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ABSTRACT
Background. Kidney renal clear cell carcinoma (KIRC), the main histological subtype
of renal cell carcinoma, has a high incidence globally. Cell-in-cell structures (CICs),
as a cellular biological phenomenon, play pivotal roles in cell competition, immune
evasion and tumor progression in the context of KIRC.
Methods. Data for this study were sourced from The Cancer Genome Atlas (TCGA),
International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus
(GEO) databases. Differentially expressed genes (DEGs) were identified using the
limma package. Enrichment analyses were performed using the clusterProfiler package.
Support vector machine-recursive feature elimination (SVM-RFE) and Least Absolute
Shrinkage and Selection Operator (LASSO) regression, implemented via the caret and
glmnet packages in R, were used to select biomarkers. The accuracy of these biomarkers
was verified by using the receiver operating characteristic (ROC) curve as well as in vitro
experiments (CCK-8 assay, wound healing assay, Transwell assay, and quantitative real-
time PCR). The CIBERSORT algorithm was applied to explore the association between
immune infiltration and the biomarkers. Further analysis explored the association
between these biomarkers and clinicopathological characteristics of KIRC. For single-
cell data, the Seurat package is used to read the sample data, and the SCTransform
function is employed for normalization.
Results. This study identified 1,256 DEGs which enriched in T-cell immune system
regulation processes. Five hub genes (CDKN2A,VIM, TGFB1,CTSS, andCDC20) were
biomarkers with area under the curve (AUC) values > 0.8, indicating high predictive
performance. In vitro validation experiments demonstrated that the expressions of
all five biomarkers in KIRC cells were elevated, and the knockdown of CTSS could
inhibit the migration and invasion of KIRC cells. Immune infiltration analysis showed
higher proportions of T-cells and macrophages in tumor tissues. CDKN2A and CDC20
expressions correlated significantly with stage and grade, while TGFB1, CDKN2A, and
CDC20 were highly expressed in proliferative tumor cells.
Conclusion. This study provides new biomarkers for KIRC, offering valuable insights
into its developmental mechanisms for the research of CIC in this disease.
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INTRODUCTION
Renal cell carcinoma (RCC) is the most frequent malignancy of the kidney (Makhov et al.,
2018a). Globally, there are approximately 434,419 new cases each year, accounting for about
2.2% of all cancers and ranking 14th (Bray et al., 2024; Tian et al., 2024). Its mortality rate
is approximately 1.6%, placing it 16th among all cancers (Bray et al., 2024). Smoking,
overweight, and obesity are established risk factors for kidney cancer (Frew & Moch, 2015).
Kidney renal clear cell carcinoma (KIRC) is currently the main histological subtype of
kidney cancer, accounting for about 80–90% of kidney cancer patients, but it has a poor
prognosis (Wang et al., 2019). Studies have reported that KIRC exhibits heterogeneity
in clinical pathology, molecular, and cellular aspects (Xie et al., 2020). However, due to
the limited availability of biomarkers for early detection and prognosis prediction, the
prognosis for KIRC patients is generally poor (Cui et al., 2020). Hence, it is urgent to
investigate the pathogenesis of KIRC and explore new molecular biomarkers for diagnosis
and prognosis (Seyfinejad & Jouyban, 2022; Liu et al., 2024; Zhang et al., 2023).

Cell-in-cell structures (CICs) represent a cellular biological phenomenon where one
living cell is enclosed within another living cell (Wang et al., 2020). CICs were initially
discovered in the context of tumor biology and are considered to play pivotal roles in cell
competition, immune evasion, and tumor progression (Fais & Overholtzer, 2018; Huang,
Chen & Sun, 2015). CICs exert various effects on cellular behavior and the functions of
both external and internal cells, encompassing cell death, cell proliferation, and immune
regulation (Wang, 2015). Increasing evidence suggests that CICs may hold prognostic and
diagnostic value for cancer patients (Su et al., 2022; Chen et al., 2013). It has been proposed
that tumor cells may utilize CIC-mediated internal cell death as ameans of immune evasion
(Sun & Chen, 2022). Consequently, research on CICs in renal cancer is of great significance
for understanding tumor biology and developing novel therapeutic strategies.

Based on the above background, this study aimed to mine molecular biomarkers
for the diagnosis and prognosis of KIRC based on CICs-related genes, and establish a
corresponding diagnostic model. Additionally, we conducted in-depth analyses of the
correlation between these biomarkers and immune infiltration, their relationship with the
clinicopathological characteristics of KIRC, and their distribution and expression in the
kidney. The significance of this study lies not only in providing new scientific evidence
for early diagnosis, prognosis assessment, and personalized treatment of KIRC, but also
in offering new possibilities for exploring the pathogenesis of renal cancer and developing
novel therapeutic strategies.
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MATERIALS AND METHODS
Data acquisition
The current research encompasses datasets from four aspects. Firstly, RNA-Seq data for
The Cancer Genome Atlas (TCGA)-KIRC were downloaded using the TCGA Genomic
Data Commons (GDC) application programming interface (API). The FPKM values were
converted to TPM and then log2-transformed, with a total of 513 primary tumor samples
and 72 adjacent normal control samples retained. Secondly, expression profiles for The
Renal Cell Cancer-European Union (RECA-EU)/Renal cell carcinoma were obtained from
the International Cancer Genome Consortium (ICGC) database, encompassing 91 primary
tumor samples and 45 adjacent normal control samples. Furthermore, the KIRC single-cell
dataset GSE224630 was obtained from the Gene Expression Omnibus (GEO) database. The
GSE224630 dataset includes tumor samples from 6 patients with untreated clear cell renal
cell carcinoma. Finally, 101 CIC-correlated genes were sourced from previous literature
(Song et al., 2022; Ren et al., 2024).

Identification and enrichment analysis of DEGs
The limma package (Ritchie et al., 2015) was utilized in the TCGA-KIRC and ICGC datasets
to screen for DEGs between KIRC patients and normal controls, and to identify common
upregulated genes across both datasets (Song et al., 2023a). The criteria for selecting DEGs
were a p< 0.05 and |log2FC| > 1. Additionally, the clusterProfiler package in R (Yu et al.,
2012) was employed to enrich the Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) of these DEGs. Adjusted p< 0.05 indicated significantly enriched
pathways (Song et al., 2023b).

Machine learning for key gene selection, diagnostic model
development, and validation
The overlapping genes obtained from the intersection of DEGs and CIC genes were further
screened using machine learning techniques. The rfe function from the R package caret
(Kuhn, 2008) was employed, utilizing the svmlinear method. During the selection of the
number of features through recursive feature elimination (RFE), the cross-validation (CV)
accuracy of the support vector machine (SVM) model was used to screen for key disease
genes. Feature selection was also conducted using Least Absolute Shrinkage and Selection
Operator (LASSO) regression from the glmnet package (Friedman et al., 2021), with key
parameters set to nfolds = 10 and family = ‘binomial’. Finally, the feature genes selected
by both the SVM-RFE and LASSO methods were intersected to obtain the biomarkers for
this study. Subsequently, the R package e1071 (Meyer et al., 2019) was used to construct
a diagnostic model using the SVM method. The accuracy of the biomarkers selected by
machine learning was tested by plotting receiver operating characteristic (ROC) curves for
KIRC samples and normal controls in the TCGA-KIRC training set. A larger the area under
the curve (AUC) indicated a higher accuracy of considering the genes as hub genes. The
validity of these genes was further verified using the ICGC validation set using the same
method.
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Correlation analysis of biomarkers with immune infiltration
The CIBERSORT package (Newman et al., 2015) was employed to quantify different
immune cells in KIRC samples and control samples. Spearman correlation coefficients
were used to perform correlation analyses between biomarkers and immune cells.

Processing and analysis of scRNA-seq data from KIRC
The Read10X function from the Seurat package (Hao et al., 2024) was utilized to read the
scRNA-seq data for each sample in GSE224630, retaining cells with a gene count between
200 and 5000 and a mitochondrial gene proportion of less than 10%. Subsequently, the
SCTransform function (Hao et al., 2024) was applied for normalization. After Principal
Component Analysis (PCA) dimensionality reduction, the harmony package (Korsunsky
et al., 2019) was used to remove batch effects among different samples. The RunTSNE
function (Hao et al., 2024) was then employed for t-Distributed Stochastic Neighbor
Embedding (TSNE) dimensionality reduction. Finally, the FindNeighbors and FindClusters
functions (Hao et al., 2024) were used for clustering, with parameters set to dims = 1:25
and resolution= 0.1. Cell subpopulations were annotated based on marker genes provided
by the CellMarker2.0 database (Hu et al., 2022). The expression patterns of the biomarkers
obtained in this study across different cell types were subsequently investigated.

Cell culture and transfection
Two cell lines, human embryonic kidney 293T (CRL-3216) and human renal clear cell
adenocarcinoma cell 786-O (CRL-1932), were all obtained from theAmerican TypeCulture
Collection (Manassas, MD, USA). These cells were cultured in DMEM (11965092, Gibco,
Waltham, MA, USA) or RPMI 1640 medium (11875093, Gibco, Waltham, MA, USA)
with the supplementation of 10% fetal bovine serum (FBS) (S9020, Solarbio Lifesciences,
Beijing, China) and 1% penicillin-streptomycin (15140148, Gibco, Waltham, MA, USA).
All cells were tested via short tandem repeat profiling and incubated in the incubator at
37 ◦C with 5% CO2.

For the liposome transfection, the small interfering RNA againstCTSS (si-CTSS) and the
control small interfering RNA (si-NC) were all purchased from GenePharma (Shanghai,
China) and transfected into 786-O cells with the use of lipofectamine 2000 transfection
reagent (11668027, Invitrogen, Carlsbad, CA, USA) as per the manuals. The sequences
applied for the transfection were 5′-TCACATATAAGTCAAACCCTA-3′.

CCK8 assay
During the logarithmic phase, 786-O cells were plated in a 96-well plate with a density of
1 × 104 cells per well and incubated at 37 ◦C in an atmosphere containing 5% CO2 for
0, 24, or 48 h. Subsequently, 10 µL of CCK-8 reagent was added to the medium, and the
samples were incubated at 37 ◦C for 2 h. To generate the CCK-8 curve, the absorbance
was measured at 450 nm, which served as the ordinate, while time was represented on the
abscissa. The results were averaged from three independent experimental repeats.

Cell migration assay
The transfected 786-O cells (5 × 105 cells/well) were cultivated in a six-well plate with
serum-free media. When they achieved complete confluence, a 200-µL sterile pipette tip
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was used to create an artificial scratch on the monolayer. Forty-eight h later, the cells were
photographed by an inverted optical microscope (DP27, Olympus, Tokyo, Japan), and
the wound closure (%) was quantified correspondingly to assess the migration of KIRC
cells (Zhang et al., 2024). Wound closure (%) = (Initial scratch width–scratch width at
measurement time point)/Initial scratch width ×100%.

Cell invasion assay
For the invasion assay, 786-O cells (1× 105/100 µL) were suspended in 200 µL serum-free
medium and plated in the upper Transwell chamber (3422, Corning, Inc., Corning, NY,
USA) coated with matrix gel (C0372, Beyotime, China), while the lower chamber was filled
with 700 µL culture media containing 10% bovine calf serum. After 48 h, the invaded cells
were fixed by 4% paraformaldehyde (P0099, Beyotime, Shanghai, China) and stained with
0.1% crystal violet (C0121, Beyotime, Shanghai, China) for 30 min. Then, three random
fields were observed under an inverted optical microscope (DP27, Olympus, Japan), and
the number of invaded cells was quantified (Wang et al., 2023).

QRT-PCR experiment
Following the instructions, total RNA was isolated from 293T and 786-O cells using the
TriZol total RNA extraction kit (15596026, Invitrogen, Carlsbad, CA, USA). Subsequently,
the concentration of the isolated RNA was determined. Then, complementary DNA was
synthesized by reverse transcription with a relevant assay kit (D7178S, Beyotime, Shanghai,
China). After that, SYBR Green qPCR Mix (D7260, Beyotime, Shanghai, China) was used
for the PCR assay according to the protocols. Finally, the relative level was calculated by
the 2−11CT method with GAPDH as the reference gene. The qRT-PCR primers used in
this study were designed according to National Center for Biotechnology Information
(NCBI) sequences using Primer Premier 6 software. The sequences of the primers used
were presented in Table S1.

Statistical analysis
All statistical analysis was conducted using R (version 3.6.0). The t -test was performed
on continuous variables between two groups. Data normality was assessed using the
Shapiro–Wilk test. If normality assumptions were violated, the Wilcoxon rank-sum test
was performed as a supplementary analysis. To investigate the correlation between gene
expression and immune cell fractions, Spearman’s rank correlation test was employed. A
p< 0.05 signified a significant level. Sangerbox (http://sangerbox.com/) provided assistance
with this study (Shen et al., 2022).

RESULTS
Differential gene selection and enrichment analysis
Comprehensive differential gene expression analysis was conducted on tumor and
control samples within the TCGA-KIRC and ICGC datasets (Figs. 1A–1B). Subsequently,
upregulated genes common to both the TCGA and ICGC datasets were identified, totaling
1,256 (Fig. 1C). Functional enrichment analysis, including KEGG pathway analysis and GO
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analysis, was performed on these commonly upregulated genes. The top 10 enriched KEGG
pathways included Human T-cell leukemia virus 1 infection, PI3K-Akt signaling pathway,
Cytokine-cytokine receptor interaction, Phagosome, Epstein-Barr virus infection, and cell
adhesion molecules (CAMs) among others (Fig. 1D). The results of the GO functional
enrichment analysis covered biological process (BP), cellular component (CC), and
molecular function (MF) aspects. The top five GO functional enrichments indicated that
these genes were significantly involved in critical processes related to immune system
regulation, such as regulation of lymphocyte activation, MHC protein complex, regulation
of T cell activation, peptide antigen binding, T cell activation, regulation of leukocyte
activation, and leukocyte cell–cell adhesion (Fig. 1E).

Machine learning for biomarkers screening
Twelve overlapping genes were obtained by intersecting the DEGs with CIC genes. When
selecting the number of features using the RFE method, the trend of the CV accuracy of
the SVM model with the number of features can be observed. It can be seen that when the
number of selected features is six, the model’s CV accuracy reaches its maximum (Fig. 2A).
To further screen the genes, LASSO regression analysis was employed. Figure 2B displayed
the changes in regression coefficients for different gene features in LASSO regression as
the penalty parameter (λ) varies, showing the deviance at the optimal λ value determined
by 10-fold CV. By intersecting the genes obtained from both the RFE-SVM and LASSO
methods, five hub genes were ultimately identified as biomarkers in this study, namely
CDKN2A, VIM, TGFB1, CTSS, and CDC20 (Fig. 2C). Figures 2D–2E demonstrated the
differential expression of these hub genes between tumor samples and normal controls,
showing that all biomarkers are expressed higher in the tumor group than the control
group in both the TCGA training set and the ICGC validation set (p< 0.0001).

Construction and verification of the diagnostic model
The five biomarkers were integrated to establish a diagnostic model, and the predictive
ability of this model in the TCGA training set was assessed using ROC curves. Each
curve represents a hub gene, and the AUC value was used to explore the gene’s ability to
distinguish between diseases. The results showed that the AUC > 0.8 (Fig. 3A), indicating
that these genes had high predictive power. Figure 3B displayed the ROC curve for the
overall predictive ability of the constructed SVM model, with an AUC of 0.962, suggesting
that the model exhibits very high predictive performance in distinguishing between KIRC
and normal samples. The confusion matrix of the classification model demonstrated
the classification results for the tumor group and the control group (Fig. 3C), further
validating the robustness of the model in distinguishing between the two groups of
samples. Subsequently, the same method was used for validation in the ICGC validation
set. Both the AUC values for individual genes and the overall AUC value for the SVM
model were above 0.8, indicating that the diagnostic model in this study has high predictive
performance (Figs. 3D–3F).

Wang and Zhang (2025), PeerJ, DOI 10.7717/peerj.19246 6/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.19246


Figure 1 Acquisition and enrichment analysis of differential genes. (A) Volcano plot of DEGs in the
TCGA cohort; (B) Volcano plot of DEGs in the ICGC cohort; (C) Venn diagram of upregulated genes
common to both the TCGA and ICGC cohorts; (D) KEGG pathway enrichment analysis of DEGs; (E) GO
enrichment analysis of DEGs in terms of BP, CC, and MF.

Full-size DOI: 10.7717/peerj.19246/fig-1
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Figure 2 Machine learning for biomarkers screening. (A) The curve of CV accuracy varying with the
number of features selected by the RFE method; (B) The changes in regression coefficients of gene features
in the LASSO regression model and the optimal penalty parameter (λ) determined through CV. The red
dashed line indicates the selected optimal λ value, which corresponds to a relatively small number of fea-
tures while ensuring good predictive performance of the model; (C) A Venn diagram showing the inter-
section of feature genes selected by both the RFE-SVM and LASSO methods; (D) The expression levels of
feature genes in the tumor group versus the control group within the TCGA training set, with **** indi-
cating p < 0.0001; (E) The expression levels of feature genes in the tumor group versus the control group
within the ICGC validation set, with **** indicating p< 0.0001.

Full-size DOI: 10.7717/peerj.19246/fig-2

Correlation between biomarkers and immune infiltration
To investigate the relationship between immune cells and key biomarkers, Figs. 4A–4B
presented the distribution of different types of immune cells in normal and KIRC tissues.
Overall, immune cells such as macrophages (M0, M1, M2) and T-cells (including CD8+

T-cells, regulatory T-cells), and others were significantly more abundant in tumor tissues
compared to normal tissues (p< 0.05), while B-cells (B cells naive) were more prevalent
in normal tissues (p< 0.05). These differences showed slight variations between the TCGA
training set and the ICGC validation set, for example, there was a significant difference in
M2 macrophages between the tumor group and the control group in the TCGA training
set, but not in the ICGC validation set. However, the overall results were consistent. Finally,
the correlation between hub genes and immune cell scores in tumor samples was calculated
and presented using correlation coefficients (ranging from −1 to 1) and significance levels
(indicated by asterisks). The results indicated that these genes have significant correlations
with multiple types of immune cells, and these correlations were particularly concentrated
in T-cells and macrophages (Figs. 4C–4D). Among them, T cells CD4 memory activated
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Figure 3 Validation of biomarkers and diagnostic model. (A) ROC curves for hub genes’ expression
in TCGA; (B) ROC curve for overall predictive performance of the model in TCGA; (C) Confusion ma-
trix showing classification results for tumor group and control group in TCGA; (D) ROC curves for hub
genes’ expression in ICGC; (E) ROC curve for overall predictive performance of the model in ICGC; (F)
Confusion matrix showing classification results for tumor group and control group in ICGC.

Full-size DOI: 10.7717/peerj.19246/fig-3

and T cells CD4 memory resting showed significant differences across 5 biomarkers in the
TCGA training set (p< 0.05).

Relationship between hub genes and clinicopathological
characteristics of KIRC
Next, we observed at the expression levels of the five hub genes in relation to clinical stage
and grade. As shown in Fig. 5A, the expression levels ofCDKN2Awere significantly different
in different stages and grades (p< 0.01). The expression of VIM and CTSS did not change
significantly across different stages or grades (Figs. 5B, 5D). The trend in the expression level
of the TGFB1 gene across different stages and grades was not significant, although there
was a slight increase in Stage III and IV, it did not reach statistical significance (Fig. 5C).
The expression level of CDC20 gene produced significant changes with the progression of
clinical stage and grading, and its expression level was significantly up-regulated in Stage
IV and G4 (Fig. 5E, p< 0.001). These results imply that these hub genes may be closely
associated with tumor progression in KIRC.

Distribution and expression of hub genes in the kidney
Six major cell clusters were identified from public scRNA-seq datasets. These clusters
included endothelial cells, Natural killer T (NKT) cells, fibroblasts, B cells, tumor cells,
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Figure 4 Correlation between biomarkers and immune infiltration. (A) Distribution of different types
of immune cells in normal and tumor tissues in the TCGA training set. (B) Distribution of different types
of immune cells in normal and tumor tissues in the ICGC validation set. (C) Heatmap of correlations be-
tween biomarkers (CDKN2A, VIM, TGFB1, CTSS, CDC20) and different types of immune cells in the
TCGA training set. (D) Heatmap of correlations between biomarkers (CDKN2A, VIM, TGFB1, CTSS,
CDC20) and different types of immune cells in the ICGC validation set. * p < 0.05, ** p < 0.01, *** p <
0.001, **** p< 0.0001.

Full-size DOI: 10.7717/peerj.19246/fig-4
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Figure 5 Expression levels of 5 biomarkers (CDKN2A, VIM, TGFB1, CTSS, CDC20) in patients at
different stages and grades. (A) The expression levels of CDKN2A in patients with different stages and
grades in the TCGA training set and the ICGC validation set; (B) The expression levels of VIM in patients
with different stages and grades in the TCGA training set and the ICGC validation set; (C) The expression
levels of TGFB1 in patients with different stages and grades in the TCGA training set and the ICGC valida-
tion set; (D) The expression levels of CTSS in patients with different stages and grades in the TCGA train-
ing set and the ICGC validation set; (E) The expression levels of CDC20 in patients with different stages
and grades in the TCGA training set and the ICGC validation set.

Full-size DOI: 10.7717/peerj.19246/fig-5

and proliferative tumor cells (Fig. 6A). Further gene expression characteristics were used
to demonstrate the marker genes of various cell types. For instance, genes highly expressed
in B cells included CD79A and MS4A1, endothelial cells specifically expressed PLVAP,
VWF, and EMCN, fibroblasts specifically expressed COL3A1 and COL1A2, NKT cells
specifically expressed GZMA, NKG7, and GNLY, while proliferative tumor cells and tumor
cells expressed specific tumor marker genes such as MKI67 and EPCAM, respectively
(Fig. 6B). Comparison of the proportions of various cell types in the samples revealed that
tumor cells accounted for the highest proportion, reaching 42%, followed by endothelial
cells and B cells, each accounting for 19%, fibroblasts accounting for 17%, and NKT
cells and proliferative tumor cells accounting for the smallest proportions (Fig. 6C).
Finally, the expressions of key hub genes in different cell types was further analyzed. These
results demonstrated that TGFB1, CDKN2A, and CDC20 were significantly expressed in
proliferative tumor cells, CTSS was most prominently expressed in B cells, while VIM was
expressed in multiple cell types (Fig. 6D).

Cellular validation based on in vitro experiment
The possibilities of CDKN2A, VIM, TGFB1, CTSS and CDC20 as biomarkers of KIRC
were further verified through in vitro experiments. The mRNA expression levels of these
five genes were calculated, and it was found that the expressions of all these five genes in
786-O KIRC cells were significantly higher than those in 293T cells (Fig. 7A, p< 0.05).
Since we observed a significant up-regulation of CTSS expression in KIRC cell lines relative
to the other key genes screened, and its less studied in CTSS in KIRC. For this reason,
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Figure 6 Distribution and expression of hub genes across six major cell clusters. (A) Cluster analysis
of KIRC cells using the TSNE dimensionality reduction method; (B) Bubble plot showing the expression
levels of marker genes for each cell type; (C) Proportion distribution of various cell types across the entire
KIRC sample; (D) Expression profile of hub genes in six major cell types. ***p< 0.001.

Full-size DOI: 10.7717/peerj.19246/fig-6

the impact of CTSS silencing on the biological function of KIRC cells was investigated
(Fig. 7B). CCK-8 results showed that silencing the expression of CTSS significantly reduced
the proliferative capacity of 786-O cells (Fig. 7C, p< 0.001). Furthermore, the relevant
results demonstrated that the silencing of CTSS led to a reduction in the migration and
invasion capabilities of KIRC cells (Figs. 7D–7E, p< 0.001).

DISCUSSION
RCC accounts for about 2.2% of all newly diagnosed cancer cases, and over the past
three decades, its incidence has been steadily rising across all stages (Bray et al., 2024).
While early diagnosis of RCC is associated with a relatively favorable prognosis, KIRC is
characterized by the absence of early warning signs (Cuadros et al., 2013). Notably, CICs
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Figure 7 In vitro validation results. (A) Quantified mRNA expression levels of CDKN2A, VIM, TGFB1,
CTSS, and CDC20 in 786-O cells and 293T cells. (B) qRT-PCR to verify CTSS knockdown efficiency in
786-O cells. (C) The effect of CTSS knockdown on 786-O cells proliferation was determined based on
CCK-8. (D) The wound healing assay was used to assess the effect of CTSS knockdown on 786-O cell mi-
gration. (E) Transwell assay was used to assess the effect of CTSS knockdown on the invasive capacity of
786-O cells. All data of three independent trials were expressed as mean± standard deviation. * p< 0.05,
** p< 0.01, **** p< 0.0001, and ns stands for no significant difference.

Full-size DOI: 10.7717/peerj.19246/fig-7

have been identified to occur between homotypic tumor cells or between immune cells
and tumor (or other tissue cells) (Mackay & Muller, 2019), presenting a novel direction
for KIRC research. Based on this, the current study employed machine learning methods
to screen and identify five biomarkers (CDKN2A, VIM, TGFB1, CTSS, and CDC20).
The reliability of these biomarkers has been verified by in vitro experiments. A diagnostic
model with good predictive performance was established using these five biomarkers. In
additional, the results of immune infiltration showed a higher proportion of T-cells and
macrophages in tumor tissues. These findings open up new potential avenues for exploring
and developing novel therapeutic approaches for KIRC, offering potential possibilities for
improving patient treatment outcomes and prognosis.

Numerous studies have demonstrated that the PI3K-Akt signaling pathway exhibits
aberrant activation during the genesis and development of various tumor types, KIRC
included (Makhov et al., 2018b). Activation of this pathway typically results in dysregulated
cell—cycle control, augmented anti-apoptotic capabilities, and immune evasion within the
tumor microenvironment, all of which drive tumor progression and metastasis (Xie et al.,
2020). Specifically in KIRC, the abnormal activation of the PI3K-Akt pathway is intricately
associated with tumor cell proliferation, angiogenesis, and drug resistance (Chen et al.,
2023). In our research, we observed a remarkable enrichment of upregulated genes from
both the TCGA and ICGC datasets in this very pathway. Consequently, the PI3K—Akt
pathway holds great potential as a viable therapeutic target for KIRC. Inhibiting its activity
could be an effective strategy to curtail tumor growth and enhance the effectiveness of
treatment regimens.
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Importantly, this study identified five biomarkers, namelyCDKN2A,VIM,TGFB1,CTSS,
andCDC20. Among them, theCDKN2A gene is located in the frequently deleted p21 region
on chromosome 9 and is widely recognized as a tumor suppressor (Zhao et al., 2016; Gil
& Peters, 2006). The accumulation of various genetic alterations, including the CDKN2A
gene, underlies the development of RCC (Dulaimi et al., 2004). CDKN2A is considered
a key target for 9p deletions in multiple tumors, particularly RCC, due to its frequent
inactivation through homozygous deletions or hypermethylation in the promoter region
(Vidaurreta et al., 2008; Schraml et al., 2001). In 9.5% of RCC samples, the CDKN2A gene
is lost along with other genetic materials, and these samples exhibit sarcomatoid features,
a highly aggressive form of RCC that may benefit from immunotherapy (Kiatprungvech
et al., 2024), which also corroborates with the significant correlation between the CDKN2A
gene and immune cell infiltration observed in our study. Additionally, research has proven
that inhibiting CDKN2A effectively promotes the formation of homologous CICs, and the
activation of CIC-mediated cell death can serve as a barrier against potential malignant
transformation induced by the inactivation of tumor suppressor genes likeCDKN2A (Liang
et al., 2018), suggesting that CDKN2A, as a CIC-related gene, holds potential therapeutic
promise for KIRC and warrants further investigation. In this study, we observed an upward
trend inCDKN2A gene expression levels in patients with KIRC, particularly those at G3 and
G4 stages. However, contrary to this, earlier studies in laryngeal squamous cell carcinoma
found an increased frequency of CDKN2A gene hypermethylation in patients at the G3
stage (Smigiel et al., 2004). This implies that the expression regulatory mechanisms of the
CDKN2A gene may differ among different types of cancers, and there may be a complex
relationship between its expression changes and cancer progression stages.

The VIM gene is located on chromosome 10p13 and serves as a major component
of the mesenchymal cytoskeleton (Shi et al., 2015). Research on malignant tumors has
shown that VIM functions crucially in cell cycle regulation, migration, adhesion, and
the epithelial-mesenchymal transition (EMT) process in cancer (Yao et al., 2020). Recent
research reports indicate that VIM protein can influence immune cells infiltration in the
tumor microenvironment (Dutsch-Wicherek, Lazar & Tomaszewska, 2011). Prior studies
have also found that VIM is an independent factor for the prognosis of KIRC (Xu et al.,
2020). TGFB1, a cytokine with regulatory functions, has been reported in the literature
to exhibit both stimulatory and inhibitory properties in regulating tissue homeostasis,
developmental processes, tissue remodeling, and disease states such as cancer (Ingman
& Robertson, 2009; Ciftci et al., 2014). Previous experiments have confirmed that the
expression level of TGFB1 is significantly elevated in KIRC tissues than normal kidney
tissues (Takahara et al., 2022).CTSS, one of the 11members of the cysteine protease family,
is closely associated with various pathological conditions, including in cancers (Wilkinson
et al., 2019). Recent research efforts have elucidated the key role of CTSS in influencing
the pathogenesis of chronic kidney disease (Steubl et al., 2017). Experimental results show
that the expression of CTSS is noticeably promoted in KIRC tissues compared to normal
kidney tissues (Zhou et al., 2024). Based on this, in this study, CTSS was silenced for in
vitro experimental verification, and the results also demonstrated that CTSS silencing
could inhibit the migration and invasion of KIRC cells. Additionally, this study also found
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that CTSS expression is particularly prominent in B cells. This finding echoed previous
research, which also pointed out that CTSS exhibits high expression in antigen-presenting
cells (APCs) and the lysosomes of malignant B cells (Bararia et al., 2020). In summary,
these discoveries all confirm the correlation between VIM, TGFB1, and CTSS with KIRC,
thus suggesting their potential as biomarkers for KIRC.

CDC20 functions as an oncogenic regulator at multiple critical nodes of the cell cycle and
is negatively regulated by the tumor suppressor protein p53, thus being considered a highly
promising therapeutic target (Wang et al., 2015; Kidokoro et al., 2008). This study reveals
that CDC20 expression levels exhibit a significant increase with the advancement of clinical
stage and grade. Notably, CDC20 can directly bind to and activate the anaphase-promoting
complex in conjunction with another important regulatory molecule, E-cadherin, which
plays a vital part in the precise regulation of cell entry into and exit from mitosis (Schrock
et al., 2020). Given that previous studies have shown substances such as APCCDC20 to
function in the transition frommetaphase to anaphase by disrupting key cell cycle regulators
(Yu, 2007), this discovery further implies that CDC20 may occupy a pivotal position in
disease progression (Zeng et al., 2010). Numerous studies have indicated that CDC20 is not
only a potential effective target for various cancer therapies but also a potential biomarker
for prognosis (Yuan et al., 2017). Moreover, in previous research on KIRC, CDC20 was
also identified as a biomarker (Gu et al., 2017).

Our analysis of immune infiltration showed that the proportions of immune cells such
as T cells and macrophages in tumor tissues were remarkably higher than those in normal
tissues, and five biomarkers were identified to have significant correlations with T cells
and macrophages. Previous studies have shown that in KIRC, the deletion or dysfunction
of CDKN2A is closely associated with an inflammatory immune phenotype and the
exhaustion state of CD8+ T cells (Sobottka et al., 2024). Notably, the number of these
exhausted CD8+ T cells tend to increase relatively in metastatic sites, which may be linked
to the immune escape mechanisms of tumors (Sobottka et al., 2024). On the other hand,
CTSS within the cysteine cathepsin family is unique due to its limited tissue expression,
primarily associated with antigen-presenting cells in lymph nodes and spleen, as well as
other immune cells, especially macrophages (Wilkinson et al., 2015). Additionally, this
study also found that the upregulated DEGs were enriched in immune regulation-related
pathways such as T cell activation, Human T-cell leukemia virus 1 infection (HTLV-1), and
regulation of T cell activation. Adult T-cell Leukemia/Lymphoma (ATL) is a CD4+ T-cell
malignancy caused by infection with HTLV-1 (Liu et al., 2005). CDC20 plays an important
part in the pathogenesis and development of ATL by mediating mitotic defects and the
advancement of aneuploid cells (Bruno et al., 2022). This discovery also corroborates the
correlation between the biomarkers obtained in this study and T-cell-related immune
pathways. In summary, these findings could improve our understanding of the immune
microenvironment in KIRC, but also offer potential targets for the development of novel
immunotherapies targeting this disease.

However, this study has certain limitations. Firstly, although the data of this study
underwent rigorous screening and analysis, it is constrained by the sample size and
the homogeneity of data sources, which may, to a certain extent, undermine the broad
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applicability and reliability of the research findings. To enhance the universality and
persuasiveness of the conclusions, future research needs to expand the sample size and
strive to encompass diverse patient populations and disease stages, while incorporating
high-quality data from multiple sources. Furthermore, the specific molecular mechanism
by which the biomarkers identified in this study affect immune infiltration remains unclear.
Looking ahead, we plan to use advanced molecular biology techniques to deeply investigate
the interactions between the identified biomarkers and various intracellular signaling
pathways, with a particular focus on the specific pathways and mechanisms by which they
act on immune infiltration, in the hope of revealing the underlying biological mysteries
and providing a more solid theoretical basis for the diagnosis of KIRC and treatment.

CONCLUSION
This study identified five core biomarkers associated with CICs in KIRC through
transcriptome analysis and machine learning methods: CDKN2A, VIM, TGFB1, CTSS,
and CDC20. The diagnostic model constructed based on these biomarkers demonstrated
good predictive performance. Importantly, these biomarkers were significantly correlated
with the infiltration of specific immune cells in the tumor microenvironment, suggesting
that these genes may be involved in regulating the immune evasion mechanism of KIRC.
Additionally, the expression levels of CDKN2A and CDC20 showed significant differences
in clinical stage and pathological grade. Finally, in vitro experiments verified that silencing
CTSS inhibited KIRC cell proliferation, migration, and invasion, further supporting its
potential as a therapeutic target. In conclusion, this study provides new molecular targets
for the early diagnosis, prognosis assessment, and personalized treatment of KIRC, offering
important insights for future therapeutic strategies.
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