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ABSTRACT

This review examines the behavioral adaptation mechanisms of Caenorhabditis
elegans in response to pathogenic bacterial threats, emphasizing their ecological
significance. It systematically explores how mechanisms such as avoidance behavior,
transgenerational learning, and forgetting enable C. elegans to optimize its survival
and reproductive strategies within dynamic microbial environments. C. elegans
detects harmful signals through chemosensation and initiates avoidance behaviors.
Simultaneously, it manages environmental adaptation and energy allocation through
transgenerational memory and forgetting, allowing C. elegans to cope with selective
pressures from environmental fluctuations. In contrast, pathogenic bacteria such as
Pseudomonas aeruginosa and Salmonella influence C. elegans behavior through
strategies such as toxin release and biofilm formation, highlighting the complex
co-evolutionary dynamics between hosts and pathogens. Additionally, these
pathogens employ “Trojan Horse-like” and “Worm Star” mechanisms to kill

C. elegans, further complicating host-pathogen interactions. These processes are
driven by behavioral adaptations, biochemical signaling, and evolutionary pressures,
which emphasize the ecological niche of C. elegans within microbial ecosystems.

C. elegans serves as a valuable model for studying host-pathogen interactions. This
study provides crucial theoretical insights into adaptive evolution and ecosystem
dynamics, offering valuable guidance for the development of biocontrol strategies
and the effective management of microbial ecosystems.

Subjects Animal Behavior, Ecology, Microbiology
Keywords Caenorhabditis elegans, Pathogenic bacteria, Behavioral plasticity mechanisms

INTRODUCTION

Caenorhabditis elegans (commonly abbreviated as C. elegans) serves as an essential model
for studying behavioral adaptation and ecological interactions, demonstrating remarkable
capabilities in sensing, learning, and adapting to complex microbial environments. Its
transparent body and fully sequenced genome provide unique advantages for real-time
imaging and in-depth exploration of gene functions (Leung et al., 2008; Wernike, van
Oostende ¢ Piekny, 2014). These characteristics position C. elegans as a leading model
organism in the study of cellular differentiation, gene function, and environmental
adaptability. For example, research on the behavioral adaptations of C. elegans has
elucidated its use of avoidance behavior, memory-based learning, and forgetting
mechanisms in response to toxic metabolites and pathogenic bacteria, thereby augmenting
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its survival capacity (Meisel ¢» Kim, 2014; Vogt ¢ Hobert, 2017; Zhang, Lu & Bargmann,
2005).

In nature, C. elegans primarily inhabits decaying plant material, compost heaps, and
rotting fruits by feeding on bacteria and fungi (Andersen et al., 2012; Crombie et al., 2019).
These provide the range of nutrients needed for growth and reproduction and also form
the basis of its behavioral adaptations to life in microbially dense environments (Barriere ¢
Félix, 2005). C. elegans usually dwells in a state of partial dormancy in natural
environments. When its larvae encounter an excess supply of bacterial foods, for example,
they develop swiftly into sexually mature adults with high reproduction rates that rapidly
consume the available bacterial biomass in large proportions (Bongers, 1990). Adaptive
behaviors displayed by C. elegans include the capacity to differentiate between beneficial
and harmful microorganisms. Through feeding preferences and pathogen avoidance, a
balance between survival and reproduction is maintained in the dynamic microbial
communities in which it resides (Joshua et al., 2003; Kothe et al., 2003; Samuel et al., 2016).

Pathogenic bacteria, as integral components of ecosystems, exert a profound impact on
C. elegans behavior through mechanisms such as biofilm formation, quorum sensing, and
the release of virulence factors. Yersinia pseudotuberculosis alters its infection dynamics via
biofilm formation, whereas Pseudomonas aeruginosa adjusts its virulence through quorum
sensing signaling (Schulenburg ¢ Ewbank, 2007; Tran et al., 2017). In response, the
complicated host-pathogen interactions in e.g., C. elegans have been represented through
changes in behavior, the ability to sense pathogenic signals, and deploying survival
strategies such as physiological resistance to pathogens (Irazoqui et al., 2010). This review
is supposed to explore, analyze, and investigate how C. elegans adapts to bacterial
pathogenic threats through behaviors such as avoidance, learning, and forgetting, and how
such behaviors impact the ecological interactions and co-evolutionary dynamics between
C. elegans and pathogenic bacteria.

AUDIENCE

The audience for this review includes researchers and scientists studying behavioral
adaptation, host-pathogen interactions, and ecological dynamics, particularly those
focused on C. elegans as a model organism.

SURVEY METHODOLOGY

We conducted a search in the PubMed databases for articles published before January 2,
2025, focusing on the relationship between behavioral adaptation and the nervous system
in C. elegans in response to pathogenic infections. The search was performed using the
following keywords: ((Caenorhabditis elegans) AND (pathogen)) AND (memory) AND
(“forgetting behavior” OR “Trojan Horse-like” OR “Worm Star” OR “killing”). To identify
additional relevant publications, we also examined the references cited in the articles
retrieved. Studies were included based on the following criteria: research discussing the
mechanisms by which pathogenic bacteria kill C. elegans and the associated “Trojan
Horse-like” or “Worm Star” mechanisms, and studies investigating C. elegans
cross-generational learning, avoidance memory, forgetting, exploration behavior, maternal
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mortality, and egg-laying response behavior, along with the genes, signaling molecules, or
neurons involved in these behaviors.

BEHAVIORAL ADAPTATION OF C. ELEGANS:
MECHANISMS FOR MANAGING PATHOGENIC BACTERIA

Adaptive responses in C. elegans include sensory management, neuropeptides, behavioral
adaptability, immune processes, and microbiome interactions that all give this animal a
remarkable survival advantage in challenging conditions (Harel, Nasser & Stern, 2024;
Kumar et al., 2020). These approaches represent an important strategy for investigating
host-pathogen interactions and the development of immune responses because they can
show the ability of an organism to adapt to complex environmental stressors. Behavioral
plasticity of C. elegans is manifested in its flexible responses to multiple sensory stimuli,
involving odors, salts, mechanical stimulus, and even temperature change (Watteyne et al.,
2024; Zhang, Iino & Schafer, 2024). Such sensory plasticity allows the worm C. elegans to
alter its behaviour in reaction to experiential inputs, thus leading to its efficient adaptation
towards environmental threats. Interestingly, within its complex sensory responses fall
mechanisms of O-sensing (McGrath et al., 2009; Valperga ¢ de Bono, 2022) and
temperature learning (Yoon et al., 2017) (Table 1). The thermotactic behavior of C. elegans
exemplifies its ability to remember optimal temperatures and migrate toward these
favorable thermal zones. Differences in the thermotactic strains CB4854 and CB4857
reveal that C. elegans can optimize behavioral patterns according to environmental
conditions (Anderson et al., 2011; Félix ¢ Duveau, 2012). While on a bacterial lawn,
equivalent to a foraging patch, C. elegans has three main behavioral states: roaming,
dwelling, and quiescence (Ben Arous, Laffont ¢» Chatenay, 2009; Fujiwara, Sengupta ¢
Mclntire, 2002; Hill et al., 2014). Its extended states of roaming represent an important
foraging behavior, regulated by the neuropeptide PDF-1 and its receptor PDFR-1 (Flavell
et al., 2013).

Behavioral adaptability constitutes a significant characteristic of C. elegans. In response
to pathogenic bacterial stress, C. elegans demonstrates a range of adaptive strategies, such
as avoidance behavior, alterations in foraging preferences, maternally-induced inhibition
of egg-laying, delayed developmental processes, and transgenerational learning (Table 1).
Empirical studies have indicated that following exposure to pathogenic bacteria, the
acquired avoidance behavior in adult C. elegans can be transmitted to subsequent
generations via RNA interference (RNAi), exemplifying a mechanism of transgenerational
adaptation (Vidal-Gadea et al., 2011). C. elegans effectively responds to different
environments by flexibly switching between crawling and swimming behaviors, further
highlighting its ecological adaptability (Vidal-Gadea et al., 2011).

C. elegans adapts to pathogenic bacterial threats via associative
learning and memory in avoidance behavior

Avoidance behavior constitutes a crucial adaptive strategy for C. elegans in response to
pathogenic bacteria, predominantly encompassing learned avoidance and modifications in
olfactory preferences to minimize pathogen contact. Upon exposure to Pseudomonas
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Table 1 Mechanisms and behavioral outcomes of C. elegans response to pathogenic bacteria.

Number Pathogenic bacteria Mechanism Behaviour Cite

1 PA14 Pathogen exposure in C. elegans induces chemoreceptor STR- Avoidance Lee et al. (2022)
44 in AWA sensory neurons, altering pheromone responses  suppression and
to suppress avoidance and promote mating, enhancing mating promotion
genetic diversity and adaptation.

2 PA14 Locomotion enhances aversive olfactory learning by activating Locomotor Zhan et al. (2023)
mechanoreceptors in motor neurons, which transmit activity-induced
proprioceptive information to interneurons through gap learning
junctions.

3 PA14 Expression of the TGF-f ligand DAF-7 in ASI sensory Avoidance Moore, Kaletsky ¢
neurons, along with Piwi Argonaute homolog PRG-1 and its  behavior, Genetic =~ Murphy (2019)
downstream components, is required for transgenerational ~ adaptation
inheritance of avoidance behavior and ASI daf-7 expression.

4 PA14 Exposure to PA14 during the larval stage induces a lasting ~ Long-term Jin, Pokala &
aversion memory via regulation of tyramine and specific avoidance Bargmann
neurons (such as RIA), dependent on the SER-2 receptor. memory (2016)

5 PA14 Disruption of core cellular activities (translation, respiration, Avoidance behavior Melo ¢» Ruvkun
and protein turnover) triggers behavioral avoidance of (2012)
normally attractive bacteria through a neuroendocrine axis
involving detoxification, immune responses, and signaling
pathways.

6 PA14 Aversive olfactory learning requires AWB and AWC olfactory Avoidance behavior Ha et al. (2010)
Sensory neurons.

7 PA14 CYSL-1 and CYSL-2, cysteine dehydrogenases, mediate Avoidance Burton et al.
parental exposure to pathogenic bacteria to enhance behavior, Genetic ~ (2020)
offspring immunity. adaptation

8 PA14; Oxide dismutase -1 C. elegans utilizes the ROS-sensing enzyme SOD-1 in Avoidance behavior Horspool &
(SOD-1) gustatory neuron ASER to regulate aversive behavior, Chang (2017)

enabling an adaptive delayed response to pathogens.

9 Bacterial toxic metabolites C. elegans avoids toxic sulforaphane YP1 through innate Avoidance behavior Ballestriero et al.
tambjamine and violacein aversion. Violacein’s learned avoidance is specific and (2016)

reversible, mediated by the olfactory system and decreases
when serotonin is lacking.

10 Streptomyces C. elegans detects and avoids Streptomyces producing toxin  Avoidance behavior Tran et al. (2017)
using chemosensory receptor SRB-6.

11 Serratia marcescens TLR signal transduction affects C. elegans’ behavioral response Avoidance behavior Brandt ¢
to Serratia marcescens. Ringstad (2015)

12 Vibrio cholerae Vibrio cholerae produces a quorum sensing signal molecule  Exploration Werner et al.
CAI-1, detected by C. elegans via AWCON chemosensory  behavior (2014)
neurons.

13 Secondary metabolites of C. elegans detects secondary metabolites of Pseudomonas Avoidance behavior Meisel et al.

Pseudomonas aeruginosa aeruginosa through chemical sensing to regulate (2014)
neuroendocrine signals and promote avoidance behavior.

14 Pseudomonas aeruginosa and Under conditions of hunger, rising temperature, or crowding, Diapause entry Palominos et al.
Salmonella enterica serotype C. elegans enters diapause and becomes dauer larvae. (2017)
Typhimurium MST1

15 Bacterial metabolite viologen C. elegans shows behavioral adaptability, such as matrix biting, Maternal mortality = Yoon et al. (2020)

to cope with the toxic effect of bacterial metabolite violacein.

and egg-laying
response
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aeruginosa PA14, C. elegans exhibits a biphasic avoidance response: an initial attraction
phase succeeded by a repulsion phase. Initially, C. elegans displays a natural attraction to
PA14; however, after 4-6 h of exposure, it initiates avoidance of PA14 through an acquired
avoidance mechanism (Zhang, Lu ¢» Bargmann, 2005). This process entails a minimum of
three neural circuits: the AWB-AWC sensory-motor circuit facilitates initial attraction and
subsequent avoidance responses (Ha et al., 2010; Lei et al., 2024), whereas the reflexive
aversion circuit, mediated by AWB neurons, and the ADF regulatory circuit
predominantly regulate the learned avoidance response (Doroquez et al., 2014).
Furthermore, C. elegans demonstrates alterations in behavior following exposure to
pathogens like Serratia marcescens and Pseudomonas aeruginosa; with extended exposure,
the tendency transitions from attraction to avoidance (Filipowicz, Lalsiamthara ¢ Aballay,
2022; Meisel & Kim, 2014). C. elegans may modify its olfactory preferences according to
previous experiences, so evading possible diseases, which is essential for its survival
(Petersen et al., 2021; Sengupta et al., 2024). Following exposure to certain stimuli,

C. elegans exhibits olfactory imprinting, whereby early-life exposure to PA14 results in
enduring behavioral modifications (Vogt ¢ Hobert, 2017). This process is governed by
brain systems, including the function of CREB in facilitating long-term responses (Timbers
¢ Rankin, 2011). Research indicates that certain neuropeptide receptors, notably NPR-1,
are essential in modulating these behaviors, which are influenced by the interactions
between C. elegans and different types of bacteria (Reddy et al., 2011).

Forgetting and transgenerational inheritance in C. elegans

Besides avoidance behavior driven by learning and memory imprinting, C. elegans has
adaptive ability over various time scales when confronted with dangerous germs.
Forgetting constitutes a fundamental behavioral response of C. elegans when exposed to
pathogenic bacteria. As shown in Table 1, C. elegans initially shows a preference after being
exposed to PA14 (Zhang, Lu & Bargmann, 2005); however, this preference transitions to
avoidance. Notably, this avoidance behavior is transient, as it dissipates after one hour,
resulting in C. elegans once again being attracted to PA14 (Hadziselimovic et al., 2014; Liu
et al., 2022). C. elegans can modulate the forgetting process via the minor G-protein RAC-2
and JNK-1 signaling pathways (Bai ef al., 2022). Furthermore, driven by salt ions, actin and
the RNA-binding protein Musashi are pivotal in the forgetting process, suggesting that
forgetting is an active, signal-regulated phenomenon (Hadziselimovic et al., 2014; Kitazono
et al., 2017). The forgetting behavior of C. elegans is not simply a reduction in memory, but
an active process governed by several signaling routes, chemical processes, and intricate
neuronal connections (Kitazono et al., 2017).

In addition to forgetting, C. elegans demonstrates the ability to respond to
environmental stressors through transgenerational inheritance mechanisms. Research has
shown that parental exposure to pathogens can lead to heritable changes in offspring traits,
improving their resistance to subsequent infections. For instance, exposure to the pathogen
Pseudomonas vranovensis enhances offspring immunity through a mechanism dependent
on the genes CYSL-1, CYSL-2, and RHY-1 (Burton et al., 2020). Vitamin B12, an essential
nutrient for C. elegans growth and development, also plays a key role in transgenerational

Zhao et al. (2025), PeerdJ, DOI 10.7717/peerj.19294 5/24


http://dx.doi.org/10.7717/peerj.19294
https://peerj.com/

Peer/

effects. Parental exposure to vitamin B12 or vitamin B12-producing bacteria accelerates
offspring growth and enhances their tolerance to infections, with these effects relying on
the methionine biosynthesis and propionyl-CoA breakdown pathways (Willis et al., 2024;
Zecié, Dhondt & Braeckman, 2019). Moreover, various experiences in the parental
generation, such as dietary restriction, osmotic stress, temperature changes, olfactory
imprinting, and prolonged starvation, can profoundly affect the physiology of their
offspring. Some of these effects persist for multiple generations and are mediated through
small RNA regulation (Liu ¢~ Zhang, 2020). Additionally, adult worms can pass on learned
pathogen-avoidance behaviors to their progeny. This transmission involves the RNA
interference (RNAi) pathway, the piRNA pathway, and the coordinated action of ASI
neurons and the reproductive system (Kaletsky et al., 2020). For example, exposure to
small RNAs (sRNAs) from Pseudomonas aeruginosa PA14 induces pathogen-avoidance
behaviors in C. elegans, which are inherited for up to four generations (Kaletsky et al.,
2020). Similarly, a pathogenic Pseudomonas vranovensis strain from the C. elegans
microbiota induces learned avoidance behavior in worms, which is inherited through
bacterial small RNAs for four generations, supporting the idea that such transgenerational
behavioral effects also occur in the wild (Sengupta et al., 2024). These findings suggest that
the adaptive responses of C. elegans go beyond individual behavioral adjustments,
influencing offspring survival through complex genetic and molecular mechanisms,
thereby enhancing their ability to cope with pathogenic threats.

Activation of physiological cell defenses in C. elegans to combat
pathogenic bacterial attacks
Forgetting and transgenerational inheritance exemplify the genetic and temporal
continuity of behavioral adaptations in C. elegans. However, within the survival strategies
of C. elegans, behavioral adaptations and physiological defenses are not discrete
phenomena; instead, they are interconnected through complex signaling pathways and
physiological mechanisms. In C. elegans, behavioral state or “context” is largely defined by
food availability and is translated by both synaptic and extrasynaptic monoaminergic/
peptidergic signaling to modulate the sensory-mediated locomotory decision-making
associated with nociception (Komuniecki et al., 2014). Through intricate interactions
between sensory receptors and signaling pathways, C. elegans possesses the capability to
detect and evade harmful chemical stimuli, a function essential for its survival (Chaubey
et al., 2023; Mills et al., 2016). This sensory response is influenced by previous experiences,
enabling C. elegans to integrate current behavioral states with past experiences to refine its
avoidance strategies under thermal stress (Byrne Rodgers ¢ Ryu, 2020). The processing of
information by sensory neurons further augments the ability of C. elegans to discern
environmental signals. B-arrestin-mediated desensitization of olfactory receptor neurons
helps C. elegans regulate its behavioral responses when exposed to various olfactory stimuli
(Merritt et al., 2022; Zhao & Wang, 2012).

Beyond sensory regulation, C. elegans augments its pathogen resistance through the
activation of its innate immune system. This immune defense is mediated by several
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signaling pathways, including the transforming growth factor-beta (TGF-p) pathway, the
DAF-2/16 insulin-like signaling pathway, the p38 mitogen-activated protein kinase
(MAPK) pathway, and the unfolded protein response (UPR) pathways (Adair ¢~ Douglas,
2017; Kwon, Kim ¢ Lee, 2018; Radeke & Herman, 2021; Wong et al., 2007). Among these
pathways, the p38 MAPK pathway is of particular importance, as mutations within this
pathway result in a markedly increased susceptibility to pathogens in C. elegans (Chen
etal., 2017; Chou et al., 2013; Osman et al., 2018). The study found that deletion of the fepB
gene in S. typhimurium reduced its pathogenicity and triggered enhanced C. elegans dauer
formation via the TGF-P pathway, while also improving worm survival and revealing the
bacteria role as both a nutrient source and a signal regulating host physiology and
host-pathogen interactions (Mallick et al., 2022). Furthermore, small RNAs, such as let-7,
are crucial in modulating immune responses, thereby elucidating the intricate molecular
network through which C. elegans adapts to pathogenic challenges (Zhi et al., 2017).
Pseudomonas aeruginosa disrupts iron homeostasis in Caenorhabditis elegans, triggering a
hypoxic response that ultimately results in the death of the organism (Kirienko et al., 2013).

In response to pathogenic threats present in the environment, C. elegans employs
developmental regulatory strategies. Upon detecting pathogen-associated signals,

C. elegans can enter a state of developmental arrest, a mechanism that enhances offspring
survival in environments with prevalent pathogens (Palominos et al., 2017). This strategy is
generally activated under conditions of food scarcity or high population density, wherein
development is temporarily halted until environmental conditions improve, thereby
conferring a survival advantage to both individuals and populations (Golden ¢ Riddle,
1984). Moreover, the intestinal microbiota of C. elegans is integral to pathogen resistance
and host immune function. The intestinal milieu of C. elegans acts as a selective filter,
shaping core microbial communities from the diverse bacterial populations present in
natural substrates (Berg et al., 2016). These microbial communities not only modulate host
physiological processes but also bolster pathogen resistance through their metabolic
activities. For instance, the non-pathogenic bacterium Pseudomonas putida enhances the
resistance of C. elegans to Pseudomonas aeruginosa by secreting beneficial metabolites
(Kissoyan et al., 2019). Conversely, certain pathogens, including Pseudomonas aeruginosa
and Enterococcus faecalis, possess the ability to adapt to the host internal environment by
neutralizing the intestinal pH, which facilitates a stable infection within the host (Benomar
et al., 2020). These findings underscore the dual role of gut microbiota in host-pathogen
interactions and underscore the significance of microbial diversity in influencing the
ecological dynamics of C. elegans (Table 1).

Genetic diversity is important in ecological adaptation and survival. Significant genetic
variation among the C. elegans populations exists across geographic regions, mostly driven
by local adaptation to different environmental conditions (Braendle ¢ Paaby, 2024;
Crombie et al., 2022; Salas et al., 2022). For example, The genetic diversity of the C. elegans
population in Hawaii is higher than in other regions, indicating that unique ecological
pressures have contributed to genetic differentiation (Crombie et al., 2022).
Host-transposon interactions further drive rapid genome diversification in natural
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populations, fostering evolutionary innovations in gene and splicing mechanisms (Zhang,
Félix & Andersen, 2024). Moreover, in C. elegans, the nematode gene rmi-3, acquired
through interspecies horizontal gene transfer (iHGT) from bacteria, contributes to cuticle
integrity and resistance to environmental stresses. This serves as an additional example of
how iHGT has impacted metazoan evolution by incorporating bacterial genes that confer
novel adaptive capabilities (Pandey et al., 2023). This genetic diversity is indicative of
historical population dynamics and underscores the continuous influence of gene flow and
selective pressures on niche adaptation (Lee ef al., 2021). Moreover, research into the
mechanisms of gene regulation in C. elegans thus underline how connected regulatory
modules drive neuronal identity, development, and postembryonic diversification to
provide a view on how neuronal diversity could have evolved (Poole, Flames ¢ Cochella,
2024).

C. elegans exhibits a range of adaptive responses upon exposure to pathogenic bacterial
attacks. These include behavioral avoidance of pathogens, active cellular defense
mechanisms against microbial invasion, such as the expression of antimicrobial peptides
or the mobilization of immune cells, and tolerance to pathogens (Schneider ¢ Ayres, 2008;
Schulenburg, Kurz & Ewbank, 2004). These collectively represent a multi-layered adaptive
strategy. These adaptive responses, however, do not occur in a vacuum. Pathogenic
bacteria actively manipulate the behavior and physiology of C. elegans by several ecological
tactics, thus making it an ecological interaction.

The ecological role of pathogenic bacteria in the behavioral adaptation
of C. elegans

Pathogenic bacteria are integral to ecological dynamics through their interactions with
C. elegans. The responses of C. elegans to diverse stressors, such as oxidative stress and
toxin exposure, have been extensively investigated, yielding significant insights into
mechanisms of detoxification and stress resistance (Stupp et al., 2013). These interactions
are facilitated by the secretion of metabolites and toxins, as well as biofilm formation,
which collectively influence the dynamics of microbial communities and drive the
evolutionary adaptations of the host.

Toxin secretion by pathogenic bacteria

To evade predation, numerous bacterial species have developed a range of defensive
mechanisms, such as the synthesis of deterrents or toxic metabolites. A predominant
strategy utilized by pathogenic bacteria involves the secretion of toxins. Notably, species
such as Pseudomonas aeruginosa, Serratia marcescens, Bacillus thuringiensis, Bacillus
cereus, Bacillus subtilis, Bacillus anthracis, and Bacillus megaterium, among others,
produce toxins that interfere with the physiological processes of C. elegans (Bird et al,
2015; Kaletsky et al., 2020; Niu et al., 2015; Rae et al., 2010; Zheng et al., 2016). Different
bacterial genera use various mechanisms to efficiently and rapidly kill C. elegans (Khan,
Jain & Oloketuyi, 2018). Pathogenic bacteria modulate the behavior of C. elegans not only
through the release of toxins but also via the production of signaling molecules. For
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instance, bacteria that synthesize indole have been demonstrated to modify the feeding and
reproductive behaviors of C. elegans, while indole-deficient strains exert toxic effects that
diminish egg-laying (Lee et al., 2017). Additionally, the small RNA molecule P11 regulates
ammonia production, which in turn affects the attraction of C. elegans to Pseudomonas
aeruginosa. This indicates that nitrogen assimilation is pivotal in cross-boundary signaling
and the interaction between bacteria and their host (Marogi et al., 2024). In natural
populations of C. elegans, self-fertilization predominates as the principal reproductive
strategy. Nevertheless, instances of outcrossing are exceedingly infrequent, occurring at an
approximate rate of 1% (Barriére ¢ Félix, 2005). Empirical studies have demonstrated that
exposure to the pathogen Pseudomonas aeruginosa PA14 results in an increased frequency
of copulation between hermaphroditic C. elegans and males. Subsequent investigations
have elucidated that this phenomenon is contingent upon the str-44 gene within the AWA
neurons (Zhan et al., 2023). These findings suggest that bacterial metabolites can exert a
substantial influence on the ecological interactions between C. elegans and its microbial
milieu (Fig. 1).

Biofilm formation by pathogenic bacteria

Biofilm formation is another key aspect of the ecology of pathogenic bacteria. Bacteria such
as Pseudomonas aeruginosa can form biofilms, providing them with a protective
environment that helps resist host immune responses and antibiotics, thereby enhancing
their pathogenicity (Fila et al., 2018). The biofilm matrix can also influence C. elegans
behavior, as C. elegans may be attracted to or repelled by chemical signals released by
bacteria forming the biofilm, thereby affecting their foraging strategies and survival ability
(Dirksen et al., 2016). Yersinia pseudotuberculosis, Yersinia pestis, and Wolbachia are
capable of forming biofilms around the head of C. elegans, obstructing its mouth and
preventing it from ingesting bacteria (Fig. 1), leading to starvation and death (Darby et al.,
2002; Drace ¢ Darby, 2008). Pathogenic bacteria like Pseudomonas aeruginosa and
Salmonella have been shown to form biofilms that significantly affect C. elegans survival
and health. Pseudomonas aeruginosa enhances its surface adhesion ability through the
filamentous Pf4 bacteriophage, promoting biofilm formation. This process leads to
increased virulence in the C. elegans model (Schwartzkopf et al., 2023). In chronic infection
models, colonization of the C. elegans digestive tract by P. aeruginosa is a significant
contributor to mortality (Fig. 1), underscoring the essential role of biofilm formation in its
pathogenicity (Tse-Kang et al., 2024). Salmonella biofilms have been shown to modulate
the innate immune response of C. elegans, facilitating persistent infections that are
observable within the C. elegans intestine (Desai et al., 2019).

The ability of pathogenic bacteria to manipulate the C. elegans response further
complicates the interactions between the C. elegans and the pathogen. Yersinia
pseudotuberculosis regulates its virulence factors through quorum sensing, promoting
biofilm formation on C. elegans (Atkinson et al., 2011). The biofilm matrix itself can also
interfere with C. elegans movement and predation behavior, indicating that biofilms are
not only protective structures for bacteria but also actively influence host behavior
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(Chan et al., 2021). In contrast, some bacterial species (e.g., Bacillus subtilis) form biofilms

that extend the lifespan of C. elegans by mechanisms such as downregulation of the

insulin-like signaling pathway (Donato et al., 2017). This suggests that biofilm interactions
are not universally harmful; certain beneficial bacteria can enhance host resistance to

pathogens. The presence of beneficial biofilms may also contribute to the overall health of
the host by competitively excluding pathogenic strains (Donato et al., 2017). The

investigation of biofilms extends beyond fundamental science and holds substantial

clinical significance. The application of quorum sensing inhibitors has demonstrated
efficacy in obstructing biofilm formation and diminishing the virulence of Pseudomonas
aeruginosa, thereby safeguarding C. elegans and potentially human cells from infection
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(Atkinson et al., 2011). Comprehending the mechanisms through which pathogenic
bacteria form biofilms and interact with hosts can guide the development of innovative
therapeutic strategies.

“Trojan Horse-like” and “Worm Star” mechanisms of pathogenic
bacteria in killing C. elegans

The “Trojan Horse-like” mechanism of C. elegans denotes a very elaborative means of
action developed by the pathogenic bacterium Bacillus nematocida B16, through which
this nematode can invade and kill its host. In the first place, bacteria sense some secretion
of C. elegans, like morrill, and spore formation is initiated. Along with spore formation, the
bacteria start emitting some VOCs as signaling molecules for C. elegans (Fig. 1). After
penetrating the intestine, the spores germinate and multiply, killing the host. During this
process, B. nematocida continues to reproduce and decompose the body of the nematode
(Niu et al., 2010; Zhang et al., 2020).

This strategy is appropriately termed “Trojan Horse-like,” since the bacteria in this case
appear as harmless, deceiving C. elegans and therefore allowing for a pathogenic attack.
This interaction, however, has been developed to be much more complex rather than just a
simple infection of the nematode by the bacterium. Bacillus can manipulate C. elegans
chemotactic behaviors to its advantage to promote bacterial survival and proliferation
(Zhang et al., 2016). The VOCs emitted by Bacillus attract C. elegans in a manner that is
hospitable to bacterial colonization and persistence within the host (Niu et al., 2010). The
“Trojan Horse-like” mechanism illustrates a high degree of complexity in microbial
pathogenic strategy: through chemical signaling, Bacillus lures C. elegans for efficient
colonization and exploitation, culminating in host death.

The “Worm Star” phenomenon, observed in host-pathogen interactions, refers to a
biological event where pathogenic bacteria, such as Leucobacter species, “capture”

C. elegans. This phenomenon occurs when C. elegans individuals become trapped together
as a result of bacterial infection (Fig. 1). It underscores the susceptibility of C. elegans to
pathogenic attacks while serving as a valuable model for investigating the evolutionary
adaptations of C. elegans to combat pathogenic threats (Hodgkin et al., 2013). Upon
exposure to certain bacterial strains, including Leucobacter celer, C. elegans initiates a
defensive response characterized by the formation of “worm star” aggregates (Fig. 1). This
phenomenon predominantly manifests at the posterior end of the C. elegans, where
individuals adhere to one another, creating a star-like configuration. Consequently, the
entrapped C. elegans succumb to asphyxiation or bacterial degradation (Clark ¢» Hodgkin,
2015; Hodgkin, Clark & Gravato-Nobre, 2014). The mechanism behind the “Worm Star”
phenomenon involves bacterial factors that promote adhesion between C. elegans.
Interestingly, C. elegans exhibits a negative chemotactic response, where they actively sever
parts of their bodies to escape from the pathogen (Hodgkin, 2019). Adult C. elegans that
successfully escape from the “worm star” aggregates often show signs of wound healing,
suggesting that they possess remarkable tissue repair capabilities following such traumatic
events (Hodgkin, 2019). This research not only enhances our understanding of C. elegans
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as a model organism but also reveals the broader ecological and evolutionary significance
of host-pathogen interactions.

Host-pathogen counteractions and coevolution in ecological
environments

The complex interplay between pathogenic bacteria and C. elegans elucidates a
sophisticated network of coevolution and counter-behaviors that profoundly influence
ecological dynamics. These interactions are further complicated by the element of
predation. As bacterivorous organisms, C. elegans play a crucial role in shaping bacterial
community dynamics within soil ecosystems (Fig. 2). Their predatory behavior can drive
bacterial diversification, prompting bacterial populations to develop novel anti-predation
strategies (Jiang et al., 2017). This dynamic interaction underscores the evolutionary
pressures imposed by predation, potentially driving both C. elegans and bacteria to evolve
adaptations that enhance their survival and reproductive success. Beyond direct predation,
C. elegans can influence bacterial community structure through their selective feeding
behaviors. Empirical studies have demonstrated that bacterial isolates exhibit differential
susceptibility to predation by C. elegans, and such selective pressures can significantly
influence the composition of rhizosphere microbial communities (Irshad ¢ Yergeau,
2018). Consequently, this selective pressure may encourage the evolution of specific
bacterial strains to develop traits that allow them to evade predation, thereby enhancing
their ecological adaptability. These interactions demonstrate the complex feedback loop
between C. elegans and bacteria, where the behavior of one significantly influences the
evolutionary trajectory of the other.

C. elegans has evolved various mechanisms to respond to complex bacterial
communities. Among these bacteria, some provide beneficial functions to C. elegans, while
others pose threats to its growth and survival (Dirksen et al., 2016; Samuel et al., 2016). The
dual role of the microbiome highlights that the ecological niche of C. elegans is not only
determined by the physical environment but is also profoundly influenced by microbial
interactions. Certain Pseudomonas and Lactobacillus strains enhance C. elegans resistance
to pathogens, while antagonistic bacteria can limit its survival and growth, highlighting the
impact of microbial diversity on C. elegans adaptability and ecological health (Dahan et al.,
2020; Dirksen et al., 2016). To counter pathogen threats, C. elegans has evolved sensing and
behavioral mechanisms, such as detecting quorum sensing signals from pathogens to
influence developmental decisions like exiting the dauer stage (Werner et al., 2014). Its
diverse chemoreceptors enable effective navigation and use of microbial resources, while
chemical detoxification reduces microbial toxin effects, showcasing its adaptive strategies
(Hartman et al., 2021; Lee et al., 2019).

Sensory and selective behaviors play a central role in these interactions. For instance,
AWCON neurons recognize bacterial signals to adjust foraging behavior, helping
C. elegans evade harmful bacteria and optimize dietary choices, which supports survival
and influences microbial community dynamics (Sun et al., 2022). By selectively consuming
non-pathogenic bacteria, C. elegans modulates microbiome composition, reducing
pathogens and fostering a healthier ecosystem (Werner et al., 2014). Additionally, its
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through C. elegans. In response to pathogenic bacteria, C. elegans employs behaviors such as killing offspring, immune responses, and avoidance
strategies. Created with BioRender.com. Full-size 4] DOI: 10.7717/ peerj.19294/fig-2

foraging behavior promotes bacterial diversity, as different strains vary in susceptibility to
predation, demonstrating how C. elegans adaptations shape both survival and broader
ecosystem patterns (Ballestriero et al., 2016).

Pathogenic bacteria employ various strategies to influence C. elegans behavior,
enhancing their survival and adaptability. For example, Pseudomonas fluorescens CHAO
produces secondary metabolites that reduce the nematode predation efficiency, giving the
bacteria a competitive advantage in soil environments (Neidig et al., 2011). Pathogenic
factors like phenazine and cyanide effectively kill C. elegans, thereby further enhancing
bacterial survival and structuring microbial community dynamics (Chan et al., 2021;
Jousset, 2012). This adaptive interplay, also often referred to as an “arms race,” reflects the
continuous co-evolution of C. elegans and bacteria due to mutual pressures.

These bacterial defense mechanisms are not limited to natural environments and play
an important role in agricultural settings as well. Within the realm of sustainable
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agriculture, bacterial biocontrol agents like Bacillus thuringiensis and Bacillus subtilis are
employed to manage plant-parasitic C. elegans, serving as environmentally sustainable
alternatives to chemical pesticides (Hu et al., 2020; Xia et al., 2011). Beyond their direct
lethality to C. elegans, these bacteria are capable of inducing systemic resistance in plants,
thereby indirectly influencing the interactions among plants, C. elegans, and bacteria
(Kim et al., 2019). Probiotics, including Lacto Bacillus acidophilus, enhance the
immunomodulation of C. elegans, thus providing resistance against pathogenic infections
(Kim & Mylonakis, 2012). Such examples reveal the two sides of bacteria in ecosystems,
being an essential nutritional source for C. elegans and a potentially deadly danger.

The interaction between microorganisms and C. elegans is not limited to antagonistic
relationships but also includes mutualistic patterns. Some bacteria assist C. elegans in
defending against threats posed by other pathogens. For example, Pseudomonas MYb11
can reduce viral transmission, while Pseudomonas aeruginosa PA14 decreases the
susceptibility of C. elegans to the Orsay virus (Vassallo et al., 2024). This mutualistic
interaction favored the survival of nematodes under complex conditions, proving again
that cooperative and competitive strategies can coexist. Furthermore, some bacteria living
in the gut of nematode Acrobeloides maximus may provide digesting or protective help
against pathogen invasion to hosts, which further reinforces this ecological mutualism
(Baquiran et al., 2013). Further, some pathogens infecting C. elegans may control the
immune system and improve resistance to other pathogens, thus establishing a mutualistic
relationship (Hajdu, Szathmari ¢» S6ti, 2024). Studies have also shown that the interaction
between pathogens and hosts can evolve into a mutualistic relationship through co-
evolution. For example, the interaction between C. elegans and the mildly parasitic
bacterium Enterococcus faecalis demonstrates that, with bacterial evolution, they can
provide protection against pathogens like Staphylococcus aureus, and this protective effect,
in turn, promotes host adaptation to the bacteria, establishing a mutualistic relationship
(Rafaluk-Mohr et al., 2018). This phenomenon indicates the interaction between host and
pathogen is not fixed but changed under certain environmental conditions and selective
pressure. In plant-microbe interaction, the coexistence between pathogens and mutualistic
microbes also shows a complex dynamic. When plants are under attack by pathogens, they
may increase their defense mechanisms through interactions with mutualistic microbes,
which affects plant growth and survival, as well as the pathogenicity and transmission of
pathogens (Marchetto ¢ Power, 2018). Therefore, this complex interaction is very
important to reveal the dynamic balance of ecosystems and biodiversity.

CONCLUSIONS

C. elegans serves as a valuable model for studying host-pathogen interactions, offering key
insights into immune responses, behavioral adaptations, and co-evolutionary dynamics
with pathogenic bacteria. It employs a range of survival strategies, including altered
foraging behaviors, pathogen avoidance, and learned behavioral responses that can be
transmitted across generations. In addition to these behavioral defenses, C. elegans
possesses an innate immune system that helps detect and neutralize microbial threats.
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However, the role of symbiotic bacteria in immune defense and microbial community
regulation remains less understood and requires further investigation.

Future research should explore how C. elegans reshapes microbial populations,
particularly the interactions between pathogenic and non-pathogenic bacteria.
Investigating the feedback loops between C. elegans behavior, microbial diversity, and
immune responses could deepen our understanding of its ecological impact. Expanding
research in these areas will not only enhance our knowledge of host-microbe interactions
but also provide broader implications for human health, disease resistance, and
environmental management.
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