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ABSTRACT
Accurate predicting the yield and quality of medicinal materials before harvest can ef-
fectively guide post-harvest process, including processing and storage, thereby ensuring
the final quality of medicinal materials. Currently, traditional experimental methods
for yield and quality estimation are inadequate to offer reliable guidance for harvesting
and processing of medicinal plan. Uncrewed aerial vehicle (UAV) multispectral can
quickly and accurately estimate the yield and quality of field crops. Based on the UAV
multispectral data of Ligusticum chuanxiong Hort. obtained about half a month before
and near harvest, this study predicted the rhizome yield and the content of active
components such as ferulic acid, Z-ligustilide and senkyunolide A. Additionally, the
quality discriminant models of chuanxiong rhizoma were constructed according to
the ferulic acid content index stipulated in Pharmacopoeia of the People’s Republic
of China (2020). The results performed on the independent validation set show that
the best prediction effects of fresh weight and dry weight of rhizome were NRMSE
= 23.76%, MAPE = 14.75% and NRMSE = 34.65%, MAPE = 21.73%, respectively.
And the best predictive effects of ferulic acid, Z-ligustilide and senkyunolide A were as
follows: NRMSE = 13.35%, MAPE = 10.25%; NRMSE = 34.35%, MAPE = 23.40%;
and NRMSE = 45.26%, MAPE = 25.48%. Furthermore, the quality discriminant
models XGBoost and AdaBoost had effective performances (Accuracy = 0.7083, AUC
= 0.7214). These results suggest that UAVmultispectral can be effectively employed to
predict both yield and quality before harvest, thereby guiding the harvest and processing
of L. chuanxiong.

Subjects Agricultural Science, Plant Science, Spatial and Geographic Information Science
Keywords UAVMultispectral, Ligusticum chuanxiong Hort., Yield, Quality, Active component

INTRODUCTION
Cultivation of medicinal plants in China has a long history and is still thriving (Song et al.,
2024). In 2020, the total planting area of Chinese medicinal plants is about 55, 596 km2

(Wang et al., 2022). By 2025, there will be about 1,667 km2 cultivation bases of Chinese
medicinal plants in China (Wang et al., 2023a). The quality and economic value of Chinese
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medicinal materials are directly related, and the quality of Chinese medicinal materials
is not only affected by cultivation methods and collection time, but also by processing,
transportation and storage processes in the production area (Yang et al., 2024). Therefore,
it is necessary to prepare the human and material resources according to the yield and
quality ofmedicine plants to complete those processes timely and efficiently formaximizing
the utilization of Chinese medicine resources. How to quickly and accurately estimate the
yield and quality of Chinese medicine materials before harvesting medicinal plants is an
important issue in the current Chinese medicine planting and production industry.

Uncrewed aerial vehicles (UAVs), a low-altitude independent sensing technology, have
become one of the most popular tools in precision agriculture production management
applications due to its flexible and convenient operation and quick access to crop-related
data in specific regions (Alckmin et al., 2022). The growth of multiple crops can be
monitored by high-throughput phenotypic data collected by UAV (Karunathilake et
al., 2023), such as corn (Shahhosseini et al., 2019), wheat (Upreti et al., 2019; Wang et al.,
2021), rice (Cen et al., 2019), sugarcane (Shendryk et al., 2020), soybean (Maimaitijiang
et al., 2017), potato (Jasim et al., 2020), sweet potato (Tedesco et al., 2021) and other
crops. The multispectral sensor can obtain the spectral reflectance data of more than two
bands on the crop surface without contact, and can calculate the Normalized Difference
Vegetation Index (NDVI) and other vegetation indexes (VIs) related to crop growth status
and biomass according to the data (Radočaj et al., 2023; Wang et al., 2023a). At present,
the machine learning algorithm model combined with VIs derived from multispectral
independent sensing images can accurately monitor crop growth, including biomass
and quality prediction (Zhang et al., 2022a; Zhang et al., 2022b). For example, the use
of UAV multispectral data can not only construct regression prediction models of table
beet root weight (Chancia et al., 2021) and cassava underground biomass (Selvaraj et al.,
2020), but also effectively evaluate the soluble solids content of grape (Lyu et al., 2023) and
industrial poppy thebaine alkaloid content (Iqbal, Lucieer & Barry, 2020). However, UAV
multispectral is mostly used for crop yield and quality prediction and rarely for medicinal
plants.

The Chinese medicinal material, chuanxiong rhizoma, is the dried rhizome of
L. chuanxiong, which is widely used in the treatment of cardiovascular and cerebrovascular
diseases (Chen et al., 2022; Li et al., 2022). The quality of chuanxiong rhizoma is affected
by the timely fresh processing and the storage conditions (Yu et al., 2021; Yan et al.,
2019). Predicting the yield and quality of L. chuanxiong before harvesting is important to
rationally manage the post-harvest handling process. In the previous study, our team used
UAV multispectral to construct models for detecting water and nutrient deficiencies of
L. chuanxiong (Li et al., 2023). Therefore, UAV multispectral can be a potential technical
platform for estimating the yield and quality of L. chuanxiong. The main purpose of this
study are divided into two points: (1) The regression model for predicting the yield of
L. chuanxiong, the content of three active components in chuanxiong rhizoma, and the
quality discriminant model of chuanxiong rhizoma based on FA content were obtained,
and the accuracy and fitting degree of the model were tested; (2) the obtained models
is used to predict the independent validation set in the same period and evaluate the
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universality of the models. It is expected to provide a feasible method for predicting the
yield and quality of L. chuanxiong before harvest.

MATERIALS & METHODS
Study area
The study areas, Shiyang Town in Dujiangyan City (30.85◦N, 103.66◦E) and Aoping Town
in Pengzhou City (31.10◦N, 104.00◦E), were in the Chengdu Plain (Fig. 1), which lies in
western China and has a subtropical humid monsoon climate. The altitude of Aoping
Town is about 581.7 m, the average annual temperature is 15.7 ◦C, and the average annual
rainfall is 924.7 m3, while the altitude of Shiyang Town is about 698.5 m, the average annual
temperature is 15.2 ◦C, and the average annual rainfall is 1,177.5 m3 (Yin et al., 2012). In
addition, Shiyang Town is the traditional genuine producing area of chuanxiong rhizoma,
while Aoping Town has the largest planting area and yield (Li et al., 2012; Li et al., 2024).

UAV image collection
The UAV platform was the DJI Phantom 4 Multispectral four-wing UAV (DJI, Shenzhen,
China), which was equipped with a multispectral lens (FC6360), including a color sensor
for visible light imaging and five monochromatic sensors for multispectral imaging (B:
450 ± 16 nm, G: 560 ± 16 nm, R: 650 ± 16 nm, RE: 730 ± 16 nm, NIR: 850 ± 26 nm),
the resolution power of each sensor was 2.08 million pixels. The top of the UAV has a
light intensity sensor that could be used for radiometric correction of later data. The flight
geographical coordinates were determined by real time kinematic (RTK) GPS system with
horizontal and vertical kinematic errors less than one cm and 1.5 cm respectively.

About half a month before the harvesting period (April 27, D1) and near the harvesting
period (May 8, D2) in 2023, respectively, the UAV images of L. chuanxiong fields in Shiyang
Town were obtained. In addition, the UAV images in Aoping Town was collected near the
harvesting period (May 3, D3). The images were all obtained from 11:00 to 14:00 on the
same day, there was no cloud cover to block the sun, and the low wind speed did not affect
the flight. During the flight, the recording angle to the ground was 90◦ and the flight speed
was 6 m/s. The flight altitude was 50 m, with a ground sampling distance (GSD) of 2.65 cm
pixel−1. Images were acquired with 85% forward overlap and 60% lateral overlap. Prior to
each flight, the image of two radiation calibration panels with reflectance values of 10%
and 90% were obtained at an altitude of 1.5 m.

Measurement of L. chuanxiong rhizome fresh weight and dry weight
L. chuanxiong was mined in Aoping Town (May 4, 2023) and Shiyang Town (May 8, 2023).
Each sample consisted of three rhizomes of L. chuanxiong in the center of a square sampling
area of one m2. A total of 125 samples from six different planting fields in Shiyang Town
were used as the training and test sets. In addition, a total of 24 samples were collected
from eight different planting fields of in Aoping Town as the independent validation set.
After harvesting, the above-ground parts, roots and impurities such as soil attached to the
rhizomes were removed and fresh weight (FW) was measured. After the rhizomes were
brought to the laboratory and dried at 105 ◦C for 30 min, then dried at 50 ◦C until the
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Figure 1 Location of the study area.
Full-size DOI: 10.7717/peerj.19264/fig-1

weight remained unchanged, the dry weight (DW) was determined. The FW and DW of
each sample were the average of the FW and DW of the three rhizomes in the sample.

Measurement of active component contents
Preparation of standard substance solutions
Ferulic acid (FA), Z-ligustilide (Z-L) and senkyunolide A (SA) standard substances were
dissolved in methanol, respectively, as the standard solution mother solutions. Then, they
were diluted into standard substance solutions with concentrations of 31.92 µg mL−1,
275.00 µg mL−1 and 160.00 µg mL−1 for quantitative analysis, respectively.

Preparation of sample solutions
The dried L. chuanxiong rhizome samples were crushed into powder and collected through
a sieve with a pore. About one g of the powder was accurately weighed and put into a
conical bottle with a stopper, and then 50 mL of 75% methanol solution was accurately
added. Samples were ultrasonically extracted (power: 360 W, frequency: 40 kHz) for 30
min. The supernatant was taken and filtered by 0.22 µmmicroporous membrane, and the
filtrate was taken to obtain the sample solution.

Chromatographic conditions
Quantitative analysis was performed using an UltiMate 3000 UPLC system equipped with
a DAD detector. The separation of the three active components was performed at 30 ◦C
using an Agilent ZORBAX Eclipse Plus C18 column (2.1 × 50 mm, 1.8 µm). Use 0.03%
phosphoric acid water (A)-methanol (B) as the gradient solvent system. The gradient
elution conditions were as follows: 0∼3 min, 15%∼25% B; 3∼5 min, 25%∼28% B; 5∼9
min, 28%∼30% B; 10∼16 min, 48%∼50% B; 16∼18 min, 50%∼80% B. The flow rate and
injection volume were 0.40 mL min−1 and 1 µL, respectively. The detection wavelengths
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Figure 2 The peaks of FA(1), SA(2) and Z-L(3) in standard and sample. 1, FA; 2, SA; 3, Z-L; (A, D) 322
nm; (B, E) 328 nm; (C, F) 282 nm.

Full-size DOI: 10.7717/peerj.19264/fig-2

were 282 nm, 322 nm and 328 nm. The chromatographic peak separation results (Fig. 2)
show that the chromatographic peak separation was good.

Multispectral image processing
The spectral images of the five bands obtained from each flight mission were imported into
Pix4D Mapper 4.5.6 to complete the geometric correction and radiation correction with
image information from the corresponding radiation calibration panels. Then, the spectral
images were spliced into orthographic mosaic reflectance images. ENVI 5.3 software was
used to overlay the orthographic mosaics of each band into a multispectral image. After
classifying the canopy of L. chuanxiong and the background of soil and weeds by the
Support Vector Machine class function of ENVI, a mask was constructed for segmentation,
and themultispectral image of L. chuanxiong was obtained (Fig. 3). By selecting the location
of each field sampling area and editing the corresponding region of interest (ROI), the VIs
of each ROI were extracted and calculated to obtain 23 characteristic variables (Table 1).

VIs selection and models construction
The best model input variables were screened by Pearson correlation analysis between
variables and the target values of FW, DW, FA, Z-L and SA in the corresponding samples.
However, there may be a high degree of correlation and collinearity among variables.
Screening only the characteristic variables with high Pearson correlation coefficient may
lead to data redundancy and miss some effective information (Xu et al., 2023). Therefore,
according to the order of the absolute value of the correlation coefficient between the
variables and the target value from large to small, the characteristic variables with the
correlation coefficient greater than 0.9 were eliminated sequentially. The remaining
characteristic variables with significant correlation (p< 0.05) were used as model input
variables to construct a prediction model corresponding to each target value.
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Figure 3 Mask extraction for separating the canopy of L. chuanxiong from the background. (A) RGB
image; (B) mask.

Full-size DOI: 10.7717/peerj.19264/fig-3

Model construction and related data processing were performed in Python 3.11.
Four machine learning ensemble algorithms, Random Forest (RF), adaptive boosting
(AdaBoost), Gradient Boosting Decision Tree (GBDT) and extreme gradient boosting
(XGBoost), were used to construct regression prediction models of FW, DW, FA, Z-L and
SA contents, respectively. The quality discriminant models were based on the standard
set by the Pharmacopoeia of the People’s Republic of China (2020) (ChP 2020) (Chinese
National Pharmacopoeia Commission, 2020) that the FA content of chuanxiong rhizoma
should not be less than 0.10% (1.0mg g−1). Considering that theremay be a large difference
between the sample sizes that meet the criteria or not, the Border line SMOTE was used
to oversample the categories with a small sample size to obtain balanced data. Each data
set was randomly divided into a training set and a testing set with a ratio of 7:3 for model
building. In the process of model construction, each algorithm determined the optimal
model parameters through grid search and five-fold cross validation.

Three indicators were used to evaluate the effectiveness and stability of the model.
Coefficient of determination (R2) is used to measure the fitting degree of the regression
model, and the value was 0∼1. The larger the value, the better the fitting degree of the
model. Normalized rootmean squared error (NRMSE) andmean absolute percentage error
(MAPE) are indicators of the gap between the predicted value and the true value. The former
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Table 1 The characteristic variables used in this study.

Variable Name Formula Reference

R Red Band1 \
G Green Band2 \
B Blue Band3 \
RE Red Edge Band4 \
NIR Near Infrared Band5 \
r Normalized Red R/(R+G+B) Tarbell & Reid (1991)
g Normalized Green G/(R+G+B) Tarbell & Reid (1991)
b Normalized Blue B/(R+G+B) Tarbell & Reid (1991)
RBRI Red Blue Ratio Index R/B Wu et al. (2023)
GLI Green Leaf Index (2G−R−B)/(2G+R+B) Louhaichi, Borman & Johnson (2001)
MSRI Modified Simple Ratio Index (NIR/RE−1)/

√
NIR/RE+1 Chen (1996)

OSAVI Optimized Soil Adjusted Vegetation Index (NIR−R)/(NIR+R+0.16) Rondeaux, Steven & Baret (1996)
RECI Red Edge Chlorophy II Index NIR/RE−1 Gitelson et al. (2005)
RERDVI Red Edge Re-nomalized Different Vegetation Index (NIR−RE)/

√
(NIR+RE) Roujean & Breon (1995)

LCI Leaf Chlorophy II Index (NIR−RE)/(NIR+R) Datt (1999)
EVI Enhanced Vegetation Index 2.5(NIR−R)/(NIR+6R−7.5B+1) Justice et al. (1998)
WI Woebbecke Index (G−B)/(R−G) Woebbecke et al. (1995)
GRVI Green Ratio Vegetation Index NIR/G Buschmann & Nagel (1993)
RVI Ratio Vegetation Index NIR/R Jordan (1969)
RERVI Red Edge Ratio Vegetation Index NIR/RE Jasper, Reusch & Link (2009)
BRVI Blue Ratio Vegetation Index NIR/B Kandylakis & Karantzalos (2016)
NGRVI Normalized Green-Red Vegetation Index (G−R)/(G+R) Gitelson et al. (2002)
NDVI Normalized Difference Vegetation Index (NIR−R)/(NIR+R) Rouse et al. (1974)

is more sensitive to large errors because of the root mean square calculation, while the
latter weights all errors equally. Both of them can compare the effects of models composed
of different data sets. The performance of the model in the independent validation set was
evaluated using NRMSE and MAPE. The calculation formula is as follows (Costa et al.,
2022; Zhu et al., 2023):

R2
= 1−

n∑
i=1

(
yi− ŷi

)2
/

n∑
i=1

(
yi−y

)2 (1)

NRMSE=
(
1/y

)√√√√ n∑
i=1

(
yi− ŷi

)2
/n ·100% (2)

MAPE= (1/n)

n∑
i=1

∣∣yi− ŷi∣∣/yi ·100% (3)

where n is the sample size of the input data, yi is the true target value, y is the average value
of the corresponding true target value, and is ŷi the predicted target value calculated by the
corresponding regression model.
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The performance of the quality discriminant model was evaluated using the following
indicators: Accuracy is used to evaluate the overall discriminant effect of the discriminant
model. Precision, recall and F1-score derived from the confusion matrix can explain the
discriminant effect in more detail. The area under curve (AUC) is the area under the
receiver operating characteristic (ROC) curve, and the value is 0∼1. The larger the AUC,
the better the discriminant effect of the model. The performance of the model in the
independent validation set was evaluated using accuracy and AUC. The formula is as
follows (Zhang et al., 2022a; Zhang et al., 2022b):

Accuracy= (TP+TN)/(TP+TN+FP+FN) (4)

Precision=TP/(TP+FP) (5)

Recall=TP/(TP+FN) (6)

F1− score= 2×Precision×Recall/(Precision+Recall) (7)

where TP is the number of samples whose instances are positive and predicted to be
positive, TN is the number of samples whose instances are negative and predicted to be
negative, FN is the number of samples whose instances are positive and predicted to be
negative, FP is the number of samples whose instances are negative and predicted to be
positive.

RESULTS
Correlation analysis of VIs
According to the results of the correlation analysis (Fig. 4) combined with the feature
screening method in VIs selection and models construction, the input characteristic
variables of the FW prediction model in D1 were red edge (RE), optimized soil adjusted
vegetation index (OSAVI), green (G), Woebbecke Index (WI), blue (B), modified simple
ration index (MSRI), Green Leaf Index (GLI), normalized blue (b) and red blue ratio
index (RBRI), while the input characteristic variables of the DW prediction model were
RE, OSAVI, green (G), WI, B, normalized green-red vegetation index (NGRVI), radio
vegetation index (RVI), GLI, b, red (R), and RBRI. In addition, red edge chlorophy II index
(RECI), red edge re-normalized different vegetation index (RERDVI), LCI, enhanced
vegetation index (EVI), RBRI, WI, G, green ration vegetation index (GRVI), B and r were
the input characteristic variables of the FW and DW prediction models in D2.

The input characteristic variables of the FA content prediction model and the quality
discriminant model in D1 were b, RBRI and B, while those in D2 were RE and red edge
ratio vegetation index (RERVI). The input variables of the SA content prediction model in
D1 were b, g, B, BRVI, R and r, while those in D2 were RE, GLI, g, RVI, and RERVI. The
input variables of the Z-L content prediction model in D1 were G, RE, OSAVI, WI, RBRI,
B and NGRVI, while those in D2 were G, B, RECI, NIR, RERDVI and WI.

Li et al. (2025), PeerJ, DOI 10.7717/peerj.19264 8/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.19264


Figure 4 Correlation coefficients between variables and the FW, DW and the content of FA, Z-L and
SA in D1 and D2. (A) D1; (B) D2; *, p< 0.05; **, p< 0.01.

Full-size DOI: 10.7717/peerj.19264/fig-4

Table 2 Evaluation of different FW prediction models.

Period Model Training set Test set

R2 NRMSE MAPE R2 NRMSE MAPE

XGBoost 0.89 14.15% 14.37% 0.82 19.19% 16.83%
GBDT 0.78 20.95% 15.49% 0.76 23.93% 16.43%
AdaBoost 0.79 19.21% 18.45% 0.76 23.43% 23.48%

D1

RF 0.84 17.22% 17.54% 0.80 20.11% 17.80%
XGBoost 0.87 15.31% 15.68% 0.71 24.38% 18.40%
GBDT 0.81 19.21% 14.01% 0.72 24.67% 17.22%
AdaBoost 0.72 23.12% 21.16% 0.69 25.91% 18.11%

D2

RF 0.72 22.40% 22.04% 0.71 25.36% 17.91%

Notes.
D1 and D2 represent April 27 and May 8 respectively.

Different prediction models
Yield prediction models
The R2 (Table 2) of the four algorithm models in the FW training set and the test set data
in both periods could reach more than 0.68. Overall, the model with the best prediction
accuracy in both periods was XGBoost, the R2 of the training set was close to 0.90, and
the NRMSE and MAPE were less than 20.00%. The XGBoost over-fitting degree in D1
was lower than that in D2, whose R2 on the testing set was 19.54% lower than that on the
training set.

The difference between the DW prediction models (Table 3) was similar to that of FW,
and the best prediction model was the XGBoost model in D1. The R2 on the training and
test sets were both greater than 0.80, and the NRMSE and MAPE were within the range
from 19.00% to 21.00%. In the model in D2, the XGBoost model performed best in the
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Table 3 Evaluation of different DW prediction models.

Period Model Training set Test set

R2 NRMSE MAPE R2 NRMSE MAPE

XGBoost 0.82 20.04% 20.85% 0.81 20.94% 19.02%
GBDT 0.77 23.40% 17.52% 0.76 25.16% 20.54%
AdaBoost 0.79 21.54% 25.03% 0.78 21.94% 25.44%

D1

RF 0.80 20.82% 22.96% 0.79 21.88% 22.52%
XGBoost 0.82 19.77% 22.49% 0.70 27.15% 22.15%
GBDT 0.81 21.07% 14.92% 0.74 24.71% 22.18%
AdaBoost 0.71 25.30% 25.78% 0.68 28.53% 22.36%

D2

RF 0.70 26.71% 22.27% 0.69 24.14% 30.40%

Notes.
D1 and D2 represent April 27 and May 8 respectively.

Table 4 Evaluation in D1 prediction model of different active component contents.

Period Model Training set Test set

R2 NRMSE MAPE R2 NRMSE MAPE

XGBoost 0.53 18.88% 15.86% 0.39 20.95% 18.01%
GBDT 0.81 12.31% 7.94% 0.44 20.30% 17.27%
AdaBoost 0.58 17.64% 16.38% 0.43 20.23% 17.75%

FA

RF 0.45 20.63% 18.75% 0.12 24.56% 20.04%
XGBoost 0.34 19.01% 17.69% 0.22 23.59% 25.12%
GBDT 0.59 15.23% 13.49% 0.21 23.73% 23.59%
AdaBoost 0.49 17.52% 17.31% 0.25 19.75% 21.13%

Z-L

RF 0.79 10.70% 9.81% 0.28 22.74% 23.42%
XGBoost 0.81 15.01% 13.34% 0.57 28.64% 27.74%
GBDT 0.85 13.36% 12.68% 0.68 24.85% 25.27%
AdaBoost 0.74 17.72% 19.21% 0.70 22.25% 25.80%

SA

RF 0.89 11.24% 10.63% 0.63 27.00% 26.09%

Notes.
FA, Z-L and SA represent ferulic acid, Z-ligustilide and senkyunolide A, respectively.

training set with an R2 of 0.82, but the over-fitting situation was still higher than other
algorithm models.

Active component contents prediction models
The effects of FA, Z-L and SA content prediction models in D1 are shown in Table 4.
Among the FA content prediction models in D1, the training set R2 of GBDT was the
largest, but the R2 of the test set decreases greatly, up to 45.68%, while the AdaBoost model
has a small degree of over-fitting while ensuring a low error. The degree of over-fitting of
the Z-L content prediction models was high, and the AdaBoost had the lowest degree of
over-fitting that the difference between the R2 values of the training set and the test set was
0.24. The R2 of all SA content prediction models in D1 performed well and the degree of
over-fitting was low. Among them, the RF training set had the highest R2 of 0.89, while the
R2 of the AdaBoost test set was higher and the degree of over-fitting was lower.
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Table 5 Evaluation in D2 prediction model of different active component contents.

Period Model Training set Test set

R2 NRMSE MAPE R2 NRMSE MAPE

XGBoost 0.68 15.75% 13.77% 0.35 20.59% 17.95%
GBDT 0.45 20.74% 19.08% 0.24 20.18% 19.60%
AdaBoost 0.35 23.76% 19.34% 0.30 20.15% 16.76%

FA

RF 0.78 13.00% 11.40% 0.33 20.78% 18.74%
XGBoost 0.69 13.00% 12.45% 0.34 21.97% 24.38%
GBDT 0.63 14.25% 13.43% 0.31 22.32% 23.67%
AdaBoost 0.51 17.25% 15.39% 0.39 18.06% 20.70%

Z-L

RF 0.82 10.62% 10.45% 0.32 19.62% 16.93%
XGBoost 0.86 13.38% 13.10% 0.75 21.17% 21.49%
GBDT 0.90 11.54% 6.56% 0.76 21.59% 17.56%
AdaBoost 0.74 19.06% 17.95% 0.74 20.58% 17.97%

SA

RF 0.89 11.68% 10.81% 0.67 24.44% 23.76%

Notes.
FA, Z-L and SA represent ferulic acid, Z-ligustilide and senkyunolide A, respectively.

The effect of the three active component content prediction models in D2 is shown in
Table 5. The FA and Z-L content prediction models of D2 had higher degree of over-fitting,
except for AdaBoost. However, each training set R2 of AdaBoost was lower, 0.35 and 0.51,
respectively. The R2 of the SA content prediction model in D2 was higher, and GBDT was
the best, whose R2 of the training set and the test set were 0.90 and 0.76, respectively. While
the AdaBoost, with training set R2 of 0.74 for both training and test sets, had the lowest
degree of over-fitting.

Chuanxiong rhizoma quality discriminant models
ChP 2020 stipulates that the FA content in chuanxiong rhizoma should not be less than
0.10% (1.00 mg g−1) (Chinese National Pharmacopoeia Commission, 2020). Therefore, we
constructed quality discriminant models (Table 6) to evaluate whether the FA content
reached the standard. The accuracy of XGBoost and GBDT models in D1 reached 0.9020,
and the AUC was 0.9031 and 0.9095, respectively. The Accuracy of XGBoost, AdaBoost
and RF constructed by D2 data was better and all of them were 0.8431. Among them, the
AUC of RF was larger so the discriminative efficiency was the best.

Independent validation
Independent validation of yield prediction models
Since D2 and D3 are close to the harvesting periods of Shiyang Town and Aoping Town
respectively, the VIs of D3 were used as the characteristic variable to be input according
to the requirements of the yield prediction models in D2 to evaluate the performance of
models on the independent validation set. As shown in Fig. 5, the relationship between
the predicted value and the actual value is obtained. When applied to the independent
validation set, each model underestimates FW and DW. Among them, RF was the best
among the FW prediction models with NRMSE of 23.76%, and MAPE of 14.75%, while
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Table 6 Evaluation of different discriminant models.

Period Model Whether
achieved

Accuracy Precision Recall F1 Score AUC

No 0.8571 0.9600 0.9057
XGBoost

Yes
0.9020

0.9565 0.8462 0.8900
0.9031

No 0.8333 0.9524 0.8889
GBDT

Yes
0.9020

0.9630 0.8667 0.9123
0.9095

No 0.7308 0.9048 0.8085
AdaBoost

Yes
0.8235

0.9200 0.7667 0.8364
0.8357

No 0.7778 0.9130 0.8400

D1

RF
Yes

0.8431
0.9167 0.7857 0.8462

0.8494

No 0.8387 0.8966 0.8667
XGBoost

Yes
0.8431

0.8500 0.7727 0.8095
0.8346

No 0.8636 0.7600 0.8085
GBDT

Yes
0.8235

0.7931 0.8846 0.8364
0.8223

No 0.8276 0.8889 0.8571
AdaBoost

Yes
0.8431

0.8636 0.7917 0.8261
0.8403

No 0.7917 0.8636 0.8261

D2

RF
Yes

0.8431
0.8889 0.8276 0.8571

0.8456

Notes.
D1 and D2 represent April 27 and May 8 respectively.

AdaBoost was the best among the DW prediction models with NRMSE of 34.60% and
MAPE of 21.73%.

Independent validation of active component content prediction models
The prediction models of FA, Z-L and SA content in D2 were applied to predict the content
of active components in the independent validation set, and the results were shown in
Fig. 6. AdaBoost performs best in predicting FA content. Compared to the other models,
the RF has a more concentrated distribution of the predicted values and smaller relative
errors. The predicted Z-L content of each model was generally lower than the true values,
among which the RF’s predicted values were themost concentrated with NRMSE of 34.35%
and MAPE of 23.40%. The predicted SA content of each model was generally lower than
the true values. Among them, XGBoost was the best at predicting with NRMSE of 45.26%
and MAPE of 25.48%.

Independent validation of chuanxiong rhizoma quality discriminant models
To verify the effect of the constructed quality discriminant model based on the FA content
standard of chuanxiong rhizoma stipulated in ChP 2020, the corresponding characteristic
variables were entered into the quality discriminant model of D2, and the discriminant
results were shown in Fig. 7. The best performing models were XGBoost and RF, with
accuracy and AUC of 0.7083 and 0.7214, respectively, which had effective discriminative
ability.
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Figure 5 Effects of four FW and DWprediction models, RF, AdaBoost, GBDT and XGBoost, on the
independent validation set. The red dotted line in each image is a 1:1 line. (A) FW; (B) DW.

Full-size DOI: 10.7717/peerj.19264/fig-5

DISCUSSION
Different sensitivity of variables
The four machine learning algorithms selected in this study could all use the variables
selected in the two periods to train effective prediction models for predicting the yield and
quality of L. chuanxiong. There were differences in the input variables of the yield prediction
models in the two periods (Fig. 4), but the most advanced variables (RE, OSAVI, RECI,
RERDVI, etc.) were related to the red edge and near-infrared bands, which indicated that
the variables based on the reflectance of the red edge and near-infrared bands could better
reflect the FW and DW of rhizome of L. chuanxiong. This is consistent with the results
obtained byMutanga, Adam & Cho (2012) who constructed a wetland biomass estimation
model. In addition, the input variables of the three active component content prediction
models selected in the two periods were quite different (Fig. 4). For example, the top input
variables of the FA and SA content prediction models in the D1 variables (b, B, BRVI,
RBRI, etc.) are mainly related to the blue band, while the D2 variables (RE, RERVI, etc.)
are mainly related to the red edge band. The difference in this short-term interval may
be due to the fact that April to May is the period when L. chuanxiong changes from the
end of the vigorous growth period of the aboveground part to the rapid expansion of the
underground part. The growth rate of the new leaves on the aboveground part gradually
stops, the old leaves gradually wither and the leaf water content changes greatly (Zhao, Fu
& Fan, 2008), resulting in a certain change in the canopy nutrient structure, which affected
the reflectance of each band. However, the sensitivity of L. chuanxiong to the reflectance of
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Figure 6 Effects of four FA, Z-L and SA prediction models, RF, AdaBoost, GBDT and XGBoost, on the
independent validation set. The red dotted line in each image is a 1:1 line. (A) FA; (B) Z-L; (C) SA.

Full-size DOI: 10.7717/peerj.19264/fig-6

Figure 7 Effects of four quality discriminant models, RF, AdaBoost, GBDT and XGBoost, on indepen-
dent validation set. The blue dotted line in each image is Measured value= 1.0 mg g−1.

Full-size DOI: 10.7717/peerj.19264/fig-7

different bands in this study is different from the results of Fan et al. (2024). They found
that although there were differences in the variables sensitive to potato yield at different
growth stages, the blue band was always closely related to yield, and the near-infrared band
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could reflect the difference in growth between plants. This may be due to the difference in
different crops with the different sensitivity of variables.

Different performances of models
The XGBoost performed best in predicting the yield data of Shiyang Town in both periods,
and the degree of over-fitting was low (Tables 2 and 3). Similarly, XGBoost performed
better than other models in studies such as Shahi et al. (2023), which used UAV images
of five growth stages of peanut to predict yield, and Wang et al. (2023b), which used UAV
multispectral data to evaluate the above-ground biomass of camphor trees. However, in this
study, RF and AdaBoost had the best predictive effect on FW and DW in the independent
validation set, and XGBoost performed slightly worse (Fig. 5). This may be because the
RF and AdaBoost have fewer hyperparameters, and the model is simpler and has better
generalization ability than XGBoost. In addition, the performance of the all models on the
independent validation set shows that the predicted value is generally lower than the true
value. This is contrary to the results of Liu et al. (2019), who applied the winter oilseed
rape biomass prediction models to the independent validation data set of another year’s
and they believe that this is due to the large climatic differences between the experimental
sites in different years. The collection period of the independent validation set of this
study is similar to that of the data set collected to construct the models, therefore, the
main difference in the sets reflected in the spatial difference. The low predicted values
may be mainly related to the differences between the soil (Peng et al., 2021) and ecological
environmental factors (Yin et al., 2012) in the two locations.

In the performance of predicting the content of the three active components, AdaBoost
had a lower degree of over-fitting in D1 and D2. This is similar to the results of Yoon et
al. (2023) using different algorithms combined with hyperspectral prediction of mustard
metabolites. In that study, AdaBoost predicts secondary metabolites such as phenolics and
flavonoids better than XGBoost and LightGBM. In the performance of the independent
validation set (Fig. 6), the best models for predicting FA and Z-L content were AdaBoost
(NRMSE = 13.35%, MAPE = 10.25%) and RF (NRMSE = 34.35%, MAP = 23.40%),
respectively, and they had lower relative errors. The best model for SA content prediction is
XGBoost, but there is still a large relative error (NRMSE= 45.26%, MAPE= 25.48%). The
results also reflect the advantages of the model with fewer hyperparameters in universality,
and show that different models have different performances in predicting the content of
different active components.

In addition, we also constructed the quality discriminant models of chuanxiong rhizoma
according to the standard that the FA content should not be less than 0.10% (1.00 mg
g−1), which is stipulated in ChP 2020. The accuracy and AUC of the models in each period
(Table 6) were greater than 0.8 in the test set. Among them, the Accuracy and AUC of
XGBoost and GBDT models in D1 could reach more than 0.9, and the those of XGBoost,
AdaBoost and RFmodels in D2 could reachmore than 0.84. Themodels in D2 were applied
to the independent validation set, and the effects of XGBoost and RF performed best that
the Accuracy and AUC were both 0.7083 and 0.7214, respectively (Fig. 7). Although the
performance of the models decreased to some extent in the independent validation set,
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they still had effective discriminatory ability, indicating that it was feasible to use VIs to
construct a discriminant model based on FA content to evaluate the quality of chuanxiong
rhizoma.

CONCLUSIONS
In this study, the models for predicting the fresh weight, dry weight of L. chuanxiong
rhizome and the contents of ferulic acid, Z-ligustilide and senkyunolide A in chuanxiong
rhizoma were constructed on the basis of UAV multispectral images. And the quality
discriminant models of chuanxiong rhizoma based on the standard that the FA content
should not be less than 0.10% (1.00 mg g−1) stipulated in the Pharmacopoeia of the
People’s Republic of China (2020) were constructed for the first time. In addition, the
verification of the models on the independent validation set was completed, and the results
proved that each prediction model had a certain degree of universality. According to
the results of this study, we believe that UAV multispectral has great potential in non-
destructively predicting the yield and quality of medicinal plants before harvesting. It can
further provide a reasonable reference for the appropriate specification and classification
of medicinal materials in production, as well as the management methods of processing,
transporting and storing, so as to ensure the quality of medicinal materials and make more
effective use of the resources.
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