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ABSTRACT
Objective. This study aimed to validate and optimize a machine learning algorithm for
accurately predicting low-density lipoprotein cholesterol (LDL-C) levels, addressing
limitations of traditional formulas, particularly in hypertriglyceridemia.
Methods. Various machine learning models—linear regression, K-nearest neigh-
bors (KNN), decision tree, random forest, eXtreme Gradient Boosting (XGB), and
multilayer perceptron (MLP) regressor—were compared to conventional formulas
(Friedewald, Martin, and Sampson) using lipid profiles from 120,174 subjects (2020–
2023). Predictive performance was evaluated using R-squared (R2), mean squared error
(MSE), and Pearson correlation coefficient (PCC) against measured LDL-C values.
Results. Machine learning models outperformed traditional methods, with Random
Forest and XGB achieving the highest accuracy (R2

= 0.94, MSE = 89.25) on the
internal dataset. Among the traditional formulas, the Sampson method performed best
but showed reduced accuracy in high triglyceride (TG) groups (TG > 300 mg/dL).
Machine learning models maintained high predictive power across all TG levels.
Conclusion. Machine learning models offer more accurate LDL-C estimates, especially
in high TG contexts where traditional formulas are less reliable. These models could
enhance cardiovascular risk assessment by providing more precise LDL-C estimates,
potentially leading to more informed treatment decisions and improved patient
outcomes.

Subjects Biochemistry, Data Mining and Machine Learning, Data Science
Keywords Lipids, Low-density lipoprotein cholesterol, Machinie learning, Triglyceride

INTRODUCTION
Low-density lipoprotein cholesterol (LDL-C) represents the final product of lipoprotein
metabolism and is linked to an increased risk of cardiovascular disease (CVD) mortality
(Zhou et al., 2020). Notably, the accumulation and oxidation of LDL-C within the arterial
intima constitute a significant modifiable risk factor for atherosclerotic cardiovascular
diseases (ASCVD) (Malekmohammad, Bezsonov & Rafieian-Kopaei, 2021). The National
Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III) designates
LDL-C as the primary biomarker for assessing ASCVD risk and the central target for lipid-
lowering therapy (Expert Panel on Detection E, and Treatment of High Blood Cholesterol in
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Adults, 2001), which underscores the pivotal role assigned to LDL-C in assessing ASCVD
risk and guiding interventions to lower lipid levels.

In Chinese community residents, 33.8% of individuals experience lipid abnormalities, a
phenomenon that has emerged as a significant public health issue in China (Lu et al., 2021).
On the other hand, a portion of Chinese community hospitals is subjected to limitations in
obtaining accurate LDL-C measurements due to cost constraints, which could potentially
exacerbate the prevalence of lipid abnormalities. Therefore, ensuring the precision and
reliability of LDL-C determination is crucial in diagnostic cardiology, thereby presenting
specific challenges for clinical laboratories and emphasizing the fundamental importance
of accurate LDL-C assessment.

LDL-C is routinely calculated using the Friedewald equation, which incorporates data
from the standard lipid panel (total cholesterol (TC), high-density lipoprotein cholesterol
(HDL-C), and triglycerides (TG)): LDL-C= TC− (HDL-C)− (TG/5) (Friedewald, Levy &
Fredrickson, 1972). The accuracy of the equation for high-TG samples is compromised by
the variability in the ratio of cholesterol to TG in LDL-C and influenced by factors such as
TG size and other considerations (Friedewald, Levy & Fredrickson, 1972). The Friedewald
equation is not applicable in scenarios characterized by severe hypertriglyceridemia, herein
as TG >400 mg/dL (4.52 mmol/L), very low LDL-C (LDL-C <70 mg/dL [1.81 mmol/L]),
and diabetes (Ferrinho et al., 2021; Palmer et al., 2019). In such scenarios, the Friedewald
equation tends tomarkedly underestimate LDL-C. In 2013,Martin et al. (2013b) developed
the Martin equation for LDL-C estimation as a solution for addressing these inaccuracies.
The equation involves subtracting the HDL-C and TG/adjustable factor from TC, with the
adjustable factor representing the strata-specific median TG: very low density lipoprotein
cholesterol (VLDL-C) ratios. The Martin equation, which is developed using traditional
linear regression analysis and exhibits superior accuracy compared to the Friedewald
formula, still retains inaccuracies, particularly in the context of lower LDL-C estimates
(Quispe et al., 2017). In 2020, the Sampson equation emerged as a novel development. Like
the Martin equation, it exhibits superior accuracy over the Friedewald equation, especially
in scenarios involving patients with hypertriglyceridemia (Sampson et al., 2020; Sampson
et al., 2022). Unlike the Martin equation, the Sampson equation was formulated using
the beta quantification (BQ) reference method, which incorporates a swinging bucket
ultracentrifuge procedure along with an additional step for LDL precipitation.

Recently, a variety of machine learning (ML) methods have been applied in clinical
laboratory-associated research (Kurstjens et al., 2022; Rangan et al., 2022). In the era of
precision medicine, to further enhance the estimation of LDL-C, we employed various
methods based on ML regression algorithms (Chan & Veas, 2024; Pedregosa et al., 2011),
which were utilized to derive an optimal approach for estimating LDL-C from the standard
lipid panel. Subsequently, to underscore the accuracy advantages of the latest algorithm,
we compared it with direct measurements of LDL-C, as well as the Friedewald, Martin, and
Sampson LDL-C estimation methods.
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MATERIALS AND METHODS
Study population
This was a retrospective study, all data used were anonymized and there was no direct
contact or intervention with the study subjects, and it was approved by the Ethics
Review Committee of Yanbian University Hospital, Ethics No. 2024665. The cohort
comprised samples of consecutive standard lipid profile samples, including directly
measured components of TC, HDL-C, and TG, alongside the corresponding directly
measured LDL-C values. Collected between January 1, 2020, and March 31, 2023, at
Yanbian University Hospital’s inpatient and outpatient units for clinical indications, the
inclusion criteria stipulated determining directly measured components of a standard lipid
profile (TC, TG, HDL-C) and directly measured LDL-C on the same day; thus, day-to-day
variations in cholesterol particles were minimized. Data extraction was conducted through
the laboratory information system (LIS) system. All continuous variables in this study
underwent Kolmogorov–Smirnov testing (Srimani et al., 2021). A significance level of
P > 0.05 was utilized to assess the conformity of the data to the assumption of normal
distribution.

Lipid profile testing
The serum levels of TG, TC, HDL-C, and LDL-Cweremeasured in the clinical laboratory of
Yanbian University using the Roche Cobas702 chemistry analyzer. The analyzer undergoes
calibration every 14 days, and quality control measures adhere to the regulations and
certification requirements established by the Jilin Provincial Government.

We utilized the cholesterol oxidase-peroxidase-aminoantipyrine phenol (CHOD-PAP)
method to estimate TC and the glycerol phosphate oxidase-peroxidase-aminoantipyrine
phenol (GPO-PAP) enzymatic colorimetric method to estimate TG (Rifai, 2006). The
detection method for LDL-C is the surfactant LDL-C assay, and for HDL-C, the catalase
HDL-C assay is utilized. The measurements demonstrate linearity, with the TG range
being 44.3–1,000 mg/dL (0.5–11.3 mmol/L), the TC range being 19.3–500 mg/dL (0.5–12.9
mmol/L), the HDL-C range being 3.8–96.7 mg/dL (0.1–2.5 mmol/L), and the LDL-C range
being 7.7–450 mg/dL (0.2–11.6 mmol/L). Calibration for TC and TG is performed every
15 days, whereas LDL-C and HDL-C are calibrated daily. Two levels of quality control
materials (high and low limits) are analyzed each day.

Data preprocessing
The first screening step involved excluding patients with missing values in TC, TG,
HDL-C, LDL-C, age, and gender and patients with values outside the detection range
were, subsequently, excluded due to the relative deviation of outlier values exceeding
10%. Data from January 2020 to December 2022 was utilized as the internal training and
validation set, whereas data from January to March 2023 served as the secondary internal
validation dataset. Within the internal dataset, patient data points with identical features
but different actual values were removed. Then, we employed the multi-model consensus
approach involving RandomForestRegressor, DecisionTreeRegressor, and XGBRegressor
to determine feature importances (Pedregosa et al., 2011). Each model was trained on
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Figure 1 Workflow for data preprocessing.
Full-size DOI: 10.7717/peerj.19248/fig-1

the same dataset, and their feature importances were averaged. Based on the averaged
feature importances, features identified as minimally important were removed (Fig. 1).
Consequently, we used the StandardScaler from the sklearn.preprocessing package for
feature scaling. First, we initialized the StandardScaler object and applied the fit operation
on the training set. When scaling the features of the internal validation dataset, we utilized
the previously saved StandardScaler object and applied the transform operation to ensure
that the scaling parameters derived from the training set were used during the parameter
calculation.

Machine learning algorithm and assessment methods
Using the Scikit-learn application programming interface (API) (Pedregosa et al., 2011),
we conducted ML analysis. To predict LDL-C values based on the actual measurements of
TC, TG, and HDL-C, we constructed various models including linear, K-nearest neighbors
(KNN), decision trees, random forest, eXtreme Gradient Boost (XGBoost), andmulti-layer
perceptron (MLP) regression models. The directly measured LDL-C was utilized as the
truth label.

We divided the dataset into training (80%) and test sets (20%). To optimize
hyperparameters, we used a combination of grid search and 5-fold cross-validation
across various settings. The hyperparameters we explored included learning rate, tree
depth, minimum samples per leaf, number of estimators for ensemble methods, and
layers/neurons configuration for neural networks. The tuning process aimed to find
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Table 1 Equations for LDL-C estimation.

Friedewald Equations LDL_C(mmol/L)=TC−HDL_C−TG/5
Martin Equations LDL_C(mg/dl)=TC−HDL_C−

TG/X(adjustable coefficient )
Sampson Equations LDL_C(mg/dl)=TC/0.948−HDL_C/0.971−[TG/8.59+

(TG−Non_HDL_C)/2140−TG∗TG/16100]−9.44

Table 2 Conversions betweenmmol/L andmg/dL.

mmol/L→mg/dL
TG (mmol/L) * 88.57= TG (mg/dL)
TC (mmol/L) * 38.67= TC (mg/dL)
HDL-C (mmol/L) * 38.67=HDL-C (mg/dL)
LDL-C (mmol/L) * 38.67= LDL-C (mg/dL)

the best hyperparameter combination that minimized mean squared error (MSE) while
maximizing R2 and Pearson correlation coefficient (PCC) on the validation set, ensuring
model generalizability.

Following the identification of the optimal ML model through internal validation, the
model was tested on a secondary internal validation set. The dataset used for this secondary
internal validation was split by time, with data from January 2023 to March 2023 serving
as the validation set. This approach ensures that the model is tested on data collected at a
later point in time, though it is still derived from the same source as the training data.

Additionally, we compared the performance of the model against predictions from the
Friedewald formula, Sampson formula, and Martin equation on the same validation set.

LDL calculation formulas
LDL-C was calculated using the Friedewald, Martin, and Sampson formulas (Table 1). For
the Martin equation, the LDL calculator available at (http://www.LDLCalculator.com) was
employed to determine LDL-C values, whereas the remaining calculations were performed
using Microsoft Excel 2021. Additionally, conversions between mmol/L and mg/dL were
referenced from Table 2.

Statistics analysis
To evaluate the accuracy of the ML models and existing LDL-C formulas, we utilized
three common metrics: R2, MSE, and PCC. R2 measures the proportion of the variance
in the dependent variable that is predictable from the independent variables. An R2 value
closer to 1 indicates a higher predictive accuracy, whereas an R2 value below 0 implies that
the model performs worse than simply predicting the mean (Chicco, Warrens & Jurman,
2021). This can occur when themodel fails to capture the relationship between the variables,
particularly in cases with extreme outliers or when the data does not fit well to the model
structure.

Lower MSE values, which indicate more optimal model performance, reflect the average
squared difference between the predicted and actual values. The Pearson correlation
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coefficient (PCC) assesses the linear relationship between two variables, with values closer
to 1 indicating a strong positive correlation. Models or formulas with higher R2 values,
lower MSE values, and higher Pearson correlation coefficients were considered to exhibit
superior predictive accuracy. All statistical analyses were performed using Python version
3.11.5.

Due to the significant variability that affects the performance of existing formulas
across different triglyceride (TG) ranges, we categorized the test data into six groups based
on TG levels: TG <100 mg/dL, 100 mg/dL ≤ TG <150 mg/dL, 150 mg/dL ≤ TG <200
mg/dL, 200 mg/dL ≤ TG <300 mg/dL, 300 mg/dL ≤ TG <400 mg/dL, and TG ≥ 400
mg/dL. Subsequently, we evaluated the performance of the ML models and that of the
existing formulas within these defined TG groups. This systematic approach facilitated a
comprehensive assessment of model performance across the spectrum of triglyceride levels,
thus enhancing the robustness and applicability of the findings.

RESULTS
Original clinical data
We present the baseline characteristics of the study subjects in each dataset (Table 3). All
continuous variables failed the normality test. Between January 1, 2020, and March 31,
2023, we conducted a comprehensive lipid profile study encompassing 120,174 unique
individuals (63,392 males; 52.8%), ranging from 1 to 103 years. All datasets exhibited a
higher proportion of male subjects than female ones. In the internal dataset, the LDL-C
median value was higher than that in the secondary internal validation dataset, whereas
the values of TC and TG in the internal dataset were lower than those in the secondary
internal validation dataset. As part of the internal training and testing dataset, a total of
109,991 cases, spanning from January 1, 2020, to December 31, 2022, were included. In
this subgroup, the median LDL-C level was 116.78 mg/dL, TC level was 178.66 mg/dL, and
TG level was 135.51 mg/dL. For the secondary internal validation dataset covering patients
from January 1, 2023, to March 31, 2023, a total of 10,183 cases were evaluated. In this
distinct cohort, the median LDL-C level was 110.21 mg/dL, TC level was 184.46 mg/dL,
and TG level was 138.17 mg/dL (Table 3).

Feature importances
The feature-weight graphwas generated using amulti-model consensus approach involving
RandomForestRegressor, DecisionTreeRegressor, and XGBRegressor. Each model was
trained on the same dataset, and their feature importances were averaged. TC exhibited
the highest importance, while gender had the lowest (Fig. 2, Table S1). To optimize
computational resources, the gender feature, with the lowest weight importance, was
consequently excluded from further analysis.
The feature weight graph visually represents the relative importance of each feature in
the predictive model. Features with higher weights contribute more significantly to the
model’s predictions, whereas those with lower weights exert less impact. In this context,
TC emerges as the most influential feature, thereby indicating its strong association with
the target variable.
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Table 3 Baseline characteristics of the study subjects.

Inner dataset Secondary internal
validation dataset

n= 109,249 n= 10,183

Age 57 (46,66) 58 (49,67)
Gender

Male 57,774 (52.88%) 5,208 (51.14%)
Female 51,475 (47.12%) 4,975 (48.86%)

Lipid Profile
TC 178.66 (143.85, 208.04) 184.46 (148.88, 214.23)
TG 135.51 (93.88, 200.17) 138.17 (97.43, 201.05)
HDL-C 43.31 (35.58, 52.20) 41.74 (35.19, 49.50)
LDL-C 116.78 (85.07, 141.53) 110.21 (80.05, 136.89)

Notes.
Data are expressed as medians (interquartile range) for continuous variables and frequencies (percentages) for categorical vari-
ables.

Figure 2 Feature importances.
Full-size DOI: 10.7717/peerj.19248/fig-2

Inner training and test
In the learning curve plots, it is evident that none of the models exhibit significant
underfitting. Although slight overfitting is observed in the decision tree and random forest
models, it does not affect the model training. From the scatter plots, the distribution of
actual values and model predicted values, along with the differences between residual and
predicted values, are examined to assess model fitting. The decision tree model exhibits
the lowest scores (R2

= 0.843, PCC=0.918, MSE=257.522), whereas ensemble learning
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Figure 3 Learning curve for machine learning model. (A–E) represent individual models, with blue
lines denoting internal training scores and orange lines representing internal test scores on the R2 scale.

Full-size DOI: 10.7717/peerj.19248/fig-3

methods (random forest and XGBoost) and the neural network model (MLP) demonstrate
higher scores compared to othermodels (Figs. 3–5). To further understand the contribution
of each feature to the model’s training, we conducted an analysis of feature importance
(Fig. S1). The results reveal that total cholesterol (TC) is the most influential feature across
both the decision tree and XGBoost models, with importance scores of 0.8491 and 0.8698,
respectively.

Secondary internal validation
In the secondary internal validation set, among the three formulas, Sampson’s formula
exhibited significantly higher performance compared to the other two, whereas the
Martin formula demonstrated the lowest performance. Moreover, all three ML models
outperformed the prediction formulas, particularly in predicting LDL-C levels ≥300
mg/dL. The Friedewald formula consistently underestimated LDL-C levels, especially in
cases with higher TG values. When stratifying the data based on TG levels, the predictive
accuracy of both the Martin and Friedewald formulas declined notably when TG levels
were ≥300 mg/dL.

For cases where TG levels exceeded 400 mg/dL, the R2 values for the Martin and
Friedewald formulas dropped below 0, a phenomenon that indicates the models performed
worse than a simple mean-based prediction. This suggests that the traditional formulas are
ill-suited to handle such high TG levels, as they fail to capture the complex relationship
between triglycerides and LDL-C in this range. The negative R2 reflects their inability
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Figure 4 Scatter plot comparing actual and predicted values in the inner dataset. The dashed black line
represents the line of equality. Each model is labeled with its corresponding R2, PCC, and MSE values in
the upper left corner.

Full-size DOI: 10.7717/peerj.19248/fig-4

to provide reliable predictions and highlights the limitations of these formulas in
hypertriglyceridemic patients.

In contrast, the machine learning models maintained strong predictive performance
across all TG ranges, demonstrating greater flexibility and robustness, particularly in high
TG contexts, where traditional formulas struggle (Figs. 6–9, Table 4).

DISCUSSION
The accurate determination of LDL-C is a significant challenge in laboratory medicine;
major guidelines advocate diverse dyslipidemia management strategies based on patient
LDL-C levels (Mach et al., 2020). Due to cost limitations associated with the gold standard
(i.e., direct measurement of LDL-C), it is challenging to achieve widespread adoption
in medical laboratories. Consequently, many medical laboratories opt for equations to
estimate LDL-C values. However, the performance of these equations varies significantly
and, in some instances, proves to be suboptimal when evaluated across diverse settings
(Martin et al., 2023). This investigation represents the inaugural retrospective analysis
evaluating the reliability of a ML algorithm based on hyperparameter tuning in Jilin
Province. This study aims to evaluate the reliability of LDL-C estimation across different
models and parameters, including variations in gender, age, TG, TC, and HDL-C. Notably,
the economic challenges inNortheast China, compared to southern regions, pose additional
barriers to the widespread adoption of precise LDL-Cmeasurementmethods. Nevertheless,
studies indicate a higher prevalence of hyperlipidemia in theNortheast, further emphasizing

Meng et al. (2025), PeerJ, DOI 10.7717/peerj.19248 9/20

https://peerj.com
https://doi.org/10.7717/peerj.19248/fig-4
http://dx.doi.org/10.7717/peerj.19248


Figure 5 Scatter plot comparing residual and predicted values in the inner dataset. The black dashed
line represents the point where the residual difference between actual and predicted values is 0. The farther
the points are from this line, the larger the absolute value of the residuals, indicating larger errors. Con-
versely, the closer the points are to this line, the smaller the absolute value of the residuals, indicating that
the model errors are closer to 0.

Full-size DOI: 10.7717/peerj.19248/fig-5

the importance of accurate LDL-Cmeasurement in this region. Additionally, the prevalence
of dyslipidemia inNortheast China is 62.1%, notably exceeding the national average (Zhang
et al., 2017). Meanwhile, the overall prevalence of the metabolic syndrome in Jilin province,
Northeast China has been reported has been as high as 32.86%, which can be attributed to
a genetic predisposition combined with environmental factors (Wu et al., 2016).

On the internal training set, the linear, KNN, XGBoost, and MLP regression models
exhibit well-fitted training curves. Although the DecisionTree and RandomForest
regression models exhibit less fitting compared to the former four models, they do
not demonstrate complete overfitting or underfitting. Pruning these models might
potentially enhance their fitting and predictive performance (Njoku, 2019); however,
due to computational constraints, we did not perform this procedure. Although some
studies propose that the KNN model can fully replace formulaic methods for LDL-C
prediction (Ghayad, Barakett-Hamadé & Sleilaty, 2022), herein, the trained ensemble
algorithm models and neural network model demonstrate superior performance.

We examined the applicability of the Friedewald, Martin and Sampson formulas in the
Northeast Chinese population and assessed the performance of RandomForest regression,
XGBoost regression, and MLP regression models. The results demonstrate that all ML
methods outperform the closed-form equations across various performance measures,
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Figure 6 Scatter plots comparing actual vs. predicted values in secondary internal validation set. The
dashed black line indicates the line of equality. R2, PCC, and MSE values for each model are shown in the
upper left corner. Plots (A–C) represent Friedewald, Sampson, and Martin formulas, while plots (D–F)
show the corresponding results for the ML models.

Full-size DOI: 10.7717/peerj.19248/fig-6

which is consistent with earlier research (Çubukçu & Topcu, 2022; Oh et al., 2022; Singh et
al., 2020).

A notable constraint of the Friedewald formula is its application of a constant factor of 5
as the denominator of TG for computing VLDL-C(TG/5) (Friedewald, Levy & Fredrickson,
1972). In scenarios where the TG level surpasses 400 mg/dL, the ratio of TG to cholesterol
in VLDL exceeds 5, primarily due to the existence of chylomicrons, their remnants,
or VLDL remnants. Thus, an inflated estimation of VLDL-C occurs, which leads to an
underestimation of LDL-C (Çubukçu & Topcu, 2022), an observation that is reflected in the
data (Fig. 8A). In the secondary internal dataset, the Friedewald formula R2 is even lower
than 0 in the TG>400 mg/dL interval, thereby indicating that the Friedewald formula is
not as effective as the benchmark model in this interval, and it is even possible that no
linear relationship exists. Previous research has indicated that in the low LDL-C range,
the Friedewald formula tends to underestimate values, a trend that is also reflected in the
dataset (Fig. 7A) (Barakett-Hamade et al., 2021;Martin et al., 2013a). TheMartin equation,
which was designed to address the constraints of the Friedewald equation, occasionally
exhibited superior performance compared to XGBoost, random forest, and theMLPmodel.
However, it did not consistently outperform multiple regression or penalize regression
methods across validation sets. Notably, in the same dataset, theMartin formula performed
much less effectively than the Friedewald formula in predicting the interval of TG>400
mg/dL, which was evidenced by an R2 value of −0.77. However, unlike the bias observed
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Table 4 Values of R2 andMSE for different models at various TG intervals.

Model TG category
(mg/dL)

R2 MSE PCC

Friedewald >0 and <100 0.93 96.83 0.97
≥100 and <150 0.91 135.65 0.96
≥150 and <200 0.85 213.94 0.94
≥200 and <300 0.73 380.76 0.90
≥300 and <400 0.52 711.97 0.82
≥400 −0.14 1,498.04 0.68

Sampson >0 and <100 0.93 101.82 0.97
≥100 and <150 0.91 129.90 0.96
≥150 and <200 0.88 178.68 0.94
≥200 and <300* 0.79 305.62 0.90
≥300 and <400 0.61 578.33 0.82
≥400 0.15 1,118.14 0.67

Martin >0 and <100 0.93 94.32 0.97
≥100 and <150* 0.91 124.00 0.96
≥150 and <200* 0.88 172.72 0.94
≥200 and <300 0.77 331.29 0.90
≥300 and <400 0.46 805.70 0.82
≥400 −0.77 2,320.61 0.64

RandomForest >0 and <100 0.93 94.95 0.97
≥100 and <150 0.90 142.89 0.96
≥150 and <200 0.87 185.36 0.94
≥200 and <300 0.78 321.81 0.91
≥300 and <400 0.63 554.82 0.86
≥400 0.43 740.54 0.78

XGBoost >0 and <100* 0.94 89.25 0.97
≥100 and <150 0.91 132.44 0.96
≥150 and <200 0.88 174.44 0.95
≥200 and <300 0.78 313.78 0.91
≥300 and <400 0.63 552.45 0.86
≥400 0.44 737.84 0.78

MLP >0 and <100 0.94 90.67 0.97
≥100 and <150 0.91 136.48 0.96
≥150 and <200 0.88 180.40 0.95
≥200 and <300 0.79 306.50 0.91
≥300 and <400* 0.65 522.68 0.87
≥400* 0.45 719.12 0.78

Notes.
*Indicates that the model exhibits superior predictive performance in the current interval.
All Pearson correlation coefficients obtained have P-values less than 0.001.

with the Friedewald equation, the Martin equation tends to overestimate in the high
TG range. However, due to its excellent variation coefficient, it exhibits a more optimal
prediction performance than the ML model in the 100–200 mg/dL TG interval. Compared
to the instability of the previous two formulas, the Sampson formula demonstrates superior
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Figure 7 Scatter plot comparing residual and predicted values in secondary internal validation set.
The black dashed line represents the point where the residual difference between actual and predicted val-
ues is 0. The further away from this line, the greater the error between predicted and actual values. The red
boxed area indicates an underestimation of the Friedewald formula in the lower LDL-C range.

Full-size DOI: 10.7717/peerj.19248/fig-7

predictive capability, especially in the interval where TG ranges from 200mg/dL to less than
300 mg/dL, and exhibits more optimal predictive ability than ML models. Additionally,
because the formula is closed, it offers greater convenience in calculation compared to
the Martin formula. Erturk Zararsiz et al. (2022)’s report indicates that among the three
formulas, the Sampson formula demonstrates superior predictive performance when
LDL-C results are measured together with Roche, a finding that aligns with the results.
Sampson et al. (2020) confirm that there is still a high predictive value for TG in the 400–800
mg/dL range, although this is not fully reflected in the dataset. Contrastingly, Sampson’s
predictive value for patients with TG >400 mg/dL is higher than that of the Friedewald and
Martin formulas, and it remains lower than that of machine-learning models and cannot
replace them.

Our findings demonstrate that traditional LDL-C estimation formulas, including the
Friedewald equation, exhibit a significant decrease in predictive accuracy within the
TG >300 mg/dL interval. This decrease in accuracy is particularly concerning given the
increased cardiovascular risk associated with higher TG levels, highlighting the necessity
for more reliable estimation methods in this patient subset. The results from our machine
learning models, especially random forest and XGBoost, indicate superior performance in
maintaining high predictive accuracy across all TG levels, including the challenging TG
>300 mg/dL interval.
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Figure 8 Residuals between actual and predicted values for different TG values. The dashed line on the
x-axis represents TG= 400 mg/dL, whereas the dashed line on the y-axis indicates the line where the ac-
tual value is subtracted from the predicted value of 0. In (A), the red dashed portion signifies the underes-
timation of the actual values by the Friedewald formula in the interval where TG ≥ 400 mg/dL, whereas in
(C), the red dashed line signifies the overestimation of the actual values.

Full-size DOI: 10.7717/peerj.19248/fig-8

Anudeep et al. (2022)’s study found thatMLmodels such as XGBoost and random forests
model can be utilized to predict LDL-C more accurately than traditional linear regression
formulas. However, in the research, these models did not consistently provide optimal
predictive value, particularly in certain TG concentration ranges, such as the 100–300
mg/dl interval. Moreover, the process of hyperparameter tuning and model training
incurred significant time and computational costs. Nonetheless, in the ≥400 mg/dl TG
interval, ML models indeed exhibited superior predictive value compared to traditional
linear formulas. The MLP model is typically an artificial neural network characterized
by multiple layers of nodes or neurons, with each layer connected to the next (Glorot &
Bengio, 2010) and is a versatile and widely utilized model capable of learning complex
patterns and relationships in data. The MLP model demonstrates strong predictive value
for complex data structures, an advantage that was not evident in the dataset. Specifically,
the predictive scores of the MLP model did not significantly outperform those of the other
two models. Furthermore, the sensitivity of MLP to parameters, its dependence on dataset
size, and its comparatively time-consuming nature compared to the other two models
limit its applicability (Livingstone, Manallack & Tetko, 1997). Notably, prior to training the
model, we conducted feature selection, a process aimed at enhancing model efficiency,
reducing computational complexity, and improving the predictive accuracy of regression
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Figure 9 Line graphs of assessment metrics across various models within distinct TG intervals. The
data were stratified using TG values of 0, 100, 150, 200, 300, and 400 mg/dL as thresholds. The solid lines
of different colors represent the R2 of different models, and the dashed lines indicate the MSE.

Full-size DOI: 10.7717/peerj.19248/fig-9

tasks, as well as the generalization to unknown feature data (Kumar & Minz, 2014). During
a similar study conducted by Fan et al. (2022), it was observed that machine learning
models were less susceptible to the influence of age. Instead of assessing feature importance
after training the models, we employed the Mean Decrease in Impurity (MDI) method to
evaluate feature weights before formal model training and fitting. This approach facilitated
hyperparameter tuning, thus leading to considerable savings in computational and time
costs.

Our open-sourcemachine learningmodel offers a flexible solution for LDL-C estimation
across various healthcare settings. Hospitals can adapt the model to their specific patient
populations by retraining with local data, ensuring optimal performance. This adaptability,
combined with the model’s ease of integration into electronic health records, supports
broad applicability and enhances cardiovascular risk assessment.

LIMITATIONS
The current study exhibits the following limitations: (1) the absence of beta-quantification
as a reference method, which could potentially enhance result accuracy, and (2) the lack
of pruning operations on the decision tree and random forest models, possibly leading
to an underestimation of their predictive capabilities. (3) The study evaluated only the
validity of the formulas and models on the Roche platform, thereby necessitating further
multicenter research on various analyzer platforms; thus, external validity was established.
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(4) The lack of true external validation represents a limitation of this study, as it may affect
the generalizability of the model’s performance to completely independent datasets. (5)
Additionally, the ML models were trained solely on data from our laboratory, making
them specific to the chosen dataset. While the Friedewald andMartin formulas may exhibit
broader applicability, the generalizability of our ML models for estimating LDL-C levels in
diverse populations requires additional validation.

CONCLUSION
Accurate LDL-C determination, especially in high TG ranges, remains challenging. Our
study demonstrates the effectiveness of machine learning models in overcoming this
challenge, showing better predictive performance compared to traditional methods like
the Friedewald equation. These models could enhance cardiovascular risk assessment
by providing more precise LDL-C estimates, potentially leading to more informed
treatment decisions. However, integrating these models into routine clinical practice
necessitates further validation and addressing practical issues like data availability and
computational resources. Future research should focus on validating these models across
diverse populations and evaluating their long-term predictive performance to ensure their
broad applicability and reliability.
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