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Abstract 14 
The regulation of residual feed intake (RFI) in beef cattle involves brain-gut 15 

mechanisms due to the interaction between neural signals in the brain and hunger or satiety in 16 
the gut. RNA-Seq data contain an extensive resource of untapped SNPs. Therefore, 17 
hypothalamic and duodenal tissues from ten extreme RFI individuals were collected, and 18 
transcriptome sequenced in this study. All the alignment data were combined according to 19 
RFI, and the SNPs in the same group were identified. 270,410 SNPs were found in the high 20 
RFI group, and 255,120 SNPs were found in the low RFI group. Most SNPs were detected in 21 
the intronic region, followed by the intergenic region, and the exon region accounts for 22 
1.11% and 1.38% in the high and low RFI groups, respectively. Prediction of high-impact 23 
SNPs and annotation of the genes in which they are located yielded 83 and 97 genes in the 24 
high-RFI and low-RFI groups, respectively. GO enrichment analysis of these genes revealed 25 
multiple NADH/NADPH-related pathways, with ND4, ND5, and ND6 significantly enriched 26 
as core subunits of NADH dehydrogenase (complex I), and is closely related to mitochondrial 27 
function. KEGG enrichment analysis of ND4, ND5, and ND6 genes was enriched in the 28 
thermogenic pathway. Multiple genes, such as ATP1A2, SLC9A4, and PLA2G5, were 29 
reported to be associated with RFI energy metabolism in the concurrent enrichment analysis. 30 
Protein-protein interaction analysis identified multiple potential candidate genes related to 31 
energy metabolism that were hypothesized to be potentially associated with the RFI 32 
phenotype. The results of this study will help to increase our understanding of identifying 33 
SNPs with significant genetic effects and their potential biological functions.  34 
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 38 
1. Introduction 39 



Feed cost encompasses more than 70% of the total input cost in cattle production, 40 
making feed utilization a crucial metric for evaluating production expenditures (Patience et 41 
al. 2015). Efficient feed utilization can reduce herd maintenance costs by 9-10%, lower feed 42 
intake by 10-12%, and mitigate methane emissions by 15-20% (Moore et al. 2009). 43 
Consequently, optimizing feed utilization and minimizing production costs are essential for 44 
livestock development. Residual feed intake represents the disparity between the average 45 
daily feed intake (ADFI) and the average expected feed intake (AEFI) required to maintain 46 
production levels(Koch et al. 1963). RFI enables a precise assessment of feed utilization 47 
efficiency in livestock, distinctly isolating the impact of animal growth traits and 48 
rates(Richardson & Herd 2004). 49 

Moreover, RFI has emerged as a potential candidate for genetic improvement owing to 50 
its moderate heritability (0.28-0.58) (Moore et al. 2009) and its significant genetic variability 51 
within and between species(Archer & Bergh 2000; Herd & Bishop 2000) . In our previous 52 
research, we found that RFI is related to multiple factors, including gut microbiota(Zhou et 53 
al. 2023), circRNA-miRNA interaction(Zhao et al. 2023), and expressed genes at the 54 
transcriptional level (Yang et al. 2023; Yang et al. 2021; Yang et al. 2022). These 55 
explorations provide significant support for a comprehensive analysis of the RFI phenotype 56 
and show that the factors influencing the RFI phenotype of cattle are numerous and complex. 57 

The hypothalamus and duodenum are critical organs in animal feed intake, energy 58 
metabolism, and digestion. Previous studies have highlighted the role of the hypothalamic 59 
arcuate nucleus in appetite regulation, wherein neuropeptide Y (NPY) and agouti-related 60 
peptide (AGRP) promote animal feeding. In contrast, α-MSH (α-Melanocyte-stimulating 61 
hormone), an anorexigenic neuropeptide, induces satiety (Perkins et al. 2014). The 62 
duodenum, a significant organ involved in nutrient absorption, facilitates various metabolic 63 
functions such as glucose, fat, vitamin B, calcium, zinc, and iron (Anand et al. 2021; Cooke 64 
& Clark 1976; Reeves & Chaney 2004). The interplay between the central nervous and 65 
digestive systems is evident in the Microbiota-gut-brain axis (MGBA). The nervous system 66 
influences gut function through neurotransmitters and gut hormones, and gut microbes play a 67 
crucial role in host carbohydrate, amino acid, lipid metabolism, and other nutrient metabolic 68 
processes (Genomes Project et al. 2015; Olivier 2003). Thus, the close association of the 69 
hypothalamus and duodenum with feeding efficiency underscores their significance as focal 70 
points in studies investigating RFI in beef cattle. 71 

Single nucleotide polymorphism (SNP) is a form of genetic variation that occurs at the 72 
genomic level, resulting from a single nucleotide variant in the DNA sequence. These 73 
variants can potentially impact gene expression and function, consequently influencing 74 
individual phenotypes and disease susceptibilities (Kim & Misra 2007). Due to the low cost 75 
of RNA-seq data and high availability in various databases, explore coding region variants 76 
from RNA-Seq data widely studied for their potential contribution to phenotype (Karczewski 77 
et al. 2020). transcriptome data offer gene expression levels that can be utilized to investigate 78 
cis-regulation based on the expression of genes with SNP sites (Jehl et al. 2021). Therefore, 79 
multiple studies have shown that exploring SNPs in RNA-Seq data is a very cost-effective 80 
method. A wealth of research has been dedicated to extracting single nucleotide 81 
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polymorphisms from transcriptomic data, yielding significant advancements across various 82 
fields. For instance, transcriptome sequencing of cow's milk has facilitated the discovery of 83 
SNPs, providing a robust foundation for marker-trait association studies (Canovas et al. 84 
2010). In aquaculture, RNA-seq analysis has been pivotal in identifying SNPs potentially 85 
linked to the immune response and the growth performance of Penaeus vannamei (Santos et 86 
al. 2018). In crop science, the development of genome-wide SNP markers for barley has been 87 
achieved through reference-based RNA-Seq analysis (Tanaka et al. 2019). Additionally, in 88 
animal husbandry, RNA-Seq SNP data has been instrumental in revealing potential causal 89 
mutations that are relevant to pig production traits and shedding light on the intricacies of 90 
RNA editing (Martinez-Montes et al. 2017). 91 

This study characterized the SNPs from the hypothalamus and duodenum tissues of the 92 
same cattle with high and low residual feed intake based on RNA-seq data. The objective was 93 
to identify SNPs related to beef RFI and conduct subsequent bioinformatics analysis to detect 94 
the functional SNPs/genes associated with feed utilization performance in beef cattle and 95 
expand our understanding of the role of genetic variants in RFI phenotypes from expressed 96 
regions of the genome. 97 

 98 
2. Materials and Methods 99 
1.1 Experimental animals and data collection 100 

Based on our previous study (Yang et al. 2021), 30 Qinchuan bulls with similar age 101 
(15±1 mouths) and weight (280.6 ± 30.9 kg) were selected from a farm in Ningxia, China. 102 
The study subjects were given a standardized feeding regimen throughout the experimental 103 
period, and free access to water and food was ensured. Body weight measurements were 104 
taken monthly throughout the 81-day experimental period, then daily feed intake, average 105 
daily gain (ADG), and the midpoint metabolic body weight (MMBW0.75) was calculated 106 
based on feed intake (FI) (Yang et al. 2021). 107 

 108 
1.2 RNA extraction and sequencing 109 

Based on the results of the RFI calculation, five individuals with extremely low RFI 110 
(LRFI, high efficiency) and high RFI (HRFI, low efficiency) phenotypes were selected for 111 
slaughter after a 16-hour fasting period. All experimental procedures involving animals were 112 
conducted by the Guidelines for Ethical Review of Laboratory Animal Welfare of Ningxia 113 
University (NXUC20211015). The hypothalamus (including the arcuate strong nucleus, 114 
parabrachial nucleus, supraoptic nucleus, dorsal/ventral medial nucleus, and other brain 115 
tissues) and the descending duodenum (mucosa, submucosa, and external muscular propria) 116 
were collected post-slaughter. Twenty tissue samples were washed with PBS, cut into blocks, 117 
and placed into sterile, enzyme-free freezing tubes for storage in liquid nitrogen. Total RNA 118 
was extracted from 500 mg of tissue samples using TRIzol method (TaKaRa Bio, China), 119 
following the manufacturer's instructions. The quality and integrity of the extracted RNA 120 
were assessed using 1% agarose gel electrophoresis, Nanodrop, and Agilent 2100 to ensure a 121 
sample concentration of ≥ 500 ng/µL, 28S:18S > 1.0, and RIN ≥ 7. Library construction 122 
was performed, and the library's initial quantification was carried out using Qubit 2.0. The 123 
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library with an insert size was verified using an Agilent 2100, and the effective concentration 124 
of the library (effective concentration > 2 nM) was accurately determined using qRT-PCR. 125 
Finally, pair-end sequencing data (raw data) with 150bp read length were generated using the 126 
Illumina HiSeq 4000 platform. High RFI sequencing data of hypothalamus and duodenum 127 
were named Q_H1~Q_H5 and S_H1~S_H5, respectively, while low RFI sequencing data 128 
were named Q_L1~Q_L5 and S_L1~S_L5, respectively. 129 

 130 
1.3 Quality control, mapping and transcript assembly 131 

The statistical power of this experimental design, calculated in RNASeqPower 132 
(https://bioconductor.org/packages/release/bioc/html/RNASeqPower.html) is 0.86. The 133 
quality of raw data was assessed using the fastQC software (version 0.11.9). Subsequently, 134 
the Trimmomatic software (version 0.39) was used to perform quality control on the data. 135 
This included removing adapter sequences, trimming bases with Phred scores below 30 at the 136 
beginning and end of reads, applying a sliding window approach with a window size of 5bp 137 
to remove bases with an average Phred score below 20, and discarding reads shorter than 138 
75bp. The cleaned data were then reevaluated using the fastQC software to ensure they met 139 
the requirements for subsequent analysis. The clean data were aligned to the bovine reference 140 
genome (ARS-UCD1.2, INSDC Assembly) using the STAR software (version 2.7.3a) with 141 
the following parameters: --outSAMtype BAM Unsorted SortedByCoordinate, - 142 
outFilterMismatchNmax 999, --outFilterMismatchNoverReadLmax 0.04, -- 143 
outFilterMultimapNmax 1. The resulting alignment files were further processed using the 144 
AddOrReplaceReadGroups tool of the PICARD software (version 2.27.4). This added the 145 
sample ReadGroups (RG) information to each alignment file. Additionally, the 146 
MarkDuplicates tool was applied to remove duplicate amplifications resulting from the PCR 147 
process during library construction. 148 

 149 
1.4 Merging of sample data 150 

For increasing the number of reads per variant locus, enhancing the depth coverage of 151 
reads across the entire transcriptome, as well as the depth coverage and quality of variant 152 
calls (Lam et al. 2020), in this study, the data from hypothalamic and duodenal tissues were 153 
merged into two BAM files based on phenotype (high RFI group and low RFI group). This 154 
merging process, performed using the "merge" command of the samtools software (version 155 
1.16.1), aimed to balance sequencing depth between samples and minimize the impact on 156 
SNP analysis results. Both the high RFI and low RFI groups in the subsequent analysis 157 
referred to the combined group data (Figure 1). 158 

 159 
1.5 SNPs recognition, filtering and annotation 160 

BCFtools (version 1.16) was utilized to execute the variant calling on the combined data 161 
of the high RFI group and low RFI group respectively, enabling identification of SNP sites 162 
and generating BCF files containing variant information. The "norm" parameter of BCFtools 163 
was then employed to normalize the variant information, thereby eliminating ambiguity 164 
caused by varying methods. Subsequently, the low-quality SNPs data underwent further 165 



filtering to reduce the likelihood of false positives and alleviate computational resource 166 
requirements for subsequent analysis. The software BCFtools and VCFtools (version 0.1.16) 167 
were employed for variant filtering, employing the following criteria: (1) Removal of SNPs 168 
within a 5 bp range near indels; (2) Setting a minimum coverage (DP) of 10; (3) Enforcing a 169 
minimum allele frequency not less than 0.2 and a secondary allele depth not less than 2; (4) 170 
Filtering loci with quality scores below 30. Finally, the functional annotation of SNPs was 171 
performed using the snpEff (version 5.1d) software with the built-in ARS-UCD1.2.105 172 
database. The thresholds of above software are referenced from previous study(Lam et al. 173 
2020). 174 

 175 
1.6 Identifying and annotating high and low RFI group-specific SNPs 176 

Using the snpEff software, the VCF files underwent annotation, allowing for the 177 
identification of SNPs specific to the high and low RFI groups. SnpSift (version 5.1d) 178 
software was then employed to screen for SNP loci with significant functional and modifier- 179 
type impacts. This enabled the selection of candidate genes associated with these SNP loci. 180 

 181 
1.7 Gene function enrichment analysis and protein interaction network analysis 182 

We employ clusterProfiler to conduct GO (Gene Ontology) and KEGG (Kyoto 183 
Encyclopedia of Genes and Genomes) enrichment analysis. The filter parameter is set as 184 
pvalue < 0.05. The GO enrichment can further clarify the main biological functions of the 185 
genes where the specific SNPs are located. The KEGG pathway enrichment can be used to 186 
understand the signal pathway regulated by the genes. Using the string database 187 
(https://cn.string-db.org/), we perform protein interaction analysis on the relevant genes to 188 
select core genes that have interaction effects. 189 

 190 
1.8 Statistical analysis 191 

The data from the experiment were analyzed and visualized using R (version 4.3.0) and 192 
Prism (version 10.1.1) software. Statistical significance between the treatment and control 193 
groups was assessed using non-parametric tests or t-tests. A p-value of less than 0.05 was 194 
considered indicative of a significant difference. 195 

 196 
3. Results 197 
3.1 RNA-seq sequencing data quality and comparisons 198 

From the RNA-seq data of the hypothalamus and duodenum, we obtained a total of 1019 199 
million and 275 million paired sequencing reads, respectively. After quality control, all 20 200 
samples in this study had a Q30 score (error rate p < 0.001) above 96%. The GC% content 201 
was approximately 50% (Table S1). The clean data was aligned to the bovine reference 202 
genome, where the percentage of reads aligning to the reference genome was above 91%, and 203 
the percentage of reads with a unique alignment position ranged from 81.07% to 93.81% 204 
(Table S2). Analysis of the transcript expression for each sample indicated relatively 205 
consistent transcript abundances (Figure 2). These results demonstrate the high quality of the 206 
obtained data, reducing the impact of sequencing errors on subsequent analysis. 207 



 208 
3.2 SNPs screening and analysis 209 

Based on the results of mapping 20 samples to the bovine reference genome, SNPs in 210 
the high and low RFI groups were identified using a method that combines RFI phenotype 211 
and RNA-seq data from hypothalamic and duodenal tissues. The numbers of homozygous 212 
and heterozygous mutations in the combined samples were counted (Table 1), revealing that 213 
there were 270,410 and 255,120 specific SNPs in the high and low RFI groups, respectively. 214 
Among these SNPs, 11,991 (4.43%) and 14,007 (5.49%) were homozygous mutations, with 215 
heterozygous mutations far outnumbering homozygous mutations. Statistical analysis based 216 
on the different types of mutations in the SNPs (Figure 3) showed that the total number of 217 
transition types (A-G, C-T) was higher than the total number of transversion types (A-T, C- 218 
G, A-C, G-T). Among the six types of single nucleotide variations, A-G and C-T had the 219 
highest occurrence rates, while the occurrence rates of the other four types of transitions were 220 
relatively lower. In the high RFI group, A-G accounted for 36.5% and C-T accounted for 221 
35.4%. In the low RFI group, A-G accounted for 35.7% and C-T accounted for 35.8%. The 222 
Ts/Tv ratios in the high and low RFI groups were 2.55 and 2.50, respectively. The differences 223 
in occurrence rates of the six types of single nucleotide variations between the high and low 224 
RFI groups were small, with a mean occurrence rate of transitions being 71.72% and 225 
transversions being 28.29%. 226 

 227 
3.3 Distribution statistics of SNPs 228 

The study investigated the distribution and variation of SNPs across different 229 
chromosomes, providing insights into the genetic diversity among genes. Analysis of the 230 
combined high and low RFI groups revealed no significant difference (p > 0.05) in 231 
distribution between the two groups. Chromosome 1 exhibited the highest number of SNPs, 232 
while the mitochondria (MT) showed the lowest distribution (Figure 4A). To account for 233 
differences in chromosome length, the ratio of SNPs number to chromosome length was 234 
calculated, revealing that the MT had the highest variant rate among both groups, indicating a 235 
higher density of SNPs per unit length (Figure 4B). The chromosomal distribution of SNPs 236 
within the high and low RFI groups is delineated in figure 4C and figure 4D.  237 

Comprehensive statistical analysis of SNP loci distribution across the genome was 238 
conducted for both high and low RFI datasets, emphasizing different genomic functional 239 
regions, such as downstream, exon, intergenic, intron, un-translation region, etc. (Table 2). 240 
The statistical analysis of the SNP locations in the genome for the high RFI and low RFI 241 
groups shows ten different distributions (DOWNSTREAM, EXON, INTERGENIC, 242 
INTRON, SPLICE_SITE_ACCEPTOR, SPLICE_SITE_DONOR, SPLICE_REGION, 243 
UPSTREAM, UTR_3_PRIME, UTR_5_PRIME) (Table 2). A single SNP may be located in 244 
multiple transcript regions. The analysis found that the INTRON region had the most SNP 245 
locations in both groups, with 429,995 areas annotated in the HRFI group and 435,881 areas 246 
in the LRFI group, significantly more than other functional regions. The next most abundant 247 
functional elements are INTERGENIC and DOWNSTREAM, while the remaining functional 248 
regions are less common. SPLICE_SITE_ACCEPTOR has the fewest functional regions, 249 



with 37 in the high RFI group and 73 in the low RFI group. We hope to find most of the 250 
SNPs in the exonic regions, but coding regions generally experience higher selective pressure 251 
compared to non-coding regions(Zhao et al. 2003). The annotation of SNPs in the high and 252 
low RFI groups accounts for 1.11% and 1.38% in the exonic regions, respectively. At the 253 
same time, this also explains our detection results: the higher distribution of SNPs in intron 254 
regions is partly due to the fact that unspliced transcripts are also detected during sequencing, 255 
and partly because intron regions constitute 47.51% of the whole genome, which is 256 
significantly higher than the length of exonic regions (Figure 4E). SNPs located in intergenic 257 
regions may be found in new genes or gene portions that have not been annotated yet.  258 
 259 
3.4 Influence prediction and amino acid change 260 

To understand the potential effects of SNPs mutations on codons, the genetic effects of 261 
SNPs mutations were evaluated, the results indicated that over 98% of the SNPs in both 262 
groups were classified as modifiers, having minimal effect on genes and proteins. However, 263 
159 SNPs in the high RFI group and 293 SNPs in the low RFI group were predicted to have a 264 
high effect (Figure 5A, 5B; Table S3, S4), warranting further investigation. This situation is 265 
as we expected, most SNPs are located in intron regions and intergenic areas, making it 266 
difficult to directly affect protein coding. Therefore, high-impact SNPs will be relatively 267 
fewer. To analyze the potential impact of SNPs on genes and proteins, the effect of 268 
intergroup-specific SNPs (Table S5, S6) on codons and subsequent amino acids was assessed. 269 
The analysis revealed that the amino acids most affected in both the high and low RFI groups 270 
were alanine-threonine, alanine-valine, and isoleucine-valine (Figure 5C, 5D). By identifying 271 
SNP loci that significantly impacted both the high and low RFI groups and mapping them to 272 
the corresponding genes using the SNPs annotation files, a total of 83 genes were identified 273 
in the high RFI group and 97 genes in the low RFI group. Interestingly, one gene, JSP.1, 274 
belonging to the MHC class I family, was common in both groups, and played a key role in 275 
regulating animal health within the immune system (Hewitt 2003). 276 
 277 
3.5 Genes function annotation of high-impact SNP loci 278 

GO functional annotation and enrichment analysis were conducted for the 279 
aforementioned genes (Figure 6A, 6B). The results revealed that the enriched genes in the 280 
high and low RFI groups were primarily associated with protein binding and enzyme binding 281 
processes. Notably, a significant number of genes related to NADH activity were found in the 282 
low RFI (high feed efficiency) group. These genes were associated with oxidoreductase 283 
activity, acting on NADH or NADPH; NADH dehydrogenase activity; NADH 284 
dehydrogenase (ubiquinone) activity; NADH dehydrogenase (quinone) activity; and 285 
oxidoreductase activity, acting on NADH or NADPH, quinone, or similar compounds as 286 
acceptors. NADH and its phosphorylation product NADPH play pivotal roles as coenzymes 287 
in various metabolic activities, including cell signaling, protein modification, energy 288 
metabolism, mitochondrial function, calcium homeostasis, antioxidative stress, biosynthesis, 289 
and cell death (Berger et al. 2004; Patterson et al. 2005; Xiao et al. 2018; Ying 2006; Ying 290 
2007; Ying 2008). Particularly, the enrichment genes ND4, ND5, and ND6 are core subunits 291 
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of the mitochondrial respiratory chain NADH dehydrogenase (complex I). They facilitate the 292 
transfer of electrons from NADH through the respiratory chain, utilizing ubiquinone as an 293 
electron acceptor, and are crucial for the catalysis and assembly of complex I (UniProt 2023).  294 

The KEGG enrichment analysis outcomes indicated enrichment of pathways related to 295 
thyroid hormone synthesis, pancreatic secretion, gastric acid secretion, cAMP signaling 296 
pathway, thermogenesis, parathyroid hormone synthesis and secretion, glycerolipid 297 
metabolism, TNF signaling pathway and beta-alanine metabolism in the high and low RFI 298 
groups (Figure 6C, 6D). Notably, the thermogenesis pathway exhibited enrichment of ND4, 299 
ND5, and ND6 genes. Additionally, ATP1A2, SLC9A4, and PLA2G5 were identified as 300 
genes associated with energy metabolism (Lingrel 1992; Sakuta et al. 2020; Sun et al. 2004).  301 

 302 
3.6 Protein-protein interaction analysis of high-impact SNP loci 303 

Protein-protein interaction analysis is a method used to study the interactions between 304 
proteins, which can be employed to uncover the relationships and networks among proteins, 305 
consequently explaining functional interactions and illustrating the intricate interconnections 306 
between proteins. Our results revealed distinct patterns of core genes and interaction 307 
relationships between the two groups. In the high RFI group, we identified 29 core genes and 308 
23 interaction relationships, while in the low RFI group, we found 42 core genes and 41 309 
interaction relationships (Figure 7). Several genes, such as HSP90AA1, EIF2AK3, PAK1, 310 
MAP3K7, PGM2L1, DNM1L and CYB5R3, were found to be related to energy metabolism, 311 
fat deposition and muscle development (Badri et al. 2018; Charoensook et al. 2012; Chen et 312 
al. 2019; Chiang & Jin 2014; Hogarth et al. 2018; Liu et al. 2024; Lopez-Bellon et al. 2022; 313 
Zhang et al. 2017). 314 

 315 
3.7 Analysis of candidate gene SNP loci 316 

Based on the results of GO and KEGG analysis, we focused on phenotype-related terms. 317 
In the high RFI group we screened GO terms: positive regulation of metabolic process and 318 
multicellular organismal development; KEGG terms: thyroid hormone synthesis, gastric acid 319 
secretion, cAMP signaling pathway, pancreas signaling pathway. In the low RFI group we 320 
screened GO terms: oxidoreductase activity, acting on NADH or NADPH; KEGG terms: 321 
thermogenesis, metabolic pathways, TNF signaling pathway. Finally, 18 genes were 322 
identified in the high RFI group and 21 genes in the LRFI group (Table S3, S4, S7). Also 323 
combining protein interaction analysis and existing studies, we finally focused on 14 genes. 324 
In these genes, we combined the prediction results of SNP impact, showing high-impact SNP 325 
sites in the genes. We found that these SNPs are mostly located in the exon regions, and most 326 
are A-G mutation types. This type of mutation might change the coded amino acids, and 327 
affect the structure and function of the protein (Table 3). However, their specific function and 328 
roles would be detected in the future studies for clarifying their variant effect to phenotype. 329 

 330 
4. Discussion 331 

Improving animal feed utilization and reducing production costs have always been the 332 
primary focus of livestock production, as efficient feed utilization is crucial for the growth 333 



and development of animals. In addition to the development of high-quality feeds through 334 
breeding selection, exploring the genetic factors that affect feed efficiency in beef cattle is an 335 
important research direction for breeders. The hypothalamus serves as a central control center 336 
for feeding regulation, where it interacts with groups of neurons to produce signals that 337 
stimulate or suppress appetite, ultimately influencing food intake (Perkins et al. 2014; Sartin 338 
et al. 2011). Meanwhile, the duodenum, as the initial segment of the small intestine, plays a 339 
vital role in the digestion and absorption of nutrients, specifically carbohydrates and 340 
micronutrients(Cooke & Clark 1976; Reeves & Chaney 2004). The brain-gut axis, composed 341 
of the central nervous system, enteric nervous system, and autonomic nervous system, 342 
facilitates the complex communication between the gut and the brain through neurohumoral 343 
pathways (Margolis et al. 2021). Axes such as the hypothalamic-pituitary-adrenal (HPA) 344 
axis, which is part of the brain-gut axis, have been identified as important factors contributing 345 
to the variability of residual feed intake (DiGiacomo et al. 2018). 346 

RNA-Seq, as a second-generation transcriptome sequencing method, provides a diverse 347 
range of research approaches for high-throughput functional genomics, including gene 348 
expression profiling (Song et al. 2019), genome annotation (Li et al. 2011), non-coding RNA 349 
discovery (Jiang et al. 2022), and gene mutation analysis (Lopez-Maestre et al. 2016). These 350 
methods collectively unravel the intricate complexities of organisms. Residual feed intake, a 351 
quantitative trait, is influenced by multiple genes and shaped by various physiological 352 
metabolic processes (Arthur et al. 2001). Previous studies have successfully identified genes 353 
associated with feed utilization efficiency through SNP screening. For instance, Marc et al. 354 
demonstrated a strong association between the variant rs43555985 and RFI (P=8.28E-06) 355 
(Higgins et al. 2018). Bolormaa et al. identified 111 and 75 significantly associated SNPs 356 
with RFI (p < 0.001) using the 10K and 50K SNP microarray data, respectively(Bolormaa et 357 
al. 2011). Lima et al. employed comprehensive GWA, AWM, and RNA-Seq analyses to 358 
identify the PRUNE2 gene as a potential candidate affecting feed efficiency (Lima et al. 359 
2016). Several tools have also been developed for SNP detection from RNA-seq data and for 360 
determining concordance of SNP and genotype detection between RNA-seq and DNA-seq 361 
(Dobin et al. 2013; Liu et al. 2022; Luo et al. 2019; Quinn et al. 2013; Tang et al. 2014; Van 362 
der Auwera et al. 2013). In our study, we collected hypothalamic and duodenal tissues from 363 
beef cattle with high and low RFI. By employing high-throughput transcriptome sequencing, 364 
we obtained data from 20 samples and merged the tissue data based on RFI groups for SNPs 365 
identification, aiming to enhance the accuracy of SNP functional annotation. 366 

SNPs are DNA sequence polymorphisms caused by single nucleotide variants. In this 367 
study, the obtained SNPs data from 20 samples showed that there were 270,410 specific 368 
SNPs in the high RFI group and 255,120 specific SNPs in the low RFI group. Among them, 369 
the high RFI group had 11,991 pure homozygous SNPs, while the low RFI group had 14,007 370 
SNPs. More than 70% of SNPs in both groups were located in the intron region, followed by 371 
the intergenic region, due to unspliced transcripts (premature transcripts) and unannotated 372 
regions (Jehl et al. 2021). Only 1.11% and 1.38% of SNPs in high and low RFI groups were 373 
located in the intron region. This distribution is expected since intron regions are generally 374 
subject to greater selection pressure than non-coding regions (Zhao et al. 2003). Additionally, 375 



the analysis of transition and transversion types revealed a transition-to-transversion ratio 376 
(Ts/Tv) of 2.55 in the high RFI group and 2.50 in the low RFI group, consistent with previous 377 
studies reporting a higher frequency of transition mutations compared to transversions 378 
(Nandanpawar et al. 2023; Raizada & Souframanien 2019; van Deventer et al. 2020). The 379 
relatively consistent Ts/Tv values further confirm the accuracy of SNP identification in this 380 
study (Arabnejad et al. 2018). Based on SNPs annotations, functionally significant SNPs 381 
specific to the high and low RFI groups were selected using SnpEff software, and the 382 
respective genes harboring these SNPs were identified. A total of 83 genes were found in the 383 
high RFI group, while 97 genes were identified in the low RFI group. The corresponding 384 
code scripts can be found in Script S1. 385 

GO and KEGG pathway enrichment analyses were performed separately for the two 386 
gene sets. At the molecular function level, the enriched GO terms in both groups were 387 
primarily associated with protein binding and enzyme binding. Additionally, in the low RFI 388 
group, specific enrichment was observed for terms related to NADH, such as oxidoreductase 389 
activity acting on NADH or NADPH, NADH dehydrogenase activity, NADH dehydrogenase 390 
(ubiquinone) activity, NADH dehydrogenase (quinone) activity, and oxidoreductase activity 391 
acting on NADH or NADPH, quinone or similar compound as acceptor. NADH 392 
dehydrogenase, also known as NADH: ubiquinone oxidoreductase or complex I, is the first 393 
enzyme involved in mitochondrial oxidative phosphorylation and is often referred to as the 394 
"entry enzyme". It catalyzes the transfer of electrons from NADH to coenzyme Q and plays a 395 
key role in energy metabolism within the mitochondrial inner membrane (Nakamaru-Ogiso et 396 
al. 2010). Genes ND4, ND5, and ND6 in the related pathway are core subunits of 397 
mitochondrial respiratory chain NADH dehydrogenase (complex I) and are critical for its 398 
catalytic activity and assembly (UniProt 2023). At the same time, previous genomic analyses 399 
have suggested that the ND (2,3,4,4L,5,6) gene cluster may be the major effect genes causing 400 
changes in feed efficiency (Yang et al. 2023). Mitochondria generate approximately 90% of 401 
cellular energy and are abundant in metabolically active cells, such as liver, kidney, muscle, 402 
and brain cells. Studies in poultry and livestock have shown a close relationship between feed 403 
efficiency and mitochondrial function and biochemistry. Research indicated that animals with 404 
low RFI exhibit increased rates of mitochondrial respiration (Kolath et al. 2006), enhanced 405 
coupling of the electron transport chain (Bottje & Carstens 2009), higher activity of 406 
respiratory chain complexes I-V (Iqbal et al. 2005), and lower heat production per kilogram 407 
of metabolic body weight (MBW) (Nkrumah et al. 2006). Moreover, the electron transport 408 
chain is also recognized as the site of reactive oxygen species (ROS) production, and elevated 409 
ROS levels pose a significant threat to the antioxidant defense system by increasing the 410 
susceptibility of various cellular components to oxidative damage (Nolfi-Donegan et al. 411 
2020). Animals with higher feed efficiency tend to exhibit lower oxidative stress phenomena 412 
(Bottje & Carstens 2009; Iqbal et al. 2005; Iqbal et al. 2004). KEGG pathway enrichment 413 
analysis also identified several pathways associated with energy metabolism. In the high RFI 414 
group, pathways such as thyroid hormone synthesis, pancreatic secretion, gastric acid 415 
secretion, and cAMP signaling pathway were enriched. The enriched pathways in the low 416 
RFI group included thermogenesis, parathyroid hormone synthesis, secretion and action, 417 
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pancreatic secretion, triglyceride metabolism, and alanine metabolism. One of the enriched 418 
genes, ATP1A2, plays a role in ATP hydrolysis and facilitates the exchange of sodium and 419 
potassium ions across the plasma membrane, creating a sodium-potassium ion 420 
electrochemical gradient for the active transport of various nutrients (Lingrel 1992). 421 
Additionally, SLC9A4 has been found to act as a sodium ion sensor, regulating water intake 422 
behavior (Sakuta et al. 2020). PLA2G5 is speculated to play a role in the biosynthesis of N- 423 
acyl ethanolamines, which are involved in the regulation of energy metabolism (Sun et al. 424 
2004). Through protein-protein interaction analysis, we have discovered that genes such as 425 
HSP90AA1, EIF2AK3, PAK1, SMAD4, MAP3K7, PGM2L1, DNM1L, and CYB5R3 were 426 
found to be related to metabolism, which might be related to cattle RFI variants. For example, 427 
genetic variations in HSP90AA1 have been linked to thermoregulatory traits in cattle (Badri 428 
et al. 2018; Charoensook et al. 2012). Activation of EIF2AK3 has been shown to promote 429 
metabolic dysfunctions (Chen et al. 2019). PAK1 has been implicated in the regulation of 430 
glucose uptake (Chiang & Jin 2014). SMAD4 has been associated with aerobic glycolysis and 431 
obesity (Li et al. 2020). MAP3K7 can induce adipocyte differentiation through PPAR𝛾 432 
signaling (Zhang et al. 2017). PGM2L1 has been suggested to be related to meat quality and 433 
muscle development in sheep (Liu et al. 2024). Variations in DNM1L can lead to 434 
mitochondrial fragmentation, decreased membrane potential, reduced oxidative capacity, and 435 
increased levels of reactive oxygen species (ROS) (Hogarth et al. 2018). CYB5R3 acts in 436 
synergy with coenzyme Q, participating in the cross-membrane redox system to protect cells 437 
against oxidative stress (Lopez-Bellon et al. 2022). These genes will serve as target genes in 438 
subsequent cellular and molecular experiments to validate their associations with the RFI 439 
trait. 440 

RFI, a key economic trait in feed efficiency research, requires a deep understanding of 441 
the genetic mechanisms associated with SNP loci and their impact on RFI regulation in beef 442 
cattle. This knowledge is vital for analyzing RFI variation in livestock and improving feed 443 
conversion efficiency for sustainable and cost-effective animal husbandry. Additionally, 444 
enhancing feed utilization efficiency can reduce methane emissions, improve animal health 445 
and production performance, and serve as a foundation for selecting and breeding feed- 446 
efficient beef cattle. 447 

Although we have obtained a large number of SNPs that are meaningful and may have 448 
critical genetic effects. However, given many drawbacks of RNA-Seq, such as the uneven 449 
depth distribution of reads across the genome from RNA-Seq data (Jehl et al. 2021), the large 450 
variation in RNA expression levels in different tissues, cells, and physiological stages (Sims 451 
et al. 2014), and the fact that the variants detected at the RNA level may not exist at the DAN 452 
level (Jehl et al. 2021), and the fact that the SNPs detection near exon-exon junctions still 453 
needs to remain cautious (Lagarrigue et al. 2013; Peng et al. 2012). SNPs analysis from 454 
RNA-seq data should also continuously improve its identification efficiency, or combine with 455 
other methods such as sanger sequencing, flight mass spectrometry, fluorescent probes and so 456 
on to improve the recognition rate and accuracy of valid SNPs, so as to effectively improve 457 
the efficiency of the identification of SNPs in the coding region, to increase the reliability of 458 
the data results, and to reduce false positives. 459 
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 460 
5. Conclusions 461 

Due to its low cost and effective detection, RNA-Seq data has become a reliable 462 
resource for polymorphism detection in non-model animals. In this study, RFI-related SNPs 463 
and their annotated genes were obtained by integrating multiple tissue RNA-seq data from 464 
extreme RFI individuals to improve SNP identification. Variants calling based on RNA-seq 465 
data can effectively improve the identification of phenotype-related SNPs, which is an 466 
efficient and feasible approach to get potential functional SNPs. By mining SNPs with high 467 
impact on genes, this genes and SNPs related to RFI would be helpful and valuable for 468 
molecular validation in subsequent studies. 469 
 470 
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