically, the ‘‘QA_PIXEL’’ band was used to identify
cloudy pixels, and cloud coverage was calculated as the ratio of cloudy pixels to the total
number of pixels. The results showed that after cloud removal, the cloud coverage of the
six composite images from 2002 to 2022 was close to zero, meeting the requirements for
further analysis. Since the cloud removal method strictly filters out cloud-contaminated
areas, regions that are severely affected by cloud contamination in all available images
may lose valid data after cloud removal, resulting in missing areas. Therefore, after cloud
removal, it is necessary to fill the missing areas using images from the same month of the
previous or following year.

Calculation of various indicators
(1) NDVI: The NDVI has been widely used to assess and monitor the health and coverage
of surface vegetation. It is calculated as follows:

NDVI =
BNir−BRed
BNir+BRed

(1)

where BNir is the reflectance in the near–infrared band, and BRed is the reflectance in the
red band.

(2) WET: The moisture index not only represents open water bodies but is also closely
related to the moisture in the soil and vegetation. Before extracting the WET index, water
bodies are masked using the modified normalized difference water index (Xiong et al.,
2021) (MNDWI, Eq. (3)). The formula for calculating the WET index (Crist, 1985) is

WETTM = 0.0315BBlue+0.2021BGreen+0.3102BRed
+0.1594BNir−0.6806BSwir1−0.6109BSwir2
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WETOLI = 0.1511BBlue+0.1973BGreen+0.3283BRed
+0.3407BNir−0.7117BSwir1−0.4559BSwir2 (2)

MNDWI =
BGreen−BSwir1
BGreen+BSwir1

(3)

where BBlue,BGreen,BRed ,BNir , BSwir1,and BSwir2 are the reflectances of the Landsat data in
the blue, green, red, near–infrared, shortwave infrared 1, and shortwave infrared 2 bands,
respectively.

(3) LST: The LST represents the surface temperature in an area. In this study, the Landsat
LST product (Ermida et al., 2020) provided by the GEE platform was utilized, requiring
only conversion to Celsius. The calculation formula is as follows:

LST =BST −273.15 (4)

where BST is the land surface temperature band (for the LANDSAT/LT05/C02/T1_L2
dataset, it is the ST_B6 band, and for the LANDSAT/LC08/C02/T1_L2 dataset, it is the
ST_B10 band). To convert the temperature to Celsius, 273.15 is subtracted from the Kelvin
value.

(4) NDSI: The NDSI consists of two components: the scarcity index (SI), which reflects
the extent of vegetated land scarcity (Rikimaru, Roy & Miyatake, 2002); and the index-based
built-up index (IBI), which reflects built-up land conditions (Xu, 2008). Its calculation
formula is

NDSI =
SI+ IBI

2

SI =
(BSwir1+BRed)− (BBlue+BNir )
(BSwir1+BRed)+ (BBlue+BNir )

IBI =
2BSwir1

BSwir1+BNir
−

[
BNir

BRed+BNir
+

BGreen
BSwir1+BGreen

]
2BSwir1

BSwir1+BNir
+

[
BNir

BRed+BNir
+

BGreen
BSwir1+BGreen

] (5)

where BBlue,BGreen,BRed ,BNir ,BSwir1,and BSwir2 are the reflectances of the Landsat data in
the blue, green, red, near–infrared, shortwave infrared 1, and shortwave infrared 2 bands,
respectively.

(5)DI: Feng, Feng & Feng (2018) developed the particle difference index (DI) to represent
changes in particle concentration based on the characteristics of the PM2.5, which increases
the reflectance in the red band and decreases the reflectance in the near–infrared band. Its
calculation formula is

DI =BRed−BNir (6)

where BRed and BNir are the apparent reflectance or radiance in the red and near–infrared
bands, respectively.
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DRSEI comprehensive index development
The four indicators included in the RSEI are greenness, moisture, dryness, and heat.
Greenness is represented by the normalized difference vegetation index (NDVI), moisture
is represented by the humidity index obtained through remote sensing tasseled cap
transformation (WET), dryness is represented by the average of the soil index (SI) and
the built–up index (IBI) (NDSI), and heat is represented by the land surface temperature
(LST) derived from Landsat. Thus, the definition of the RSEI is (Xu, 2013a).

RSEI = f (NDVI ,WET ,LST ,NDSI ).

By replacing LST in the RSEI with the difference index (DI), a new type of remote
sensing ecological index is constructed, denoted as the DRSEI. Therefore, the definition of
the DRSEI is

DRSEI = f (NDVI ,WET ,NDSI ,DI ).

To integrate these four indicators into a single index, the principal component
analysis (PCA) method (Bro & Smilde, 2014) is commonly employed. PCA identifies
the correlations among these indicators by analyzing their variations and determines their
respective weights based on each indicator’s contribution to the principal components.
This approach transforms the original data into a few representative principal components,
thereby reducing data complexity and better capturing the overall ecological environment.
Therefore, the formula for the DRSEI is:

DRSEI = PC1
[
f (NDVI ,WET ,NDSI ,DI )

]
(7)

where PC1 represents the first principal component obtained from PCA.
For the calculated four indicators, due to their non–uniformdimensions, it was necessary

to normalize these indicators before PCA (Ye & Kuang, 2022). That is, their values needed
to be normalized to the range of [0,1]. The normalization formula is

Ni=
Ii− Imin

Imax− Imin
(8)

where Ni is the normalized value of a certain indicator, Ii is the value of that indicator
in pixel i, and Imin and Imax are the minimum and maximum values of that indicator,
respectively.

PCA was performed on the normalized indicators to retain the primary information
in the data while achieving reduction of the dimensionality. To enable measurement and
classification of the DRSEI, it was also normalized. The formula for this normalization is

DRSEI =
DRSEIi−DRSEImin

DRSEImax−DRSEImin
(9)

where DRSEIi is the value of DRSEI for pixel i, and DRSEImin and DRSEImax are the
minimum and maximum values of DRSEI, respectively.

Model verification
The optimization effect of DRSEI, as an improved version of RSEI, can be validated from
two dimensions:
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Table 2 The calculation formulas for the evaluation indicators.

Index Formula Description

Correlation coefficient R=
1
N
∑N

n−1(fn−f )(pn−p)
δf δp

fn and pn are defined as scattered points at N times or as
spatial points. f and p are the mean values of f and p, and δf
and δp are the standard deviations of f and p, respectively.

Average correlation Cp=
|Cq|+|Cr |+···+|Cs|

n−1 Cp is the average correlation coefficient. p, q, r, and s
represent the average correlation coefficients and are the
indicators used in the correlation analysis. Cq,Cr ,andCs are
the correlation coefficients between each pair of indicators.

Standard deviation SD=
√

1
N

∑N
i=1(xi−x)

2 SD is the standard deviation, N is the total number of data
points, xi is the value of the ith data point, and x is the mean
of the dataset.

Root–mean–square (RMS) difference E ′ =
{

1
N

∑N
n=1

[(
fn− f

)
− (pn−p)

]2}2
The Taylor diagram suggests that the traditional root mean
square error (RMSE) is composed of two components,
namely, the overall bias (E) and the root–mean–square
(RMS) difference (E ′). N ,fn,pn,f , and p have the same
meanings as in the correlation coefficient formula.

1. Accuracy improvement assessment: using the ecological index (EI) as the evaluation
standard, the improvement of DRSEI in ecological quality assessment is quantitatively
evaluated by comparing the degree of convergence between DRSEI, RSEI, and EI. The
selection of EI as the reference benchmark is based on its widespread adoption in China’s
environmental statistical yearbooks for ecological quality assessment. The fit between
DRSEI, RSEI, and EI is examined using three core indicators, with specific calculation
formulas provided in Table 2: correlation coefficient, root–mean–square difference, and
standard deviation.

2. Regional applicability analysis: a multi-regional comparative experiment is conducted
to analyze the applicability differences between DRSEI and RSEI in regions with
distinct ecological characteristics, assessing their stability and generalizability in complex
geographical environments. Specifically, the DRSEI and RSEI scores for different ecological
regions are calculated and systematically compared with the EI reference values for these
regions to reveal the adaptability of the models under varying geographical conditions.

RESULTS
Comparison of DRSEI and RSEI in the city proper in Chongqing
PCA was implemented on the GEE platform (Google Earth Engine) to obtain the loading
coefficients of each indicator and the contribution of the first principal component
(Table 3). The results indicate that the first principal component of the DRSEI accounted
for over 75% of the total variance, demonstrating a capacity equivalent to that of the
RSEI in synthesizing multi-indicator information. Compared to the RSEI, the higher
variance contribution of the first principal component in the DRSEI suggested that
its model accounted for a larger proportion of the total variance. This implied that
the DRSEI summarized the data’s main characteristics more effectively than the RSEI.
Consequently, it enhanced the capability to characterize ecological factor trends. Regarding
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Table 3 PCA results for RSEI and DRSEI.

Year Model Contribution
rate of PC1

Loadings of each
indicator on PC1

NDVI WET NDSI LST DI

RSEI 76.52 0.80 0.13 –0.50 –0.30
2002

DRSEI 79.44 0.74 0.08 –0.44 –0.50
RSEI 74.54 0.79 0.11 –0.57 –0.20

2006
DRSEI 79.70 0.80 0.11 –0.57 –0.16
RSEI 84.69 0.81 0.07 –0.55 –0.18

2010
DRSEI 85.33 0.79 0.06 –0.52 –0.32
RSEI 81.54 0.74 0.13 –0.54 –0.37

2014
DRSEI 83.23 0.72 0.11 –0.50 –0.47
RSEI 85.85 0.93 0.11 –0.28 –0.20

2018
DRSEI 85.89 0.75 0.08 –0.22 –0.62
RSEI 90.33 0.94 0.13 –0.16 –0.28

2022
DRSEI 86.16 0.76 0.09 –0.13 –0.63

loading polarities, greenness and wetness showed positive loadings, indicating beneficial
contributions to the ecosystem, while dryness and air pollution indices exhibited negative
loadings, reflecting detrimental impacts on EQ. These findings aligned closely with the
RSEI pattern. Additionally, across all study years, the consistent signs of indicator loadings
in the DRSEI suggested that the model had a stable capacity to reflect EQ evolution.

Both the contribution rate of the first principal component and PCA-derived indicator
loadings suggested that the DRSEI enhanced multi-indicator integration; however, its
validity for EQ evaluation required further verification. We selected 2018 and 2022 as
representative cases where both indices showed high contribution rates, then conducted
comparative analyses between the indices and their corresponding EI values across
administrative divisions.

At the county level, we computed correlation coefficients, RMS differences, and standard
deviations between EI and both RSEI/DRSEI for 2018 and 2022. The correlation coefficient
revealed which model better captured the authentic ecological variation trends overall.
RMS differences quantified deviations between EI and the indices (EI-RSEI/DSEI pairs),
while standard deviationsmeasured themagnitude of data dispersion, thereby reflecting the
spatial heterogeneity of ecological indices. To more intuitively illustrate the relationships
among the three evaluation indices, we used a Taylor diagram (Fig. 2). The Taylor diagram
can simultaneously display the correlation, standard deviation, and RMS difference of
multiple models relative to the reference value (EI) within the same coordinate system,
overcoming the limitations of traditional tables or single scatter plots in comprehensively
comparing multiple indices. Each point in the diagram represents a model. The angle
between a radial axis and the abscissa represents the correlation coefficient. Smaller angles
(approaching 0◦) indicate values closer to 1, denoting stronger linear consistency with
ground truth data. The distances along orthogonal axes denote standard deviations.
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Euclidean distances between model markers and the reference point represent RMS
differences; shorter distances indicate smaller RMS errors (Taylor, 2001).

First, we compared the standard deviations in the Taylor diagram. Analysis of the relative
positions between scatter points and the solid arc connected to the REF point in Fig. 2
revealed that standard deviations followed the order: RSEI >DRSEI >EI. However, the
differences among them were relatively small, indicating that while both DRSEI and RSEI
exhibited slightly greater data variability than EI, the extent of this difference was limited.
This suggests that these models may slightly amplify the magnitude of ecological changes.
Nevertheless, the comparison demonstrates the DRSEI’s standard deviation is closer to
EI’s value, suggesting its superior realism in EQ representation. Next, we compared the
correlation coefficients, which correspond to the angles of the radial lines in the diagram.
The results showed that both indices had correlation coefficients of approximately 0.6 with
the EI, indicating moderate correlations. Notably, the DRSEI exhibited a higher correlation
coefficient than the RSEI, which suggests that the spatial distribution of the DRSEI was
more synchronized with the actual EQ represented by the EI. Finally, we examined the
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root-mean-square (RMS) difference, which quantifies the overall discrepancy between the
model values and the actual measurements. This metric is visualized in the diagram as
the distance between scatter points and the reference (REF) point. Comparison of scatter
point positions relative to the pink arc shows the DRSEI exhibiting smaller RMS difference,
demonstrating superior fitting accuracy and spatial consistency in EQ assessment. These
findings further validated the improvements in the DRSEI.

Compared to the RSEI, the DRSEI exhibited two key improvements in EQ assessment:
fluctuations closer to true values; and higher spatial synchronization coupled with smaller
overall error. These findings demonstrated its improved accuracy.

Comparison of DRSEI and RSEI in other cities
The DRSEI performed well in the main urban area of Chongqing, but its effectiveness
might vary across cities with distinct geographical locations and climatic conditions. To
systematically compare the DRSEI and the RSEI, this study selected Beijing (a northern city)
and Guangzhou (a southern city) for comparison. Beijing is located in the northern North
China Plain, while Guangzhou lies in the coastal area of South China. These significant
latitudinal and geographical contrasts provided an ideal foundation for assessing the
applicability of the indices across diverse environments. For Beijing, district-level ecological
index (EI) data for 2022 were obtained from the Beijing Ecological Environment Status
Bulletin. In contrast, Guangzhou’s EI reporting ceased after 2020, requiring the use of
2020 data. Differences between DRSEI, RSEI and EI were calculated and visualized using
lollipop plots, explicitly demonstrating their discrepancies, as shown in Fig. 3. The lollipop
plot not only intuitively displays the magnitude of the deviations of DRSEI and RSEI from
EI across districts but also clearly indicates the direction of these deviations.

Figure 3 reveals that both DRSEI and RSEI show limited effectiveness in evaluating
Beijing’s district-level EQ. Both models demonstrate systematic underestimation across the
municipality. However, three key observations emerge: First, discrepancies exist between
citywide and district-level evaluations. For both models, citywide EQ assessments exhibited
higher accurate compared to district-level evaluations. Second, at the district level, the
DRSEI achieved higher accuracy in central urban areas (including Dongcheng, Xicheng,
Chaoyang, Fengtai, Shijingshan, Haidian, Mentougou, and Daxing). Smaller discrepancies
between DRSEI and EI values in these districts demonstrate its enhanced suitability for
urbanization-dominated ecosystems. In contrast, the RSEI demonstrated higher accuracy
in assessing Beijing’s suburban districts (Fangshan, Shunyi, Huairou, Pinggu, Miyun, and
Yanqing). These areas typically feature higher vegetation cover and lower urbanization
levels, suggesting that the RSEI may be more suitable for reflecting EQ in such natural
environments.

However, Guangzhou’s EQ assessment revealed marked disparities between DRSEI and
RSEI performances. The RSEI generally overestimated EQ, while the DRSEI consistently
underestimated it. This systematic divergence may stem from differences in model
sensitivity to ecological factors under the humid and vegetation-rich climatic of southern
China. Compared to district-level evaluations, the DRSEI demonstrated greater accuracy
in citywide EQ assessments. This again demonstrates that, at a large scale, the DRSEI model
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Figure 3 Differences between DRSEI and EI vs. RSEI and EI.
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can more stably capture the overall trend of ecological change. Additionally, the DRSEI
showed significantly higher accuracy than the RSEI in assessing Guangzhou’s central urban
districts, including Liwan, Yuexiu, Haizhu, Tianhe, and Baiyun. This spatial consistency
with Beijing’s pattern strengthens evidence for differential model applicability across
urbanization gradients. The DRSEI is better suited for assessing EQ in highly urbanized
areas, while the RSEI performs better in natural ecological environments.

As DRSEI and RSEI demonstrate distinct regional applicability advantages and diverge
in key metrics (DI for DRSEI versus LST for RSEI), systematically investigating LST and
DI as potential core drivers becomes critical for elucidating the mechanistic basis of
model performance variations. To validate LST and DI impacts on EQ, we first analyzed
correlations among these parameters and EI (Fig. 4). The correlation analysis aims to
assess whether LST and DI exhibit equivalent significance for ecological quality, thereby
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investigating their roles in the performance discrepancies between models. Should DI
demonstrate a statistically stronger correlation with EI compared to LST, this would
imply that the superiority of DRSEI in ecological quality assessment may originate
from the validity of DI as a surrogate indicator. Specifically, DI could provide more
precise characterization of ecological conditions, whereas LST might play a comparatively
subordinate role. Conversely, if LST and DI show comparable correlations with EI, it would
suggest both parameters exert similar influences on ecological quality. In such cases, the
accuracy differences between DRSEI and RSEI might not be exclusively attributed to the
substitution of evaluation factors, but could also be attributable to additional confounding
variables.

Beijing showedDI-EI and LST-EI correlation coefficients of−0.92 (R2
= 0.86) and−0.93

(R2
= 0.87), respectively. Guangzhou demonstrated stronger DI-EI (−0.96, R2

= 0.93) and
LST-EI (−0.96, R2

= 0.92) correlations. The consistently strong negative correlations (high
R2 values) between DI/LST and EI across both cities confirm their significant influence on
EQ. These robust correlations substantiate the rationale and feasibility of substituting the
DI for the LST in EQ assessments. Notably, despite the strong correlations between the DI
and the LST with the EI in both cities, the overall evaluation results of the DRSEI and the
RSEI in Guangzhou showed substantial differences. This suggested that the discrepancy in
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evaluation accuracy was not entirely caused by the fundamental relationship between the
LST and the DI with EQ.

The PCA weighting mechanism is influenced by the spatial variability of indicators:
regions with greater variation exhibit higher variance contributions and loading weights.
This necessitates examining how indicators’ spatial distribution characteristics interact
with the model’s weighting mechanism (Zheng et al., 2022). From a geospatial perspective,
this study aimed to analyze the formation path of model differences. To elucidate this
mechanism comprehensively, the study integrates analysis of spatial frequency distributions
and principal component loadings for bothDRSEI and RSEI across Guangzhou and Beijing.
The spatial frequency histograms (Fig. 5) characterize the value distribution patterns of
individual indicators across distinct geographical zones, particularly revealing whether
specific indicators demonstrate localized concentration or extensive dispersion. The
principal component loadings (Table 4), conversely, quantify each indicator’s contribution
during the PCA weighting procedure. By synthesizing these spatial distribution patterns
with their corresponding statistical weights, this investigation systematically demonstrates
how spatial heterogeneity of indicators modulates PCA weighting schemes, and further
reveals how such modulations generate regional discrepancies in model applicability
between DRSEI and RSEI. These findings collectively advance our understanding of the
mechanistic differences underlying the two indices.

Since the NDVI, WET, and NDSI are included in both models, this study focused on the
differences between the LST and the DI. As shown in Fig. 5, LST and DI exhibit significant
spatial variations in Beijing; their data distribution patterns show notable similarity. When
combined with the overall scores of the DRSEI and the RSEI in Beijing shown in Fig. 3,
the two models produce very similar scores. In contrast, in Guangzhou, the LST shows
minimal variation, while the DI exhibits noticeable fluctuations. The higher evaluation
accuracy of DRSEI in Guangzhou (Fig. 3) suggests that DI differences may critically
influence model performance. Notably, LST and DI spatial distributions correlate with
model evaluation results: DRSEI and RSEI scores converge when their distributions align,
whereas distribution divergences amplify score discrepancies between the models.

From Table 4, it is evident that the NDVI and the DI have relatively high loadings in both
regions, corresponding to their significant spatial variations observed in Fig. 5. In contrast,
the WET and the NDSI have lower loadings, consistent with their relatively minor spatial
variations. Additionally, the LST exhibits greater variation in Beijing, leading to higher
loadings. In contrast, Guangzhou’s LST shows less variation, resulting in lower loadings.
This supports the reasonable assumption that an indicator’s loading magnitude depends
on its variation extent within a region.

Although DI and LST maintain strong correlations with EI, he accuracy of DRSEI and
RSEI differs significantly in Guangzhou. Specifically, the RSEI tends to overestimate EQ
while the DRSEI underestimates it. This occurs because LST’s low variability in Guangzhou
reduces its RSEI loading. Consequently, LST’s negative impact on EQ diminishes, elevating
RSEI scores. Conversely, DI’s high variability in Guangzhou increases its DRSEI loading.
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Figure 5 Frequency distribution histograms of individual indicators. The vertical axis represents the
percentage of frequency, and the horizontal axis represents the values.
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Table 4 Loadings of indicators for DRSEI and RSEI in Beijing and Guangzhou.

Index DRSEI (Beijing) RSEI (Beijing) DRSEI (Guangzhou) RSEI (Guangzhou)

NDVI 0.68 0.72 0.67 0.98
WET 0.13 0.14 0.08 0.12
NDSI −0.01 −0.01 0.00 0.00
DI/LST −0.72 −0.68 −0.74 −0.19

Notes.
Note: The last indicator in DRSEI is DI, while the corresponding indicator in RSEI is LST.

This amplification of negative influence on EQ leads to lower DRSEI scores. This further
demonstrates that the spatial heterogeneity of indicators directly affects their weighting in
the models, ultimately influencing EQ evaluation results.
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Spatial and temporal changes in ecosystem quality of the city proper
in Chongqing
Given the superior evaluation accuracy of the DRSEI across various districts in Chongqing
metropolitan area, this index was selected to a analyze changes in ecosystem quality within
the region. To visually represent the spatial distribution changes in EQ, the DRSEI values
were classified into five ecological EQ levels (Poor, Fair, Moderate, Good, and Excellent)
at intervals of 0.2. The classification results are shown in Fig. 6.
As shown in Fig. 6, the ecological areas classified as ‘Moderate’ in 2002 largely transitioned

to ‘Good’ by 2006. Between 2006 and 2010, regions with DRSEI values classified as
‘Moderate’ were primarily located in the western part of the study area, while a large
portion in the eastern region improved to ‘Excellent’, indicating significant ecological
enhancement in the east. However, from 2010 to 2014, the extent of ‘Excellent’ regions in
the eastern part of the study area decreased substantially, with most of them downgraded to
‘Good,’ while the EQ in the central urban area further deteriorated to ‘Fair.’ This suggests
that urban expansion may have exerted significant pressure on the ecological environment.
Between 2014 and 2018, a large portion of the western area classified as ‘Good’ experienced
slight ecological degradation, with most areas shifting from ‘Good’ to ‘Fair.’ From 2018 to
2022, the degradation trend persisted. The ‘Fair’ areas expandedwestward, while the eastern
region declined from ‘Good’ to ‘Moderate.’ These changes reflect an overall continuous
decline in EQ.

To further quantify specific EQ changes in Chongqing’s city proper, the magnitude of
changes was categorized into three levels (improved, basically stable, deteriorated) which
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were then expanded into five categories. The ‘improved’ category was further divided into
‘slightly improved’ and ‘markedly improved,’ while the deteriorated category was further
divided into ‘mildly deteriorated’ and ‘markedly deteriorated.’ The specific classifications
and their corresponding data were outlined in Table 5.

Table 5 shows that between 2002 and 2006, the ecological environment exhibited an
overall improvement trend. The area classified as ‘improved’ significantly exceeded the
‘deteriorated’ area, with ‘slightly improved’ being the dominant category. This indicates
an enhancement in EQ during this period. However, between 2006 and 2014, the trend
reversed. The ‘deteriorated’ area markedly outpaced the ‘improved’ area, with ‘markedly
deteriorated’ becoming the predominant classification. This reflects a sharp ecological
decline during this period. From 2014 to 2022, although the ‘deteriorated’ remained larger
than the ‘improved’ area, the gap between the two narrowed significantly compared to the
previous period. Ecological degradation continued to be driven by ‘markedly deteriorated,’
while recovery primarily consisted of ‘slightly improved.’ Overall, 2002–2006 was the
only period of overall EQ improvement in the study area, while 2006–2022 exhibited a
continuous degradation trend. Notably, the extent of ecological deterioration was generally
significant, whereas ecological recovery was relatively slow and limited. This suggests that
over the past two decades, the recovery capacity of the ecosystem has struggled to offset
the negative impacts of human activities and environmental changes.

To further reveal the spatial migration patterns of EQ, changes were visualized through
ArcGIS software. Specific pathways of ecological pattern adjustments were explored, as
shown in Fig. 7.

Overall, except for the ‘Excellent’ EQ level, which remained stably distributed in the
southeastern Nanchuan District, the mean centers of all other levels were concentrated near
the central area of the study region. Notably, the ‘Poor’ EQ level showed the strongest spatial
volatility. It fluctuated near the study area’s center, with transient westward expansion to
Rongchang District and eastward shift to Banan District. In contrast, other EQ levels
exhibited constrained spatial displacements, mainly oscillating around the central area.

Although the spatial distribution of EQ levels underwent varying degrees of change
between 2002 and 2022, by 2022 the mean centers of most levels had reverted to positions
proximate to their 2002 baselines. This shift suggested two concurrent trends: the ecological
pattern fluctuated over two decades while also exhibiting signs of stabilization. This may
indicate that urban development and ecological management have prevented sustained
expansion/contraction trends. Instead, spatial evolution adapted to existing ecological
patterns.

DISCUSSION
In developing the RSEI model, Xu (2013a) used the ecological index (EI) as a reference
for the initial selection of indicators. However, the RSEI did not include air pollution
indicators from the EI (PRC, 2015) but instead used land surface temperature (LST) as an
evaluation factor. This study refocused on EI’s air quality issue. We replaced the LST in
the RSEI with the difference index (DI) that represents PM2.5 concentration (Feng, Feng
& Feng, 2018). Compared to the RSEINew (Wan et al., 2021), ARSEI (Zhang et al., 2023),
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Table 5 Details of EQ grade changes.

Year Level Level area Category Category area

Mildly deteriorated
(–1, –2)

126.77

Deteriorated 434.82
Markedly deteriorated
(–3, –4)

308.05

Basically stable 20229.27 Basically stable 20229.27
Slightly improved
(1,2)

12384.4802_06

Improved 12413.60
Markedly improved
(3,4)

29.13

Mildly deteriorated
(–1, –2)

81.87

Deteriorated 1695038.00
Markedly deteriorated
(–3, –4)

1443.66

Basically stable 27644.20 Basically stable 27644.20
Slightly improved
(1,2)

3770.8006_10

Improved 3872.83
Markedly improved
(3,4)

102.02

Mildly deteriorated
(–1, –2)

99.52

Deteriorated 9506.67
Markedly deteriorated
(–3, –4)

9407.15

Basically stable 23061.99 Basically stable 23061.99
Slightly improved
(1,2)

465.0210_14

Improved 499.76
Markedly improved (3,4) 34.74
Mildly deteriorated
(–1, –2)

51.78

Deteriorated 4449.26
Markedly deteriorated
(–3, –4)

4397.49

Basically stable 25347.93 Basically stable 25347.93
Slightly improved
(1,2)

3237.9314_18

Improved 3274.67
Markedly improved
(3,4)

36.74

Mildly deteriorated
(–1, –2)

54.61

Deteriorated 5068.94
Markedly deteriorated
(–3, –4)

5014.32

Basically stable 25170.56 Basically stable 25170.56
Slightly improved
(1,2)

2807.6118_22

Improved 2836.64
Markedly improved
(3,4)

29.04
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Figure 7 Transition of the mean centers of the EQ grades.
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and AQRSEI (Wang & Ge, 2022) models mentioned in the introduction, as well as most
studies that improve RSEI without validating their applicability across different geographic
environments (Hu & Xu, 2018;Wang et al., 2020; Ye & Kuang, 2022), the proposed DRSEI
offers the following advantages:

(1) The complexity of the DRSEI model does not increase. The DRSEI differs from
models that add air quality indicators to expand the RSEI. By simply replacing LST with
DI, it maintained model simplicity and kept the same number of indicators. This avoided
introducing redundant information.

(2) The calculation process is more universal. DI had two advantages over the AOD
and AQI used in ARSEI/AQRSEI: simpler computation and compatibility with various
remote sensing data. This enhanced method generalizability. More importantly, the spatial
resolution of DI is consistent with the other three indicators in the RSEI. This consistency
ensures spatial compatibility among the indicators.

(3) The validation process is more comprehensive. This study not only evaluated their
alignment with real ecological conditions through EI comparisons, but also systematically
examined DRSEI-RSEI performance variations across cities. The investigation revealed
differential applicability and limitations of these indices under varying environmental
contexts.
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For both RSEI and DRSEI, the loadings of individual indicators in the PCA did not
entirely align with common expectations. This discrepancy warrants further investigation.
Taking Guangzhou as a humid subtropical climate region, humidity is generally considered
to have significant impacts on EQ. However, both RSEI and DRSEI showed relatively low
loadings for the humidity-related WET indicator. The dryness indicator (NDSI) is partly
based on built-up index. Given Guangzhou’s urbanization level, NDSI should have strong
influence, but its model loadings were minimal. Its loading in both models was minimal
to the point of being negligible. Based on the frequency distribution histograms of the
indicators (Fig. 5), this phenomenon was attributed to the relatively low spatial variability
of the humidity and dryness indicators within the study area. The contribution of a variable
to PCAprincipal components depends on its overall dataset variance. If an indicator exhibits
minimal spatial variation, its ability to explain variance in the principal components is also
correspondingly low, resulting in a lower absolute loading value. This does not imply that
humidity and dryness are unimportant for EQ. Rather, it indicates their limited capacity
to differentiate overall EQ within this study area, resulting in reduced contributions to
PCA. Therefore, the importance of an indicator should not be judged solely by its loading
magnitude. Instead, a comprehensive analysis should be conducted based on its ecological
significance and actual distribution characteristics. This finding suggests that when using
PCA to construct ecological indices, it is essential to fully consider the spatial variability
of each indicator to ensure the model accurately reflects EQ. For indicators with low
spatial variability but high ecological significance, their impact should be carefully assessed
during modeling to avoid overlooking their actual role due to low loadings. This approach
improves the scientific validity and applicability of the model.

Moreover, the calculation of DRSEI may be affected by spatial resolution. Lower
resolution can lead to the loss of details, impacting calculation accuracy (Xu et al., 2019).
Since the loadings of DRSEI/RSEI indicators are influenced by spatial variability, if a
certain indicator exhibits low spatial variation and the image resolution is also low, subtle
changes may be overlooked, thereby affecting ecological quality assessment. However, this
impact varies depending on the study scale. This study employs Landsat 30m imagery,
demonstrating its reliability in municipal- and provincial-level ecological evaluations.
If future studies adopt lower-resolution data (e.g., MODIS 500 m or 1 km), it may be
necessary to expand the study scale to ensure effective capture of spatial variations in each
indicator. Additionally, previous studies (Xu et al., 2018; Xu et al., 2019) have shown that
mixed modeling of the four component indices at different scales can lead to information
loss in the RSEI model. Therefore, the influence of spatial scale should not be overlooked in
RSEI/DRSEI research. Temporal variations may also impact DRSEI calculations. Although
this study does not specifically analyze this factor, existing research indicates that the
accuracy of RSEI is significantly affected by vegetation seasonality (Miao et al., 2024; Zhang
et al., 2021), with summer being the optimal season for RSEI construction (Huang et
al., 2024). Furthermore, Zheng’s study suggests that nearly all RSEI-based studies reveal
regional LSES changes by calculating themeanRSEI overmultiple time periods.However, as
RSEI is inherently a normalized relative index, whether these manually normalized relative
values can be compared at an absolute level remains to be further verified (Zheng et al.,
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2022). Therefore, future research could further explore the impact of spatial and temporal
resolution on DRSEI calculations and select appropriate data based on application needs.

Although the improvements of the DRSEI over the RSEI in this study were significant,
some limitations remain:

(1) The study area experienced frequent cloud cover, and the use of cloud-removal
algorithms introduced additional errors, affecting the accuracy of EQ assessments for the
target years.

(2) While the DI reflected regional PM2.5 concentration to some extent, its specific
mechanism and applicability require further investigation.

(3) This study used the EI as the reference standard for EQ assessment to validate the
effectiveness of the DRSEI. However, the EI is not the only method for evaluating EQ.
Other widely used models, such as the PSR model (OECD, 1993) and the ecosystem quality
index (EQI) (PRC, 2021), emphasize different aspects of ecosystem evaluation and may
provide perspectives distinct from EI. Future studies should compare the DRSEI with
these models. This would assess its applicability across frameworks and better reveal its
strengths/weaknesses.

(4) The DRSEI in this study was applied to only a limited geographic area, leaving the
evaluation of the applicability of DRSEI and RSEI insufficiently comprehensive. Future
studies can further expand the scope of research to enhance the understanding of the
applicability of this index.

CONCLUSIONS
The results of this study showed that the DRSEI matches the RSEI in EQ assessment.
Moreover, it exhibited higher evaluation accuracy in certain regions. The key findings of
this study are as follows:

1. Higher evaluation accuracy of the DRSEI: In the main urban area of Chongqing, the
DRSEI outperformed the RSEI in terms of overall fitting accuracy and spatial consistency of
EQ assessment. Compared to RSEI, DRSEI demonstrated a smaller standard deviation gap
relative to EI, higher correlation with EI, and lower RMSE when compared to EI’s baseline.
This suggested that, within the study area, the DRSEI could more accurately reflect the
regional EQ.

2. Differences in applicable regions: The DRSEI showed significantly higher accuracy
than the RSEI in highly urbanized areas. Conversely, the RSEI performed better in less
urbanized areas like suburban regions. The DRSEI demonstrated greater accuracy when
applied on larger spatial scales. Specifically, it provided more precise EQ evaluations at
provincial levels than at district or county levels. Therefore, it is necessary to appropriately
select ecological indices at different research scales to ensure the accuracy of the evaluation
results.

3. Impact of indicator spatial distribution on loadings: The study revealed that the
spatial variation of ecological factors affected their PCA loadings. This in turn influenced
the model’s EQ assessment. For example, in Guangzhou, the small LST variation caused
lower loadings in the RSEI. This reduced its contribution to principal components and
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may lead to EQ overestimation. Therefore, when constructing ecological index models,
prioritizing those with balanced indicator loading distributions is crucial. This helps reduce
excessive influence from individual indicators on final evaluations.

When choosing between the RSEI and the DRSEI for EQ assessment, it is essential to
consider both the characteristics of the study area and the applicability of the indices.
If the study area is highly urbanized, the DRSEI may be the better choice, whereas
in less urbanized regions, the RSEI may be more suitable. Additionally, the findings
highlighted the importance of considering principal component loading distributions
when constructing ecological index models. This consideration helps prevent excessive
influence from individual indicators on final evaluation results. Future research on the
DRSEI should further refine its construction methodology to minimize the extreme impact
of specific indicators on model calculations. Additionally, future research could assess the
stability and applicability of DRSEI in dynamic ecological quality monitoring by employing
datasets with varying spatial resolutions and temporal scales.
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