
Submitted 6 December 2024
Accepted 18 March 2025
Published 28 April 2025

Corresponding authors
Chenlu Wang, greatwall1ok@163.com
Yujie Fu, yujie_fu@163.com

Academic editor
Ahmet Tansel Serim

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj.19291

Copyright
2025 Chang et al.

Distributed under
Creative Commons CC-BY-NC 4.0

OPEN ACCESS

Predicting the potential distribution of
Phacellanthus tubiflorus (Orobanchaceae):
a modeling approach using MaxEnt and
ArcGIS
Cheng Chang1,2, Fengkun Cai1,2, Lu Shen2, Xiang Jia2, Zhiguo Liu1,
Chenlu Wang3, Yujie Fu3 and Yumei Luo2

1The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forest University,
Harbin, China

2 Jilin Provincial Joint Key Laboratory of Changbai Mountain Biocoenosis and Biodiversity, Changbai
Mountain Academy of Sciences, Antu, China

3The College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China

ABSTRACT
Phacellanthus tubiflorus Sieb. et Zucc, a vascular plant species, is believed to possess
pharmacological properties including anti-fatigue and immunoenhancement. How-
ever, its distribution data is limited. Owing to the prospective medicinal relevance
of this species, we proposed a comprehensive investigation for conservation and
utilization. In this study, we aimed to scrutinize the plant holistically, ranging from
the macroscopic to microscopic level. Specifically, we developed an ecological model
using 51 records of P. tubiflorus subjected to seven environmental conditions. This
model attained an exceptional area under curve (AUC ) value of 0.990 with a standard
deviation of 0.004, and true skill statistic (TSS) value of 0.989, indicating a potently
predictive capacity. Through the MaxEnt model, we completed a systematic depiction
of the ecological niche of P. tubiflorus, revealing its primary global distribution. We
carried out field surveys in the Changbai Mountain region to validate the model’s
accuracy and conducted observations focusing on the phenological attributes of P.
tubiflorus, highlighting its largely subterranean existence. Factors such as seasonality
of precipitation and temperature were found to sway its distribution, engendering
comparably stable acclimation habitats. This research contributes to the data repository
for facilitating subsequent studies on this species. Integrating botanical and ecological
approaches, we proposed a more profound comprehension and evaluation of a
species’ behavior, survival strategies, and associations with other populations within
specific habitats. Furthermore, this inclusive approach would assist in addressing
pivotal environmental issues related to species conservation, biodiversity, and land
development.
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INTRODUCTION
Phacellanthus tubiflorus Sieb. et Zucc. is a parasitic herbaceous vascular plant with
significant ecological and medical importance. It is primarily distributed in temperate
regions of Northeast Asia, including China, Russia, and South Korea (Jung et al., 2013;
Xu et al., 1991). The species relies on broad-leaved host trees, such as oak and maple,
for water and nutrients, utilizing specialized haustoria to establish a parasitic connection
(Jung et al., 2013; Yoon, Shin & Yi, 2013). This unique relationship significantly impacts
forest ecosystems by influencing host plant populations, nutrient cycling, and interspecies
competition (Kuijt, 1969;Westwood et al., 2010). In addition, species of the Orobanchaceae
family, sequester secondary metabolites from their host plants (Press & Phoenix, 2005).
These sequestered compounds are believed to contribute to the pharmacological activities
of the species, as supported by numerous studies on parasitic plants (Genovese et al.,
2021; Heide-Jørgensen, 2008). In northeastern China, P. tubiflorus has been traditionally
valued for its tonic and invigorating properties, with emerging research highlighting its
potential use in treating fatigue and enhancing vitality, thus underscoring its significance
in natural medicine (Xu et al., 1991). However, the increasing demand for this plant in
pharmacological applications and its role in forest ecosystems raise concerns about its
conservation status and sustainable utilization.

The distribution and abundance of P. tubiflorus are likely influenced by both climatic
and anthropogenic factors, similar to other parasitic plants (Chung, Hsu & Peng, 2010; Li et
al., 2020; Wang et al., 2023; Xiang, Lei & Zhang, 2016). Studies on related parasitic species
have shown that climatic variables, such as temperature and precipitation patterns, can
significantly affect host plant availability and the physiological adaptability of parasitic
plants, thereby shaping their distribution (Jung et al., 2013; Yoon, Shin & Yi, 2013).
Moreover, habitat alterations due to deforestation, urbanization, and agricultural activities
could reduce the availability of suitable hosts or alter microhabitats essential for the growth
and survival of P. tubiflorus. While direct evidence linking these factors to P. tubiflorus
is currently lacking, the species’ dependency on specific host plants and environmental
conditions suggests its potential vulnerability to such changes. This underscores the need
for targeted studies to explore the interactions between P. tubiflorus, its host plants, and
the broader environment under varying climatic and anthropogenic scenarios.

To address these challenges, ecological research increasingly employs species distribution
models (SDMs) to predict potential distribution patterns under current and future climatic
scenarios (Li et al., 2020; Xiang, Lei & Zhang, 2016). These models integrate environmental
data and known species distributions to identify areas suitable for survival and growth,
offering insights into habitat dynamics and range shifts (Marsh et al., 2023; Zhang et al.,
2022). In this study, we applied the MaxEnt model to predict the global distribution of
P. tubiflorus and conducted field investigations in Changbai Mountain, Northeast China.
By analyzing its ecological niche and environmental adaptability, we aim to provide a
comprehensive understanding of the factors influencing its distribution and a theoretical
foundation for conserving P. tubiflorus populations.
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MATERIALS & METHODS
The study area for modeling primarily covers the full distribution range of P. tubiflorus in
Northeast Asia. This area represents the ecological and phenological conditions across the
species’ broad geographic range.

Geographic distribution data
The geographic distribution data of P. tubiflorus primarily originated from two sources: (1)
the Chinese Virtual Herbarium, a domestic specimen database (https://www.cvh.ac.cn/) (Lu
et al., 2018); (2) the Global Biodiversity Information Facility (GBIF, https://www.gbif.org/)
(Benavides Rios et al., 2024; Feng et al., 2024; Lessa et al., 2024). The latitude and longitude
information obtained from these two sources was used as input data for MaxEnt modeling
to predict the potential distribution of P. tubiflorus. There were 51 occurrence records of
P. tubiflorus and the occurrence records of its host tree species, including 792 records of
Pinus koraiensis, 2,231 records of Quercus mongolica, 275 records of Tilia mandshurica, 368
records of Fraxinus mandshurica, 145 records of Euonymus pauciflorus, and 660 records
of Tilia amurensis, all obtained from two secondary sources: (1) and (2). The inclusion
of occurrence records for host tree species is essential to understanding the ecological
relationship between P. tubiflorus and its host trees. This relationship plays a critical
role in shaping the distribution of P. tubiflorus, and the data helps inform ecological
modeling efforts by identifying key host species and their influence on the spread and
survival of P. tubiflorus in different environments. These occurrences were documented
in the Northeast Asian region (Fig. 1). Fundamentally, both P. tubiflorus and its hosts are
predominantly distributed in Northeast Asia, encompassing China, the Korean Peninsula,
and Japan.

Environmental variable data
Environmental variable data includes climate and soil variables. The climate variables
encompass 19 bioclimatic factors sourced from the WorldClim database (http:
//worldclim.org). Soil data is extracted from the ‘‘HWSDv1.2’’ dataset within the World
Soil Database (https://www.fao.org/soils-portal/en/), encompassing 16 soil factors, such as
annual mean temperature, topsoil gravel content (Hao &Wu, 2023; Zhu et al., 2023) (refer
to Table 1). Utilizing ArcGIS 10.8 software, we processed all the environmental variables
with uniform spatial coordinate systems (GCS-WGS84) and spatial resolution (30’’).

To mitigate the risk of multicollinearity among environmental factors leading to model
overfitting and enhance prediction accuracy, a preliminary simulation experiment was
conducted for P. tubiflorus. Simultaneously, distribution points were numerically sampled
with environmental factors using ArcGIS (Table 1), and the obtained values undergo
Pearson correlation analysis (Campos et al., 2023; Hou et al., 2023; Li et al., 2024).

By comparing the results of the preliminary simulation experiment and correlation
analysis, variables with contribution rates below 1% in the preliminary MaxEnt model,
which indicates their minimal contribution to the model’s predictive power, and those with
correlation coefficients |r| > 0.8 and low contribution rates, are excluded. Notably, bio_3
and bio_18 exhibit correlation coefficients |r| > 0.8, but they have higher contribution rates
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Figure 1 The occurrence records of Phacellanthus tubiflorus. A major portion of the study area where
presence data were collected.

Full-size DOI: 10.7717/peerj.19291/fig-1

in the experiment. Finally, seven variables, including precipitation of warmest quarter,
Topsoil TEB, are chosen for predicting the suitable habitat of P. tubiflorus (Fig. 2).

Model optimization and accuracy evaluation
The MaxEnt model estimates the maximum entropy distribution under environmental
constraints, using precise species occurrence data and environmental variables. With
minimal data requirements, the model only necessitates species occurrence coordinates
and environmental variables, accommodating both continuous and categorical data
and accounting for interactions between different variables. This versatility extends to
constructing conditional models based on presence/absence data, mitigating data bias. The
model generates continuous output results with a well-defined mathematical framework
(Phillips, Anderson & Schapire, 2006). Consequently, the MaxEnt model is widely used to
predict the potential distribution of various species, including plants (Kunwar et al., 2023),
animals (Berhanu, Tassie & Sintayehu, 2022; Liu et al., 2022) and microorganisms (Aidoo
et al., 2022; Jie, Yang & Li, 2020; Yuan, Wei & Wang, 2015).

The distribution data of P. tubiflorus and the environmental variables were input into
the MaxEnt 3.4.1 model. Seventy-five percent of the distribution data was randomly
allocated as the training set for habitat modeling, with the remaining 25% designated as
the test set to evaluate model accuracy. We used the R package ‘‘sdmtune’’ to perform
model optimization. We employed the jackknife method to analyze the impact of diverse
environmental factors on distribution and generate corresponding response curves. The
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Table 1 Potential environmental factors affecting the distribution of P. tubiflorus.

Environmental
variable

Interpretation Environmental
variable

Interpretation

bio_1 Annual mean temperature (◦C) bio_19 Precipitation of coldest quarter (mm)
bio_2 Mean diurnal range (Mean of monthly (max temp–min

temp)) (◦C)
sio_1 Topsoil gravel content (% vol)

bio_3 Isothermality (bio_2/bio_7) (×100) sio_2 Topsoil sand fraction (% wt)
bio_4 Temperature seasonality (standard deviation×100) sio_3 Topsoil silt fraction (% wt)
bio_5 Max temperature of warmest month (◦C) sio_4 Topsoil clay fraction (% wt)
bio_6 Min temperature of coldest month (◦C) sio_5 Topsoil USDA texture classification
bio_7 Temperature annual range(bio_5- bio_6) (◦C) sio_6 Topsoil reference bulk density (kg dm−3)
bio_8 Mean temperature of wettest quarter (◦C) sio_7 Topsoil organic carbon (% weight)
bio_9 Mean temperature of driest quarter (◦C) sio_8 Topsoil pH (H2O) (-log(H+))
bio_10 Mean temperature of warmest quarter (◦C) sio_9 Topsoil CEC (clay) (cmol kg−1)
bio_11 Mean temperature of coldest quarter (◦C) sio_10 Topsoil CEC (soil) (cmol kg−1)
bio_12 Annual precipitation (mm) sio_11 Topsoil base saturation (% )
bio_13 Precipitation of wettest month (mm) sio_12 Topsoil TEB (cmol kg−1)
bio_14 Precipitation of driest month (mm) sio_13 Topsoil calcium carbonate (% weight)
bio_15 Precipitation seasonality

(Coefficient of variation) (mm)
sio_14 Topsoil gypsum (% weight)

bio_16 Precipitation of wettest quarter (mm) sio_15 Topsoil sodicity (ESP) (%)
bio_17 Precipitation of driest quarter (mm) sio_16 Topsoil salinity (Elco) (dS m−1)
bio_18 Precipitation of warmest quarter (mm)

model underwent 10 iterations, and the average of the calculated values was deemed the
final prediction result. Assessment of the model’s accuracy utilized the receiver operating
characteristic curve (ROC) and AUC value. A higher AUC value, approaching 1, signifies
more accurate prediction results. The output ASC files from MaxEnt were imported into
GIS, converted into grid data, and overlaid onto the global grid.

MaxEnt delineates the current suitable habitat areas of P. tubiflorus on a global scale.
It employs the ‘‘Conversion tools-ASCII to Raster’’ functionality in ArcGIS 10.8 software
to transform the prediction results from ‘‘asc’’ format files to raster files. These raster
files undergo classification using the Natural Breaks (Jenks) method to stratify the present
suitable habitat areas of P. tubiflorus into distinct levels. Specifically, based on MaxEnt
prediction, the suitability of P. tubiflorus habitat is categorized into different levels. The
GIS’s reclassification function categorized regions into four suitability grades based on the
suitability index (P) (Mahatara et al., 2021). The suitability levels are determined according
to the probability of occurrence (P): P < 0.3 designates unsuitable habitat, 0.3 ≤ P < 0.5
indicates low-suitability habitat, 0.5≤ P < 0.7 represents moderate-suitability habitat, and
P ≥ 0.7 (Cao et al., 2022; Renjana et al., 2022) signifies high-suitability habitat.

Specifically, the model was evaluated using the area under the curve (AUC) and the true
skill statistic (TSS), which are commonly used metrics to assess the predictive performance
and reliability of ecological niche models. These two indices are widely recognized as the
most respected dimensionless indicators for verifying the accuracy of species distribution
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Figure 2 Correlation analysis of environmental variables.
Full-size DOI: 10.7717/peerj.19291/fig-2

models (SDMs). TSS (Allouche, Tsoar & Kadmon, 2006) is a metric used to evaluate the
predictive accuracy of ecological models, calculated as: TSS=Sensitivity+Specificity−1.
The values of TSS span between −1 and 1, the evaluation criteria for TSS were excellent,
1.0–0.85; very good, 0.7–0.85; good, 0.55–0.7; fair, 0.4–0.55; and fail, <0.4; and 0.5 ≤ AUC
<0.6, the simulation is considered unsuccessful; 0.6≤ AUC <0.7 indicates poor simulation
performance; 0.7≤ AUC <0.8 suggests moderate simulation performance; 0.8≤ AUC <0.9
implies good simulation performance, and 0.9 ≤ AUC <1 indicates excellent simulation
performance (Chen et al., 2023; Renjana et al., 2022; Shi et al., 2023; Ye et al., 2022).

The contribution ratio and permutation importance of environmental factors
influencing the distribution of P. tubiflorus in its suitable habitat were analyzed using
the ‘knife-cutting method’ within the MaxEnt model. The knife-cutting method, also
known as the jackknife test, evaluates the relative importance of environmental factors by
analyzing the change in model performance when each variable is either excluded or used
in isolation. This approach helps determine the key factors driving species distribution
(Merow, Smith & Silander Jr, 2013; Phillips, Anderson & Schapire, 2006).
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Field survey & validiation
After predicting suitable zones using the MaxEnt model, we conducted field sampling
studies of P. tubiflorus to both validate our predictions and collect samples for subsequent
biological research. The Changbai Mountain National Nature Reserve, located in
northeastern China, was chosen for its diverse environmental conditions, which align
with the habitat preferences of the target species. The field sampling aimed to gather
specimens of P. tubiflorus for validating the model’s prediction accuracy.

Following the sampling methods outlined by scholars (Elith & Leathwick, 2009; Guisan
& Thuiller, 2005;Kearney & Porter, 2009), we divided the study area into three large regions
based on the geographical area of the Changbai Mountain Conservation Area. Within each
region, three groups of field workers conducted random sampling. As the objective was to
collect P. tubiflorus, the sampling process was biased towards areas with higher suitability
for the species. Each group collected data from three sampling points, after which sampling
was concluded.

Additionally, geographical coordinates were recorded at each validation point. All
field experiments were approved by the Changbai Mountain Protection & Development
Management Committee.

RESULTS
Model optimization and accuracy assessment of the predicted
potentially suitable area of P. tubiflorus
Following 10 repeated runs, the average AUC and TSS value for the current suitable habitat
model of P. tubiflorus is determined to be 0.990 and 0.989, respectively, and the standard
deviation is 0.004, signifying excellent predictive performance of the model (Fig. 3).

The primary environmental factors influencing the distribution of
P. tubiflorus
Refer to Table 1 for all the environmental variable information.When considering only one
variable, the variables with a gain greater than 1 are precipitation of the warmest quarter
and isothermality (Fig. 4).

Climate factors exert the most significant impact on the distribution of P. tubiflorus,
constituting a total contribution ratio of 91.7% (Table 2). Precipitation of the warmest
quarter and temperature seasonality hold substantial contribution values, reaching 60.3%
and 23.9%, respectively.Mean temperature of the warmest quarter has a lower contribution
ratio of only 1.6%. Annual precipitation and precipitation of the wettest month contribute
6.2% and 3%, respectively. In addition to climate factors, soil factors contribute 8.2% to
the distribution of P. tubiflorus. Permutation importance reflects the model’s dependency
on environmental variables, where precipitation of the warmest quarter holds a substantial
value of 63.9%, and isothermality follows with 26.1%. This indicates that the suitable
habitat of P. tubiflorus is primarily influenced by precipitation of the warmest quarter,
temperature seasonality, and annual precipitation, with precipitation and temperature
being the key variables affecting its distribution, followed by soil properties.
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Figure 3 ROC curves of the MaxEnt model for P. tubiflorus distribution.
Full-size DOI: 10.7717/peerj.19291/fig-3

Figure 4 The importance variables that affecting P. tubiflorus.
Full-size DOI: 10.7717/peerj.19291/fig-4

Table 2 The contribution of environmental variables to the predicted distribution of phacellanthus
tubiflorus.

variable bio_18 bio_4 sio_12 bio_1 bio_3 sio_13 bio_10

Percent contribution (%) 60.3 23.9 6.2 3.8 2.1 2 1.6
Permutation importance (%) 63.9 1 1.3 5.1 26.1 1.7 0.9
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Figure 5 The major response of variables that affecting P. tubiflorus.
Full-size DOI: 10.7717/peerj.19291/fig-5

The probability of P. tubiflorus exhibits a unimodal pattern akin to a normal distribution
(Fig. 5), correlating with the increase in warmest quarter, temperature seasonality, topsiol
TEB, and annual mean temperature.

The threshold values of predominant environmental factor influencing the distribution
of the suitable habitat for P. tubiflorus: precipitation of warmest quarter 330 mm to 860
mm, annual mean temperature 3 ◦C to 15 ◦C, topsoil TEB 3.4 (cmol kg−1) to 22 (cmol
kg−1), and temperature seasonality 700 to 1,350 (Fig. 5).

The suitable habitat distribution
The potential global distribution of P. tubiflorus within various countries worldwide was
determined by theMaxEntmodel, as illustrated in Fig. 6. The suitable habitat of P. tubiflorus
encompasses an extensive area of 2,408,898 km2, with high-suitability habitats comprising
804,034 km2, constituting around 33.4% of the total suitable habitat area (Fig. 7). China
contains the largest distribution of high-suitability areas, spanning 364,620 km2 and
accounting for 45.3% of the total high-suitability habitat. Japan follows with 261,778 km2

(32.6%), and North Korea ranks third with 71,677 km2 (8.9%). Despite their smaller
land areas, Japan, North Korea, and South Korea exhibit high-suitability proportions
relative to their territories, reaching 69.3%, 58.3%, and 49.9%, respectively (Fig. 8).
Russia and Norway also feature significant areas of high-suitability habitat (Table 3). The
moderate-suitability habitat covers 766,637 km2, while the low-suitability habitat spans
838,314 km2, accounting for 34.8% and 31.8% of the total area, respectively. Notably, the
low-suitability habitat displays the broadest distribution.
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Figure 6 The global suitable habitats provided byMaxEnt models of P. tubiflorus. The regions with
the grid cells that indicated P value.

Full-size DOI: 10.7717/peerj.19291/fig-6

Figure 7 The global the potential distribution of P. tubiflorus around the world. From inside out on
the circle: low suitable habitats, moderate suitable habitats, high suitable habitats.

Full-size DOI: 10.7717/peerj.19291/fig-7

Field assessment
Nine sampling points containing P. tubiflorus were surveyed, covering high, medium, and
predicted suitable habitats based on the distribution model (Figs. 9 and 10). This strong
association with specific host species highlights its intricate ecological relationships within
forest habitats.
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Figure 8 The potential distribution of P. tubiflorus in the major region.
Full-size DOI: 10.7717/peerj.19291/fig-8

Table 3 Statistics of the potential distribution Area of P. tubiflorus by countries.

Country Low-suitability
habitats area
(km2)

Middle-suitability
habitats area
(km2)

high-suitability
habitats area
(km2)

CHINA 573,419 461,229 364,620
JAPAN 15,582 87,259 261,778
South korea 18,698 28,048 71,677
North korea 3,116 37,397 49,863
RUSSIAN FEDERATION 99,725 49,863 31,164
NORWAY 12,466 12,466 12,466
UNITED STATES 31,164 24,931 6,233
AUSTRIA 12,466 3,116 3,116
GERMANY 6,233 6,233 3,116
CANADA 34,281 52,979 0
UKRAINE 12,466 3,116 0
SLOVENIA 6,233 0 0
POLAND 3,116 0 0
SWITZERLAND 3,116 0 0
SAINT PIERRE ANDMIQUELON 3,116 0 0
INDIA 3,116 0 0

DISCUSSION
Key environmental variables influencing habitat suitability of
P. tubiflorus
Precipitation of the warmest quarter as a key variable
The precipitation of the warmest quarter (Bio_18) was identified as the most critical
variable influencing habitat suitability, contributing 60.3% to the model’s performance.
This result aligns with studies on other parasitic or mycorrhizal-dependent plants (Chen
et al., 2024), which emphasize the importance of water availability during critical growth
periods. The warmest quarter typically corresponds to the active growing season of P.
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Figure 9 Field assessment of P. tubiflorus.
Full-size DOI: 10.7717/peerj.19291/fig-9

Figure 10 The phenological period of P. tubiflorus.
Full-size DOI: 10.7717/peerj.19291/fig-10
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tubiflorus and its host plants. Adequate precipitation during this period likely supports
the underground development of its parasitic structures, including haustoria, which are
essential for nutrient acquisition.

In Northeast Asia, where monsoon-driven precipitation patterns dominate, water
availability during the warmest quarter could significantly influence the growth and survival
of both P. tubiflorus and its host plants. In comparison, other studies on parasitic plants
(Těšitel, 2016; Watson, 2009) have similarly highlighted precipitation’s role as a limiting
factor for distribution. These findings support the hypothesis that water availability during
critical periods is a decisive factor for P. tubiflorus.

Temperature seasonality (Bio_4)
Temperature seasonality (Bio_4) contributed 23.9% to the model’s performance, making it
the second most influential variable for the habitat suitability of P. tubiflorus. Temperature
seasonality reflects the variation between the warmest and coldestmonths of the year, which
plays a crucial role in defining the growing season and the timing of physiological processes
such as flowering and fruiting. In regions with distinct seasonal temperature differences,
P. tubiflorusmay experience significant shifts in its life cycle, including changes in flowering
time and nutrient acquisition, which are critical to its survival and reproduction.

Temperature seasonality has been identified as a key factor influencing the growth
and distribution of other temperate-zone plants (Hatfield & Prueger, 2015; Ida & Kudo,
2021). This suggests that P. tubiflorus is sensitive to temperature fluctuations throughout
the year, and such seasonal variation likely affects the species’ ecological interactions and
adaptation to different environments. Therefore, temperature seasonality reinforces the
need to consider both temperature and precipitation as key climatic factors when modeling
habitat suitability for P. tubiflorus.

Topsoil TEB (Sio_12)
Topsoil TEB (Bio_12) contributed 6.2% to themodel’s performance, indicating amoderate
effect of soil fertility on the distribution of P. tubiflorus. The availability of essential cations
in the soil may influence the ability of the host plants to support parasitic interactions.
P. tubiflorus depends on specific host plants for nutrient acquisition, and host plant growth
is likely affected by soil nutrient levels, which in turn influences P. tubiflorus’s distribution.

Soil properties, including topsoil cation exchange capacity (TEB), have been shown
to influence the growth and distribution of parasitic plants in other ecosystems (Liang et
al., 2009; Těšitel et al., 2021). These findings suggest that P. tubiflorus prefers areas with
soils that support the growth of host species capable of sustaining its parasitic lifestyle.
The relatively moderate contribution of topsoil TEB to the model suggests that while soil
fertility plays a role, it is not as critical as climate factors in shaping habitat suitability.

Annual mean temperature (Bio_1)
Annual mean temperature (Bio_1) contributed 3.8% to the model’s performance, making
it the least influential among the key variables in determining habitat suitability for
P. tubiflorus. While temperature can influence plant growth and physiological processes,
its relatively low contribution suggests that P. tubiflorus may have a wider tolerance range
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for temperature variability compared to precipitation. The impact of temperature could be
more prominent in areas with extreme seasonal fluctuations, potentially influencing the
species’ growth patterns and reproductive cycles.

This result is consistent with studies on other temperate-zone parasitic plants, which
have been found to be less sensitive to temperature fluctuations than to water availability
during critical growth periods (Hance et al., 2007; Watson, 2009). The relatively minor
role of annual mean temperature in this study suggests that P. tubiflorus may not be as
temperature-sensitive as other species in the region, as long as it falls within an acceptable
range for the host plants.

The model indicates that climate-related variables, particularly precipitation of the
warmest quarter, temperature seasonality, and annual mean temperature, play significant
roles in shaping the suitable habitat for P. tubiflorus. Precipitation of the warmest quarter
is the dominant factor, but the contribution of other factors like temperature seasonality
and topsoil TEB should not be overlooked. Together, these variables reflect the complex
interplay of climate, soil, and host plant interactions that define the habitat suitability for P.
tubiflorus. These results underscore the importance of considering multiple environmental
factors when assessing the ecological needs of parasitic species and their distribution
patterns.

Understanding the suitability prediction for Northern Europe
The MaxEnt model predicted Northern Europe as a highly suitable area for P. tubiflorus,
despite the absence of reported occurrences in this region. This discrepancy could arise
from several factors, including ecological limitations not included in the model, such as
soil composition, microclimatic variations, and symbiotic relationships with host trees. For
instance, the species’ strong dependence on host plants like Quercus mongolica and Tilia
mandshurica, which are less prevalent in Northern Europe, may limit its establishment.
Historical barriers, such as glaciation events and limited post-glacial recolonization, might
also explain why the species has not dispersed to otherwise suitable areas (Araújo &
Guisan, 2006; Svenning, Normand & Kageyama, 2008). This phenomenon is not unique
to P. tubiflorus; similar findings have been reported for other plants, highlighting the
importance of considering dispersal constraints and ecological niche conservatism (Guisan
& Thuiller, 2005; Thuiller et al., 2005). These results emphasize that model predictions
should be interpreted with caution when suitable areas remain unoccupied.

Limitations and missing factors affecting the predicted distribution
In addition to ecological limitations, anthropogenic activities such as deforestation,
urbanization, and agricultural expansion can significantly reduce the habitat of P. tubiflorus
by altering forest structure and reducing host plant populations. Human-driven habitat
fragmentation is a significant threat to parasitic plants due to the loss of suitable host
species (Carlson et al., 2020). Incorporating land-use datasets in future models could offer
a more comprehensive view of human impact on its distribution.

While P. tubiflorus is not strictly dependent on specific host species, as shown in this
study, the diversity and abundance of host plants likely influence its habitat suitability. This
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flexibility in host plant use aligns with patterns observed in other generalist parasitic plants
(Peterson et al., 2012; Watson, 2009). However, the current model does not include host
plant distribution data, and incorporating such data could improve the model’s predictive
power. Future models could benefit from integrating data on host plant diversity, collected
through forest inventories or remote sensing.

Although elevation was considered in the model, finer-scale topographic features, such
as slope and aspect, were not included. This exclusion was due to the spatial resolution
of the available data and the representativeness of other environmental variables, such
as temperature seasonality and precipitation, which already capture key climatic and
soil conditions. While slope, aspect, and other topographic features, including sunlight
exposure and soil moisture, are critical for the growth of parasitic plants (Lu, Jiang &
Zhang, 2022), future studies utilizing higher-resolution datasets may incorporate these
factors to further refine predictions of habitat suitability. The inclusion of high-resolution
digital elevation models (DEMs) could significantly enhance prediction accuracy.

CONCLUSIONS
This study employed theMaxEntmodel to predict the potential distribution of P. tubiflorus,
revealing its primary occurrence in Northeast Asia and offering valuable insights for
conservation and resource utilization. Despite the limited sampling points, the model
exhibited robust predictive performance (AUC: 0.990, TSS: 0.989), with key regions of
suitability identified in China, the Korean peninsula, Japan, and smaller areas in Russia
and Norway. The distribution is predominantly influenced by climatic factors, with
precipitation of the warmest quarter contributing 60% to the model, underscoring the
species’ reliance on water availability during critical growth periods. These findings affirm
the model’s reliability for species distribution modeling and provide a foundation for
guiding subsequent field surveys.

The study further highlights P. tubiflorus’s dependence on specific environmental
conditions and its parasitic relationship with host plants, whose availability and distribution
are critical to its survival. Consequently, conservation strategies should prioritize protecting
suitable habitats while integrating host plant distributions into management plans to
enhance protection efficacy. Looking ahead, future research should focus on expanding
field data collection, particularly in under-sampled regions, and investigating additional
ecological drivers—such as soil properties and interspecific interactions—that may refine
habitat suitability assessments. Moreover, evaluating the potential impacts of climate
change on P. tubiflorus and its hosts will be essential for long-term conservation planning
and anticipating shifts in species distributions.
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