The Regulatory Effect of Blood Group on

Ferritin Levels in Aging

34 Xiaolin Ni^{1*},

Xiaolin Ni^{1*}, Fenghong Yao², Mingkang Pan^{2*}

5

1

- 6 ¹ State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic
- 7 Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical
- 8 College, Beijing, 100005, China.
- 9 ² Beijing Zhongguancun Hospital, Beijing, 100190, China.

10

- 11 Corresponding Author:
- 12 *Xiaolin Ni¹
- 13 State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic
- 14 Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical
- 15 College, Beijing, 100005, China.
- 16 Email address: xiaolin_ni7@126.com
- 17 *Mingkang Pan²
- 18 Beijing Zhongguancun Hospital, Beijing, 100190, China.
- 19 Email address: panmkang@163.com

20

21

Abstract

Background

- 23 Ferritin plays a pivotal role in the ageing process. Previous studies have identified
- 24 statistically significant differences in ferritin levels among various ABO blood groups.
- 25 However, the interaction between the ABO blood group and ferritin levels during
- 26 senescence remains underexplored.
- 27 Methods
- We analyzed data from 3,843 individuals aged 40 and over who underwent blood type

Deleted: aging

30	and ferritin testing at Beijing Zhongguancun Hospital. Spearman correlation analysis		
31	was employed to examine the relationship between the non-normally distributed		
32	biochemical indicators and ferritin levels. Age was considered the independent variable,		
33	while gender and biochemical indicators related to ferritin served as control variables.		
34	Blood type was analyzed as a moderating factor to evaluate its impact on the		
35	relationship between age and ferritin levels.		
36	Results		
37	Our findings revealed a negative correlation between ferritin and age (ρ = -0.099, p $^{<}$		
38	0.001). Significant differences in ferritin levels were observed between genders (p $=$		
39	0.005) and blood groups (p \leq 0.001). The influence of age on ferritin levels varied		
40	across different blood groups, particularly in individuals with blood types A (p = 0.003 ,		
41	β = -0.072) and B (p < 0.001, β = -0.110), where the negative association between age		
42	and ferritin was more pronounced.		
43	Conclusion		
44	This study confirms that different blood groups exert a significant regulatory effect on		
45	the relationship between age and ferritin levels, most notably in blood groups A and B.		
46	These results suggest that middle-aged and elderly individuals with blood types A and		
47	B may benefit from iron supplementation.		
48	Key words: ferritin levels, ABO blood group, aging, regulatory effect		
49			
50	Introduction		
51	Rapid population ageing has emerged as a significant public health challenge in China	Deleted: aging	
52	and globally, as the deterioration of tissues and organs associated with ageing is a	Deleted: aging	
53	primary contributor to many chronic diseases [1]. This degeneration will be reflected	Deleted: And this	
54	in the fluctuations of physiological indicators, which indirectly reflect the state of health		
55	[2]. Consequently, preventive strategies and interventions targeting key physiological		
56	indicators that promote healthy <u>ageing</u> are essential.	Deleted: aging	
57	Among the numerous physiological indicators, ferritin, a key iron storage protein, plays		

a significant role in various physiological and pathological processes, including

coronary artery disease, malignancies, sideroblastic anemias, neurodegenerative disorders, and hemophagocytic syndrome [3]. It has been proposed that SF can transport iron into cells, constituting the main pathway of iron supply to oligodendrocytes for myelin production, and then involved in neurotransmitter synthesis in the central nervous system, thus affecting working memory [4]. In later life, reduced iron stores are associated with an increased risk of impaired physical and cognitive capacity, as well as up to a twofold higher risk of mortality [5, 6]. A crosssectional study of the Kerr Anglican Retirement Village Initiative in the Ageing Health cohort (aged 65-90 years) found that serum ferritin (SF) positively correlates with neocortical amyloid-β load (NAL). The findings suggested that impaired iron mobilization may be an early event in the onset of Alzheimer's disease (AD). Ferritin has the potential to serve as a blood biomarker panel for preclinical AD [7]. In addition, iron plays a crucial role in erythropoiesis, oxygen transport throughout the circulatory system, mitochondrial respiration, and protection against free radicals in high-energydemand cells, such as cardiomyocytes. Research has demonstrated that serum ferritin levels decline with age, while the prevalence of heart failure (HF) rises. In patients with chronic heart failure, iron deficiency is associated with impaired functional capacity and an increased risk of HF hospitalization and mortality [8]. Therefore, understanding the characteristics of iron levels with age may have significant clinical implications, especially considering the availability of routine blood tests to detect iron deficiency and various therapeutic options for iron repletion. Recently, an intriguing study revealed that among a total of 7,723 healthy blood donors, individuals with blood type A exhibited lower concentrations of ferritin. In contrast, blood type B was associated with significantly higher levels of ferritin. A statistically significant heterogeneity in ferritin levels among the ABO blood groups was observed (p < 0.001) [9]. As we know, ABO blood groups are ABO antigens (i.e., A, B, AB, and O), which are glycoproteins and glycolipids expressed by the ABO gene on the surface of red blood cells, as well as a variety of human cells and tissues. Therefore, the clinical significance of ABO blood type extends beyond transfusion medicine and solid organ

63 64

65

66

67

68 69

70

71

72

73

74 75

76

77

78

79

80

81 82

83 84

85

86

87

88 89

90

91

Deleted: involve

Commented [KT1]: Please kindly cite

Commented [KT2]: Please kindly cite

Commented [KT3]: Please kindly cite

Commented [KT4]: Please kindly cite

Commented [KT5]: Please kindly cite

Commented [KT6]: Please kindly cite

Commented [KT7]: Please kindly cite

or hematopoietic transplantation. These antigens may also participate in the pathogenesis of various systemic diseases, including cancer, diabetes, infectious disorders, and cardiovascular disease [10]. Therefore, the vast majority of studies have limited their investigation of this intriguing relationship to cohorts of high-risk patients, resulting in a scarcity of evidence regarding the physiological influence of ABO antigens on baseline levels of hematological and metabolic parameters. Given the changes in iron levels with age and the potential impact of blood type on these levels, it remains unclear whether blood type exerts a regulatory effect on iron levels in healthy ageing populations (**Figure 1**). To explore this ambiguous association, we conducted a study within the Beijing Health Examination Cohort (BHEC) to examine the influence of different blood types on ferritin levels in ageing individuals, with the aim of guiding personalized clinical treatment in the future.

Deleted: aging

Deleted: aging

Materials & Methods

Study Design and Participants

The biochemical examination data were collected from 3,843 individuals aged 40 and above who underwent blood type and ferritin testing at Beijing Zhongguancun Hospital between July 2019 and July 2024. A total of 883 middle-aged and elderly individuals with missing a large number of examination data were excluded from the study. Ultimately, 2,960 healthy participants were included in this retrospective study. The Ethics Committee of the Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, approved the study protocol (ZS2024001). The study was conducted in accordance with the Declaration of Helsinki and its amendments. All participants provided written informed consent prior_to enrollment. Clinical trial number: not

Commented [KT8]: Please kindly cite

Deleted:

Commented [KT9]: Not relevant please. Kindly remove

117 applicable.

Measures

119 Age, sex, self-reported health status, and medical history were recorded. Blood samples

were obtained under fasting conditions and analyzed within 2 hours of centrifugation.

The blood chemistry studied was assessed by standard automated techniques, including

Deleted: Blood

Architect C 8000 auto-analyzer and Axsyme Third-Generation Immunoassay System (Abbott, IL). This analysis included indicators of liver function, glycometabolism, lipid metabolism, myocardial function, thyroid function, and inflammatory <u>factors</u>

Deleted: factor

Statistical analysis

(Supplementary Table 1).

Descriptive statistics and Spearman correlation analysis were conducted using SPSS version 27.0. Continuous variables are presented as mean \pm standard deviation, while categorical variables are presented as frequency (percentage). Then, the normal distribution of continuous variables was assessed using the Kolmogorov-Smirnov and Shapiro-Wilk tests. The Mann-Whitney test was employed to compare the normal distribution between the two gender groups. The Kruskal-Wallis test was utilized to compare median differences among multiple blood type groups. Spearman correlation analysis was performed to evaluate the relationship between biochemical indices and ferritin levels. Finally, age was treated as the independent variable, with gender and biochemical indicators associated with ferritin serving as control variables. Blood type was analyzed as a moderating variable to determine its effect on the relationship between age and ferritin levels. P-values less than 0.05 were considered statistically significant.

Results

Descriptive Statistical Analysis of Each Biochemical Index

We collected biochemical examination data from 3,843 individuals aged 40 and above who underwent health check-ups at Beijing Zhongguancun Hospital. A total of 2,960 healthy participants, with an average age of 53.96 ± 12.19 years, were included in this study, of which 900 (30.41%) were male. Among these participants, 859 (29.02%) had blood type O, 831 (28.07%) had type A, 978 (33.04%) had type B, and 292 (9.86%) had type AB (**Table 1**). There were individual differences in various biochemical indices, particularly in liver and kidney function, metabolic function, and myocardial damage. Notably, the mean ferritin level was 288.16, with a standard deviation of 99.89,

```
indicating significant variability in ferritin levels among individuals. However, the
156
157
       median values of all indicators were close to the mean (Table 1), suggesting that the
       distribution of these indicators is relatively concentrated and suitable for further
158
159
       correlation and regression analyses.
       Correlation and Univariate Analysis of Ferritin and Other Indicators
160
       Since all variables did not conform to a normal distribution (p<0.05) (Supplementary
161
162
       Table 2). Spearman correlation analysis was employed for continuous variables, while
163
       a non-parametric test was utilized for categorical variables.
       The results indicated a negative correlation between ferritin levels and age (\rho = -0.099,
164
       p < 0.001), suggesting that ferritin levels tend to decrease as age increases (Table 2).
165
166
       Additionally, the difference in ferritin levels between men and women was statistically
       significant (p = 0.005) (Table 3), highlighting a notable disparity in ferritin levels
167
168
       between the sexes. Furthermore, there were statistically significant differences in
       ferritin levels across various blood groups (p < 0.001) (Table 4).
169
       Alanine aminotransferase (ALT) (\rho = 0.078, p < 0.001), aspartate aminotransferase
170
       (AST) (\rho = 0.039, p < 0.05), \gamma-glutamyl transpeptidase (\gamma-GT) (\rho = 0.074, p < 0.001),
171
       creatinine (Cr) (\rho = 0.105, p < 0.001), alkaline phosphatase (ALP) (\rho = 0.113, p <
172
173
       0.001), and lipoprotein(a) (LP(a)) ( \rho = 0.059, \ p < 0.01) demonstrated significant
174
       positive correlations with ferritin (Table 2). This suggests that abnormalities in liver,
       bile, and renal function are associated with increased ferritin levels.
175
176
       There was a significant negative correlation between apolipoprotein A1 (APOA1) and
177
       ferritin (\rho = -0.086, p < 0.001) (Table 2), suggesting that an increase in ferritin levels
178
       is associated with a decrease in high-density lipoprotein (HDL) metabolism.
       There were significant positive correlations between ferritin and creatine kinase (CK)
179
       ( \rho=0.156,\,p<0.001), lactate dehydrogenase (LDH) ( \rho=0.224,\,p<0.001), and
180
181
       myoglobin (Mb) (\rho = 0.207, p < 0.001) (Table 2). These findings suggested that
```

elevated ferritin levels may be closely associated with myocardial injury.

182

Deleted: table

- Thyroid-stimulating hormone (TSH) ($\rho = 0.126$, p < 0.001) exhibited a positive
- correlation with ferritin, whereas free triiodothyronine (FT3) ($\rho = -0.174$, p < 0.001)
- and total triiodothyronine (TT3) ($\rho \, = \, \text{-0.168}, \, p \, < \, 0.001)$ demonstrated negative
- correlations with ferritin (**Table 2**). These findings suggested a relationship between
- thyroid function and ferritin levels.
- Interleukin-6 (IL-6) ($\rho = 0.103$, p < 0.001) exhibited a positive correlation with ferritin
- 190 (Table 2), suggesting that ferritin levels are closely associated with the elevation of
- 191 inflammatory factors.
- 192 Glucose (Glu) ($\rho = 0.042$, p < 0.05) and small and dense low-density lipoprotein
- cholesterol (sd LDL-C) ($\rho = 0.038$, p < 0.05) exhibited a weak positive correlation with
- 194 ferritin (Table 2). This finding suggests that metabolic disorders may be associated with
- 195 ferritin levels.

196

The Regulatory Effect of Blood Group on Ferritin Levels with Aging

- We included indicators related to ferritin and analyzed the regulatory effects with age
- 198 as the independent variable, gender and other biochemical indicators as control
- variables, and blood type as the moderating variable.
- 200 In Model 1, which analyzed the direct effects of age and several control variables
- 201 (including gender, ALT, AST, creatinine, glucose, etc.) on ferritin levels, age exhibited
- a significant negative effect on ferritin levels (t = -2.340, p = 0.019). Specifically, as
- age increased, ferritin levels decreased significantly (Table 5). These results indicate
- 204 that age is an independent factor influencing ferritin levels.
- 205 Model 2 incorporates blood type as a regulatory variable based on Model 1 to
- 206 investigate whether different blood types influence the relationship between age and
- ferritin levels. The results indicated that blood group B (p = 0.042) and blood group AB
- (p = 0.048) had significant effects on ferritin levels compared to blood group O, while
- 209 blood group A did not show a significant difference (Table 5). This suggests that blood
- 210 groups B and AB may modulate the effect of age on ferritin levels to some extent.
- 211 Model 3 further incorporated the interaction term of age and blood type to elucidate the

specific regulatory effects of different blood types on the relationship between age and ferritin levels. The results indicated that various blood groups indeed play a significant regulatory role in this relationship. In blood group A (p=0.003, β =-0.072) and blood group B (p<0.001, β =-0.110), the negative impact of age on ferritin levels was more pronounced, demonstrating a stronger regulatory effect compared to other blood groups. In populations with blood group AB (p=0.033, β =-0.044), the negative effect of age on ferritin was greater than that observed in blood group O, although the regulatory effect was relatively weak (**Table 5**).

219220

221

222

223

224225

226

227228

229

230231

232

233

234

235236

237

238

239

212213

214

215

216

217

218

Discussion

Ferritin is a vital protein complex responsible for storing excess cellular iron and plays a crucial role in various metabolic pathways, inflammatory processes, stress responses, and the pathogenesis of cancer and neurodegenerative diseases [11, 12]. In recent years, ferritin has been shown to play a central role in senescence, driving the senescenceassociated secretory phenotype (SASP) through the induction of senescence and iron accumulation in senescent cells [13]. A cohort study found that both low and high serum ferritin levels were associated with an increased risk of incident heart failure in the general population [14]. A meta-analysis of 11 studies revealed that serum ferritin levels were higher in patients with non-alcoholic fatty liver disease (NAFLD) compared to healthy individuals and were associated with the risk of developing NAFLD [15]. A longitudinal study involving 6,497 participants found that serum ferritin levels were positively and independently associated with the incidence of type 2 diabetes (T2D) and cerebrovascular disease (CEVD) [16]. In our study, we observed a significant correlation between ferritin levels and age, liver function, lipid metabolism, myocardial function, and other biochemical indicators, further suggesting the important role of ferritin in senescence and senescence-associated diseases (Table 2). Therefore, ferritin holds promise as a potential predictive biomarker for senescence-associated diseases. The ABO blood groups have been associated with a variety of health conditions over

the years. A genome-wide association study reported a significant correlation between the ABO locus and ferritin levels [17]. An epidemiological study involving 30,595 participants from the Danish Blood Donor Study indicated that non-O blood group donors exhibited lower ferritin levels compared to those with blood group O [18]. However, the interaction between ABO blood groups and ferritin levels during senescence has not been fully elucidated. Our results suggested that the impact of age on ferritin levels varies significantly among different blood groups for the first time, particularly in individuals with blood groups A and B, where the negative correlation between age and ferritin levels is more pronounced (**Table 5**). It is recommended that middle-aged and elderly individuals with blood groups A and B consider iron supplementation.

251 Strength and limitation

240241

242

243

244

246

247248

249250

256257

258

259

260

264

265266

268

252 The strength of this study lies in its analysis of the regulatory effect of blood groups on

253 ferritin levels in middle-aged and elderly individuals as a cohesive group. This approach

helps to mitigate the loss of continuity associated with ageing that can occur when

dividing participants into distinct age groups. Consequently, both the independent and

dependent variables in this study are treated as continuous variables.

Our study has several limitations. First, the cross-sectional analysis of the data does not

permit a causal assessment of the relationship under investigation. Second, while we

have accounted for some confounding factors, our study lacks data on diet and lifestyle,

which may influence ferritin levels. Third, although we included and analyzed some

261 relevant biochemical indicators as control variables, the study did not comprehensively

262 cover all biochemical indicators, and the results may be affected by other unmeasured

263 biochemical factors. Therefore, we plan to incorporate questionnaires and follow-up

assessments, as well as include additional biochemical indicators, to enhance the

comprehensiveness and rigor of the study in the future.

267 Conclusions

The ABO blood group appears to influence ferritin levels during ageing, particularly in

Deleted: group

Deleted: aging

Deleted: aging

272 individuals with blood groups A and B. In these groups, the negative correlation 273 between age and ferritin levels is more pronounced among middle-aged and elderly individuals. The mechanisms by which ABO blood groups affect serum ferritin levels 274 in senescence require further investigation. 275 276 Acknowledgements 277 The authors would like to express their gratitude to all the participants for their 278 voluntary involvement, as well as to the community committee staff for their friendly 279 support. 280 281 Ethics approval and consent to participate 282 The Ethics Committee of the Institute of Basic Medical Sciences, Chinese Academy of 283 284 Medical Sciences, approved the study protocol (ZS2024001). The study was conducted 285 in accordance with the Declaration of Helsinki and its amendments. All participants provided written informed consent prior to enrollment. Clinical trial number: not 286 applicable. 287 288 **Consent for publication** 289 All the works involved in the paper are original. It has neither been published elsewhere, 290 nor is it currently under consideration for publication elsewhere. 291 292 **Funding** 293 This work was supported by the National Natural Science Foundation of China [grant 294 number 82301776]; State Key Laboratory Special Fund [grant number 2060204]; 295 Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences [grant 296 number 2023-I2M-2-001]. 297 298 299 Availability of data and material

Commented [KT10]: Not relevant

contact the corresponding author. 302 303 **Competing Interests** 304 305 All authors declare that they have no actual or potential conflicts interest. 306 **Authors' Contributions** 307 XL. N. and MK. P. were responsible for the organization and develop the trial design, 308 final approve the version to be published. XL. N. was the chief investigators and 309 310 responsible for the data analysis. FH. Y. was responsible for collecting and interpreting data, and verifying results. All authors contributed to the writing of the final manuscript. 311 312 Reference: 313 314 [1] Liu Z, Kuo PL, Horvath S, Crimmins E, Ferrucci L, Levine M. A new aging measure 315 captures morbidity and mortality risk across diverse subpopulations from NHANES IV: 316 cohort study. PLoS Med. 2018 Dec 31;15(12):e1002718. 317 10.1371/journal.pmed.1002718.

[2] Dieteren CM, Samson LD, Schipper M, van Exel J, Brouwer WBF, Verschuren

WMM, Picavet HSJ. The Healthy Aging Index analyzed over 15 years in the general population: The Doetinchem Cohort Study. Prev Med. 2020 Oct;139:106193. doi:

[3] Knovich MA, Storey JA, Coffman LG, Torti SV, Torti FM. Ferritin for the clinician.

[4] Rosell-Díaz M, Santos-González E, Motger-Albertí A, Ramió-Torrentà L, Garre-Olmo J, Pérez-Brocal V, Moya A, Jové M, Pamplona R, Puig J, Ramos R, Fernández-

Real JM, Mayneris-Perxachs J. Gut microbiota links to serum ferritin and cognition.

[5] Philip KEJ, Sadaka AS, Polkey MI, Hopkinson NS, Steptoe A, Fancourt D. The

Gut Microbes. 2023 Dec;15(2):2290318. doi: 10.1080/19490976.2023.2290318.

Blood Rev. 2009 May;23(3):95-104. doi: 10.1016/j.blre.2008.08.001.

The data has not been previously presented orally or in poster format at scientific

meetings. If you would like to request the data for non-profit scientific research, please

300 301

318 319

320 321

322 323

324

325

326

327

328

10.1016/j.ypmed.2020.106193.

Deleted: interests

Formatted: German (Austria)

- 330 prevalence and associated mortality of non-anaemic iron deficiency in older adults: a
- 331 14 years observational cohort study. Br J Haematol. 2020 May;189(3):566-572. doi:
- 332 10.1111/bjh.16409.
- 333 [6] Ortega RM, Requejo AM, Andrés P, López-Sobaler AM, Quintas ME, Redondo MR,
- Navia B, Rivas T. Dietary intake and cognitive function in a group of elderly people.
- 335 Am J Clin Nutr. 1997 Oct;66(4):803-9. doi: 10.1093/ajcn/66.4.803.
- 336 [7] Goozee K, Chatterjee P, James I, Shen K, Sohrabi HR, Asih PR, Dave P, Man Yan
- C, Taddei K, Ayton SJ, Garg ML, Kwok JB, Bush AI, Chung R, Magnussen JS, Martins
- 338 RN. Elevated plasma ferritin in elderly individuals with high neocortical amyloid-β
- 339 load. Mol Psychiatry. 2018 Aug;23(8):1807-1812. doi: 10.1038/mp.2017.146.
- [8] Aboelsaad IAF, Claggett BL, Arthur V, Dorbala P, Matsushita K, Lennep BW, Yu B,
- Lutsey PL, Ndumele CE, Farag YMK, Shah AM, Buckley LF. Plasma Ferritin Levels,
- 342 Incident Heart Failure, and Cardiac Structure and Function: The ARIC Study. JACC
- 343 Heart Fail. 2024 Mar;12(3):539-548. doi: 10.1016/j.jchf.2023.11.009.
- 344 [9] Franchini M, Mengoli C, Capuzzo E, Terenziani I, Bonfanti C, Lippi G. Correlation
- 345 between ABO Blood Group, and Conventional Hematological and Metabolic
- 346 Parameters in Blood Donors. Semin Thromb Hemost. 2016 Feb;42(1):75-86. doi:
- 347 10.1055/s-0035-1564843.
- 348 [10] Franchini M, Liumbruno GM. ABO blood group: old dogma, new perspectives.
- 349 Clin Chem Lab Med. 2013 Aug;51(8):1545-53. doi: 10.1515/cclm-2013-0168.
- 350 [11] Fang X, Cai Z, Wang H, Han D, Cheng Q, Zhang P, Gao F, Yu Y, Song Z, Wu Q,
- 351 An P, Huang S, Pan J, Chen HZ, Chen J, Linkermann A, Min J, Wang F. Loss of Cardiac
- Ferritin H Facilitates Cardiomyopathy via Slc7a11-Mediated Ferroptosis. Circ Res.
- 353 2020 Jul 31;127(4):486-501. doi: 10.1161/CIRCRESAHA.120.316509.
- 354 [12] Sudarev VV, Dolotova SM, Bukhalovich SM, Bazhenov SV, Ryzhykau YL,
- 355 Uversky VN, Bondarev NA, Osipov SD, Mikhailov AE, Kuklina DD, Murugova TN,
- 356 Manukhov IV, Rogachev AV, Gordeliy VI, Gushchin IY, Kuklin AI, Vlasov AV. Ferritin
- 357 self-assembly, structure, function, and biotechnological applications. Int J Biol
- 358 Macromol. 2023 Jan 1;224:319-343. doi: 10.1016/j.ijbiomac.2022.10.126.
- 359 [13] Maus M, López-Polo V, Mateo L, Lafarga M, Aguilera M, De Lama E, Meyer K,

360	Sola A. Lo	pez-Martinez (C. Ló	pez-Alonso I.	Guasch-Pic	ueras M.	. Hernandez-	Gonzalez

- 361 F, Chaib S, Rovira M, Sanchez M, Faner R, Agusti A, Diéguez-Hurtado R, Ortega S,
- 362 Manonelles A, Engelhardt S, Monteiro F, Stephan-Otto Attolini C, Prats N, Albaiceta
- 363 G, Cruzado JM, Serrano M. Iron accumulation drives fibrosis, senescence and the
- senescence-associated secretory phenotype. Nat Metab. 2023 Dec;5(12):2111-2130.
- 365 doi: 10.1038/s42255-023-00928-2.
- 366 [14] Silvestre, OM, Gonçalves, A, Nadruz, W, Jr, Claggett, B, Couper, D, Eckfeldt, JH,
- 367 Pankow, JS, Anker, SD, Solomon, SD. Ferritin levels and risk of heart failure-the
- 368 Atherosclerosis Risk in Communities Study. Eur J Heart Fail. 2017;19:340–347. doi:
- 369 10.1002/ejhf.701
- 370 [15] Yan J, Guan T, Guo M, Liu J. Serum Ferritin and Non-alcoholic Fatty Liver Disease:
- 371 A Meta-analysis and Systematic Review. Turk J Gastroenterol. 2023 Sep;34(9):952-
- 372 960. doi: 10.5152/tjg.2023.22453.
- 373 [16] Suárez-Ortegón MF, McLachlan S, Fernandez-Real JM, Tuomainen TP,
- 374 Aregbesola A, Wild SH. Serum ferritin and incident cardiometabolic diseases in
- 375 Scottish adults. Cardiovasc Diabetol. 2022 Feb 16;21(1):26. doi: 10.1186/s12933-022-
- 376 01450-7.
- [17] Benyamin B, Esko T, Ried JS, et al. Novel loci affecting iron homeostasis and their
- effects in individuals at risk for hemochromatosis. Nat Commun 2014; 5: 4926.
- 379 [18] Rigas AS, Berkfors AA, Pedersen OB, Sørensen E, Nielsen KR, Larsen MH,
- 380 Paarup HM, Wandall HH, Erikstrup C, Hjalgrim H, Ullum H. Reduced ferritin levels
- 381 in individuals with non-O blood group: results from the Danish Blood Donor Study.
- 382 Transfusion. 2017 Dec;57(12):2914-2919. doi: 10.1111/trf.14364.

384 Figure legends:

385 Figure 1. Schematic diagram of this study design.

387 Tables:

383

386

Table 1. The characteristics of all variables

Formatted: German (Austria)

Variable	N	Mean/(n, %)	Standard deviation	Median
Age	2960	53.959	12.185	51.000
	2960	Male (n=900, 30.41%)		
Gender		Female (n=2060,		
		69.59%)		
	2960	A (n=831, 28.07%)		
DI I		B (n=978, 33.04%)		
Blood group		O (n=859, 29.02%)		
		AB (n=292, 9.86%)		
Fer	2960	288.162	99.894	303.210
ALT	2960	22.262	16.081	19.000
AST	2960	22.375	13.315	20.300
ALP	2960	73.943	25.553	82.510
Cr	2960	68.404	22.250	65.000
GGT	2960	30.733	28.747	22.000
GLOB	2960	26.969	3.153	27.010
A/G_A/G	2960	1.575	0.195	1.550
Glu	2960	5.321	0.732	5.290
sd LDL-C	2960	0.848	0.284	0.849
LDL-C	2960	2.892	0.410	2.900
HDL-C	2960	1.233	0.166	1.230
Lpa	2960	205.518	117.043	224.090
APOA1	2960	1.319	0.194	1.290
LDH	2960	234.456	41.973	253.960
LDH-1	2960	40.484	6.914	43.590
CK	2960	112.398	38.566	119.700
CK-MB	2960	15.736	4.454	17.560
α-HBDH	2960	168.106	25.968	178.310

NT-pro	2960	1157.057	532.537	1316.280
BNP	2700	1137.037	332.331	1310.200
TnT	2960	0.045	0.031	0.050
Mb	2960	91.523	57.111	100.490
TSH	2960	2.647	0.753	2.750
FT3	2960	4.301	0.385	4.240
T3	2960	1.510	0.158	1.490
FT4	2960	15.849	1.101	15.860
IL-6	2960	76.228	20.823	81.630

388 N

Note: N/n, number

389

Table 2. Spearman correlation analysis between continuous

variables	and	ferritin
-----------	-----	----------

Variables	Correlation
variables	coefficient
Age	-0.099***
ALT	0.078***
AST	0.039*
ALP	0.113***
Cr	0.105***
GGT	0.074***
GLOB	0.026
A/G_A/G	-0.035
Glu	0.042*
LDL-C	0.017
HDL-C	-0.067***
sd LDL-C	0.038*
Lpa	0.059**
A/G_A/G Glu LDL-C HDL-C sd LDL-C	-0.035 0.042* 0.017 -0.067*** 0.038*

Commented [KT11]: Add the full names of the abbreviations in the table

APOA1	-0.086***
LDH	0.224***
LDH-1	0.221***
CK	0.156***
CK-MB	0.210***
α-HBDH	0.195***
NT-pro BNP	0.189***
TnT	0.209***
Mb	0.207***
TSH	0.126***
FT3	-0.174***
T3	-0.168***
FT4	0.027
IL-6	0.103***

Note: * p<0.05, ** p<0.01, *** p<0.001

390

391

Commented [KT12]: Add the full names of the abbreviations in the table

Table 3. Univariate analysis of categorical variables (gender)

Candan	Media	n (P25, P75)	MannWhitney test	MannWhitney test	m volue	
Gender –	Male (n=900)	Female (n=2060)	Statistic U value	Statistic z value	p-value	
E	301.520 (300.4,	202 210 (201 2, 205 4)	9,60207,500	2.797	0.005	
Fer	303.6)	302.210 (301.3, 305.4)	869207.500	-2.786	0.005	

Table 4. Univariate analysis of categorical variables (blood group)

D11		Kruskal-Wallis	_				
Blood -	0 (050)	A (021)	D (070)	A.D. (202)	test Statistic H	p-value	
type	O (n=859)	A (n=831)	B (n=978)	AB (n=292)	value		
F	303.050 (302.5,	202.090 (202.5, 202.7)	305.070 (3042.5,	306.040 (306.4,	24.790	-0.001	
Fer	303.8)	303.080 (302.5, 303.7)	305.7)	307.6)	24.780	< 0.001	

Table 5. The regulatory effect of blood group on the level of ferritin with aging

	В	Standard Error	t	p-value	β	В	Standard Error	t	p-value	β	В	Standard Error	t	p-value	β
Age	-0.384	0.164	-2.34	0.019	0.047	-0.389	0.164	-2.375	0.018	0.048	-0.437	0.218	-2.004	0.048	-0.045
Blood type															
O								-							
Blood type A						-4.872	4.652	-1.047	0.295	0.022	-4.758	4.640	-1.026	0.305	-0.021
Blood type						-9.069	4.467	-2.03	0.042	0.043	-9.058	4.455	-2.033	0.042	-0.043
Blood type AB						-12.768	6.462	-1.976	0.048	0.038	-12.65	6.444	-1.963	0.050	-0.038
Age*Blood type A											-1.143	0.388	-2.943	0.003	-0.072
Age*Blood type B											-1.552	0.365	-4.248	p<0.001	-0.110

Age*Blood											-1.102	0.517	-2.132	0.033	-0.044	
type AB											-1.102	0.517	-2.132	0.033	-0.044	
Constant	467.502	34.066	13.724	p<0.001	-	471.505	34.107	13.824	p<0.001	-	466.88	34.065	13.706	p<0.001	-	
Control			NO.					NO.					NO.			
variable	yes					yes						yes				
\mathbb{R}^2	0.101					0.103					0.109					
Adjust R^2	0.094					0.095					0.100					
F value	F	7 (24, 2935	5)=13.781	, <i>p</i> <0.001		F (27, 2932)=12.482, p<0.001					F (30, 2929)=11.929, p<0.001					