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Background: The beet armyworm (BAW), Spodoptera exigua, is a destructive migratory
pest worldwide that has caused severe economic losses in China's major crop-producing
regions. To control this pest effectively, it is crucial to investigate its seasonal genetic
variation and population genetic structure in northern China. Methods: In this study, we
used eight nuclear microsatellite loci to investigate the seasonal genetic div@ty and
genetic structure of BAW in Shenyang, Liaoning Province, Northeast China, from
2012-@8. Results: Microsatellite data revealed moderate levels of genetic variation
among 50 seasonal populations of BAW sampled from 2012-2@, along with significant
genetic differentiation among these populations. Neighbor-joining dendrograms,
STRUCTURE analysis, and principal coordinate analysis (PCoA) revealed two genetically
distinct groups: the SY2012-2018 group and the SY2019-2022 group. Our results revealed
seasonal variation in the genetic subconstruction at this location, which may be related to
the presence of different migratory individuals throughout the year. Accordingly, our
unique insights into the population genetics of BAW will contribute to the development of
effective management strategies for this migratory pest.
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Abstract

Background: The beet armyworm (BAW), Spodoptera exigua, is a destructive migratory pest
worldwide that has caused severe economic losses in China's major crop-producing regions. To
control this pest effectively, it is crucial to investigate its seasonal genetic variation and population
genetic structure in northern China.

Methods: In this study, we used eight nuclear microsatellite 10@) investigate the seasonal genetic
diversi@qd genetic structure of BAW in Shenyang, Liaoning Province, Northeast China, from
2012-20[)

Results: Microsatellite data revealed moderate levels of genetic variation among 50 seasonal
populations of BAW sampled from 2012-2018, along with significant genetic differentiation
among these populations. Neighbor-joining dendrograms, STRUCTURE analysis, and principal
coordinate analysis (PCoA) revealed two genetically distinct groups: the SY2012-2018 group and
the SY2019-2022 group. Our results revealed seasonal variation in the genetic subconstruction at
this location, which may be related to the presence of different migratory individuals throughout
the year. Accordingly, our unique insights into the population genetics of BAW will contribute to

the development of effective management strategies for this migratory pest.

Key words: Spodoptera exigua; genetic structure; microsatellites; migration; seasonal variation;

Welsh onion
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Introduction

The beet armyworm (BAW), Spodoptera exigua (Lepidoptera: Noctuidae), is a major polyphagous
pest affecting a wide range of crops, including vegetables, maize, cotton, soybeans, and ornamental
plants (Adamczyk et al., 2009; Guo et al., 2010). In general, BAW larvae feed on the leaves of
host plants, resulting in reduced crop yields and potential plant death. Originally from South Asia,
this species is now widely distributed across the tropical and temperate regions of Europe, Africa,
North America, and Asia (Wei et al., 2010). In China, BAW was first recorded in Beijing in the
1890s. It is widely distributed in the primary crop-producing regions of China and has caused
significant economic losses in recent years. For example, the beet armyworm has spread to several
provinces in North China and East China, infesting a total area exceeding 2.7 million hectares (Luo
et al., 2000). This pest particularly affects Welsh onions in northern China, which infest over 8,000
hectares in Tianjin and result in a 30% reduction in annual Welsh onion production (Zheng et al.,
2009; Zhu et al., 2010).

BAW is a polyphagous insect known for its high fecundity and long-distance flight capabilities
(Feng et al., 2003; Adamczyk et al., 2009). Typically, the eggs of this species are laid on the
undersides of leaves. Newly hatched larvae feed gregariously on the upper surfaces of the leaves,
whereas third-instar larvae begin to feed solitarily. By the fourth instar, they start consuming a
variety of plant parts, including leaves, petals, and pods. Pupae predominantly overwinter in the
soil, with no overwintering occurring in South China. BAW can reproduce year-round, and no
diapause behavior has been observed (Zheng et al., 2011). Previous studies have indicated that
BAW migrates seasonally once a year in eastern China (Si et al., 2012). There were significant
interannual and seasonal variations in the capture number of BAW in northern China from 2012
to 2022, and the bi@ss of BAW also increased significantly during these years, which will
contribute to a deeper understanding of population dynamics in northern China and provide a
theoretical basis for regional monitoring, early warning, and the development of effective
management strategies for long-range migratory pests (Ma et al., 2024). In addition, chemical

pesticides remain the primary method for pest control. However, the prolonged use of these
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insecticides has led to the rapid development of resistance in BAW, notably to chlorinated
hydrocarbons and carbamates (Chaufaux@erron, 1986). Therefore, effectively controlling this
pest is difficult.

Populations of short-lived organisms can adapt to seasonal changes through various mechanisms,
including genetic polymorphisms and phenotypic plasticity. These populations typically harbor
significant adaptive genetic variation, enabling them to respond rapidly to environmental shifts
(Brennan et al., 2019). The genetic variation and population genetic structure of a species can be
influenced by numerous factors, including climate change, ecological conditions, natural barriers,
migration patterns, and human activities (Fairley et al., 2000; Prugh et al., 2008; Pauls et al., 2013;
Nater et al., 2013). Currently, a range of molecular markers are utilized to illumix@ the
biogeography and evolutionary history of this species (Susanta, 2006). Owing to its moderate
evolutionary rate and distinct evolutionary pattern, the cyfochrome c oxidase subunit I (COI) gene
is well suited for reconstructing species phylogenies (Hebert et al., 2003; Wang et al., 2014).
Owing to their high codominance and significant polymorphism, microsatellite markers have been
widely utilized in population genetics studies (Aggarwal et al., 2007; Wang et al., 2007; Zhu et al.,
2020). Previous studies using amplified fragment length polymorphism (AFLP) and mitochondrial
genes (e.g., mtDNA COI and Cytb) have indicated low levels of genetic variation and
differentiation among BAW populations, with no clear phylogeographic structure (Niu et al., 2006;
Wang et al., 2014; Wang and Zhou, 2016; Zhou et al., 2017). In contrast, two genetically distinct
groups have been identified in Iran and western China (Golikhajeh et al., 2018; Wang et al., 2020).
These studies provide valuable information for understanding the dispersal patterns and causes of
outbreaks of pest species. However, accurate assessments of the genetic diversity and population
genetic structure of this pest across large temporal scales in northern China have not been
performed.

In the present study, we investigated the seasonal genetic variation and structure of BAW in
northern China. We utilized microsatellite loci to assess genetic variation, genetic differentiation,

and population structure across 50 seasonal populations of BAW collected from October 2012 to
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2022 in Shenyang, Liaoning Province. Additionally, we discuss potential management strategies
for this species. This research aims to deepen our understanding of the population genetics of this
moth and provide a robust theoretical foundation for developing effective pest management

strategies.

Materials & Methods

Sample collection and DNA extraction. A total of 1095 male adult BAW individuals of 50
seasonal populations were collected via three sex pheromone traps (Pherobio Technology Co. Ltd.,
Beijing, China) in a Welsh onion field, covering an area of approximately one hectare (123.57°N,
41.82°E) over a period of 11 years, from June to October 2012 to 2022 in Shenyang, Liaoning
Province. The distance between the three traps set in the field is 30 meters. The traps used were
cylindrical plastic devices, approximately 30 cm in height and 18 cm in diameter, with 16 one-
way entrances on the top designed to capture pests. The pheromones used in this study were
contained in small PVC lures (Pherobio Technology Co., Ltd., Beijing, China). The cis-9, trans-
12-tetradecadienyl acetate and cis-9-tetradecadienol are the key components of pheromones (Ma
et al., 2024). The number of trapped male adult BAW individuals was recorded weekly, and the
trap lures were replaced every two weeks. Samples were collected on private land with permission
of the land owners (Guo-Qing Xu). All the BAW samples were preserved in 95% ethanol at —20
°C and stored at the Plant Protection College, Shenyang Agricultural University, Shenyang, China.
Details regarding the locations of the populations and the number of samples are provided in Table
S1. The samples were collected from private land with the permission of the landowners, and none
of the field surveys in this study involved endangered or protected species. Genomic DNA was
extracted from individual samples via Qiagen’s DNeasy Blood & Tissue Kit (Qiagen, Valencia,
CA) following the manufacturer’s protocols.

Microsatellite amplification and genotyping. In this study, individuals were genotyped via eight
loci (Spe06, Spe07, Spe08, Spe09, Spel0, Spell, Spel2, and Spel5) from a set of polymorphic

microsatellite loci provided by Kim et al. (2012). Each microsatellite locus was assigned a unique
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fluorophore for fluorescent tagging of the DNA. For these isolated microsatellites, each PCR
mixture consisted of 1.0 units of EasyTaq DNA polymerase, 2.5 mM dNTP mixture, 0.5 pL of
DNA template, 1x EasyTaq® buffer (containing 2 mM MgCl,; TransGen Biotech Co., Ltd.,
Beijing, China), and 0.4 uM of each primer, which was labelled with the fluorochromes HEX or
FAM (Sangon Biotech, Shanghai, China). The PCR amplification conditions were as follows:
initial denaturation at 94 °C for 4 minutes, followed by 30 cycles of denaturation at 94 °C for 30
seconds, annealing at 58 °C for 30 seconds, and extension at 72 °C for 30 seconds. A final
extension was performed at 72 °C for 5 minutes. After amplification, the products were visualized
at Sangon Biotech Co., Ltd. (Shanghai, China) via an ABI 3730XL automated sequencer (Applied
Biosystems, Foster City, CA, USA). The microsatellite alleles were analysed with GeneMapper
4.0 software (Applied Biosystems). The raw reads of the amplified fragment length from 1095
individuals of BAW are shown in Table S2.

Microsatellite data analyses

Genetic variation and genetic differentiation. Micro-Checker 2.2.3 was utilized to detect errors
and null alleles in BAW microsatellite genotypes, excluding individuals with missing data (Van
Oosterhout et al., 2004). In the basic data table, missing genetic data are replaced with “0”. When
Structure software was used for group analysis, the missing data were replaced with “-9”.
Genotypic linkage disequilibrium (LD) was assessed for all pairs of loci across populations via
Genepop 3.4 with exact probability tests (Raymond & Rousset, 1995). An exact test for
Hardy—Weinberg equilibrium (HWE) was conducted for each locus as well as for all loci within
each population.

Genetic diversity indices, including the mean number of alleles (Na), effective number of alleles
(Ne), Shannon's information index (/), observed heterozygosity (Hp), expected heterozygosity
(He), and unbiased expected heterozygosity (uH.), were assessed via GenAlEx 6.5 (Peakall and
Smouse, 2006). The allelic richness (4g), fixation index (Fst), and inbreeding coefficient (Fis)
among populations were calculated via FSTAT 2.9.3.2 (Goudet, 1995), whereas the polymorphism

information content (P/C) was computed via Cervus 2 (Hearne et al., 1992). To assess the degree
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149  of genetic differentiation between pairs of BAW populations, we calculated pairwise Fgr values
150  via Arlequin 3.0 (Excoffier et al., 2005) and created associated heatmaps of these values via R
151 statistical software 3.0.2 (Dean and Nielsen, 2007).

152 Temporal genetic structure. To investigate the temporal population structure of BAW, we
153 followed a stepwise process. First, we used POPTREE 2 to construct an unrooted tree via the
154  neighbor-joining method (Takezaki et al., 2009). Next, we employed a Bayesian clustering model
155 to assess the degree of genetic structure and admixture among populations. The software
156 STRUCTURE 2.3 (Evanno et al., 2005) was utilized to identify clusters of genetically similar
157 populations. We specified an initial range of potential genotype clusters (K) from 1-10 under the
158 admixture model, assuming correlated allele frequencies among populations (Falush et al., 2003).
159 The Markov chain Monte Carlo simulation was run 10 times for each value of K, with a total of 5
160 < 10 iterations following a burn-in period of 5 x 10% The most likely number of clusters was
161 determined via the 4K approach values and the mean posterior probability (Inp(D)) values (Evanno
162 et al., 2005), as implemented in Structure Harvester 0.56.3 (Earl and vonholdt, 2012). The final
163  results were visualized as bar plots by finding the optimal alignment of the ten replicate analyses
164 of the ‘best” K in CLUMPP 1.1 (Jakobsson & Rosenberg, 2007) and visualized with DISTRUCT
165 1.1 (Guillot et al., 2012). Third, we conducted principal coordinate analysis (PCoA) on the basis
166 of the covariance of the genetic distance matrix via GenAl 6.41 (Piry et al., 1999). Fourth, we
167 assessed the hierarchical partitioning of genetic structure among groups through analysis of
168 molecular variance (AMOVA), which was performed via Arlequin 3.0 (Excoffier et al., 2005). As
169 mentioned previously, populations were grouped into (1) genetic structure, (2) year groups, and
170 (3) month groups.

171

172 Results

173 Seasonal and interannual genetic variation

174 In this study, we used 8 microsatellite loci to genotype 1095 individuals from 50-m0n@

175  populations from 2012-2022 in Shenyang, Liaoning Province, Northeast China. Low null allele
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frequencies per locus were observed, with an average of 0.066 (Table S3). Furthermore, the
average Fgr values calculated with and without applying the E@orrection were 0.159 and 0.145,
respectively, and these values did not differ significantly. Therefore, the presence of null alleles
did not affect the Fsrestimations (Table S4). The average number of alleles (Na) varied from 2.680
in spe06 to 10.300 in spe09, with an overall average of 6.270. The maximum polymorphic
information content (PIC) was 0.860 for spe09, whereas the minimum was 0.392 for spe06,
resulting in an average PIC of 0.694. Eight microsatellite loci presented a low inbreeding
coefficient (Fs) in most BAW populations. The mean observed heterozygosity was 0.569, whereas
the expected heterozygosity was 0.597 (Table S5).
Overall, the eight microsatellite loci selected in this study were modestly polymorphic. The
average number of alleles (Na) ranged from 2.625 in SY1408 to 7.625 in SY2009 and SY2209
(average = 6.270). The effective number of alleles (Ne) ranged from 1.766-4.295 (average =
3.510). The observed heterozygosity (Ho) ranged from 0.382-0.813, whereas the expected
heterozygosity (He) ranged from 0.359-0.673. The unbiased expected heterozygosity (uHe)
ranged from 0.367 in SY 1408 to 0.750 in both SY2106 and SY2206 (Tabl. Furthermore, the
interannual genetic variation analysis revealed that the mean observed heterozygosity (Ho = 0.569)
was comparable to the mean expected heterozygosity (He = 0.597) across all the BAW populations
(Table 1). The estimates of microsatellite genetic variation varied among the populations. @
example, the unbiased expected heterozygosity (uHe) ranged from 0.546 in 2014 to 0.680 in 2020.
The average number of effective alleles (Ne) across the different BAW populations was 3.510.
The average observed number of alleles (Na) across microsatellite loci ranged from 6.500 in
SY2012 to 10.750 in SY2019, with an overall mean value of 6.270 (Table 1). Additionally, the
highest number of private alleles was detected in SY 1709 and SY2008 (4p = 0.164).

Table 1
Population genetic differentiation
On the basis of the microsatellite data, pairwise Fst values for genetic differentiation ranged from

0 to 0.473, with 1,038 out of 1,225 comparisons showing significant differences. Overall, a high
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level of genetic differentiation among the populations was observed, with an average Fsr of
0.1452. Only a few pairwise Fst comparisons revealed no genetic differentiation, as indicated by
the low pairwise Fsr values (Figure 1).

Figure 1
Temporal genetic structure
POPTREE analysis based on microsatellite data
A comparison of samples taken at different times of the year revealed that the BAW genetic
signature population in Shenyang significantly increased throughout the year. On the basis of
microsatellite data, the unrooted neighbor-joining tree, which included the 50 BAW seasonal
populations, revealed two major clades: the SY2012-2018 group and the SY2019-2022 group
(Figure 2). One clade corresponded to 28 populations collected from 2012-2018, and the second
clade was composed of the remaining 22 populations collected from 2019-2022.

Figure 2
Bayesian clustering
Using microsatellite data, we applied a clustering algorithm in STRUCTURE 2.3.3 to analyse the
relationships among the 50 BAW populations in Shenyang (Figure 3). The mean LnP (D) values
gradually increased from K = 2, suggesting that this is likely the optimal number of primary
clusters. The highest value of AK was reached at K = 2. This result was consistent with the
hypothesis that these populations could be divided into two groups: the SY2012-2018 group and
the SY2019-2022 group (Figure 3, Figure 4). One clade corresponded to 28 populations collected
from 2012-2018, and the second clade was composed of the remaining 22 populations collected
from 2019-2022. This finding aligned with the results from the NJ phylogenetic tree analyses.

Figure 3

Figure 4
Principal coordinate analysis (PCoA)
Population-based PCoA was performed on the basis of Nei's genetic distance matrix derived from

the allele frequencies of the eight microsatellite markers in the 50 BAW populations (Figure 5).
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The first and second axes explained 37.19% and 62.1% of the total variance, respectively. The
PCoA results indicated there were two genetic groups, which were consistent with those shown
above for the neighbor-joining tree (Figure 2) and Bayesian clustering was performed on the same
data (Figure 3), which were based on data from 50 BAW seasonal populations.

Figure 5
Analysis of molecular variance (AMOVA)
The global AMOVA of the microsatellite genotype data from the 50 BAW populations indicated
that most genetic variation was partitioned between populations and individuals within those
populations. Approximately 82.12% of the total genetic variation was attributed to individuals
within populations, whereas 17.88% was attributed to variation among populations. Interannual
AMOVA indicated that 15.36% of the total genetic variation could be attributed to differences
between major groups, whereas the majority of the variation (81.16%) was due to variation within
populations. When K = 2, AMOVA revealed that 21.74% of the total genetic variation was
explained by differences between major groupings, with the most variation (73.13%) occurring
within populations. Additionally, the largest genetic difference among groups (Fcr=0.217) for K
=2 was observed among the three different groups. Therefore, the group with K =2 was considered
the optimal grouping for these 50 BAW populations (Table 2). These results suggest that the BAW
populations in Liaoning are composed of two distinct genetic groups, which is consistent with the
findings from the NJ tree, PCoA, and STRUCTURE analyses.

Table 2
Discussion
A comprehensive understanding of the genetic makeup of migratory pest populations is crucial for
developing forecasting tools, biosecurity protocols, and sustainable management practices (Simon
and Peccoud, 2018). Despite this importance, there is still a lack of critical insights into long-range
dispersal events influenced by allelic drift and migration (Rosetti and Remis, 2012). BAW is a
polyphagous species that feeds on more than 300 plant species, indicating its significant adaptive

potential (Adamczyk et al., 2009; Guo et al., 2010). Originally from South Asia, it is now widely
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distributed across many major crop-producing areas in China (Wei et al., 2013; Luo et al., 2000).
Understanding seasonal genetic variation and genetic structure can offer valuable insights into the
evolutionary and ecological processes of this species.

Ne and Na are critical genetic diversity parameters in pest control. For example, high values of Na
typically indicate that pest populations possess strong adaptive capacity and significant potential
for resistance evolution in response to control measures, thus necessitating more refined
management approaches. Understanding Ne in pest populations is crucial for evaluating the
potential for resistance development and gauging the effectiveness of control strategies. In
addition, a low value of Ne may increase the susceptibility of a population to resistance evolution,
potentially accelerating the accumulation and spread of resistance genes. Therefore, both the
genetic diversity index directly influences the genetic fitness of populations and the rate of
resistance development, making the monitoring of these indicators essential for predicting control
effectiveness and devising more effective management strategies. In this study, the microsatellite
markers used presented a high average number of alleles (Na), indicating that they are potentially
informative tools for population genetics analysis of this species (Kalinowski 2004; Rueda et al.
2011). Populations frequently exhibit substantial adaptive genetic variation, enabling rapid
responses to environmental changes (Bitter et al., 2019; Brennan et al., 2019). Fluctuating selection
can result in stable oscillations in the relative abundance or frequency of various alleles within a
population, especially when these alleles correspond to phenotypes adapted to the differing
environments encountered throughout the year (such as winter and summer morphs; Bergland et
al., 2014). Seasonal genetic variation analysis revealed that the average number of alleles (Na)
ranged from 2.625 in SY 1408 to 7.625 in SY2009 and SY2209 (average = 6.270), and the effective
number of alleles (Ne) ranged from 1.766—4.295 (average = 3.510). In contrast, several studies
have indicated low levels of genetic diversity in other migratory Lepidoptera, such as monarch
butterflies (Danaus plexippus) (Lyons et al., 2012). In addition, private alleles are crucial in
understanding genetic differentiation between populations, species origin, and evolutionary

history. Notably, the highest number of private alleles in SY1709@ SY2008, which indicated
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that the two populations are genetically distinct, likely evolved in isolation, and have different
genetic traits, potentially due to separate evolutionary histories and different environmental
pressures. Both populations may have adapted to different environments or ecological niches. The
private alleles in each population may reflect unique adaptations to local conditions, suggesting
that each population has evolved in response to different selective pressures.

Rapid climate change is likely to produce a range of new selection pressures on populations
(Hoffmann and Carla, 2011). Evolutionary adaptation could be an important way for natural
populations to counter rapid climate change (Kanarek and Webb, 2010). Widespread insect species
often exhibit considerable genetic variation in various traits that are likely involved in climatic
adaptation (e.g., seasonal timing) (Bradshaw & Holzapfe) and resistance to stressful climatic
conditions (Hoffmann et al., 2003). In general, species capable of dispersal exhibit minimal genetic
differentiation between populations. While BAW is a significant agricultural pest, there is limited
information available regarding its dispersal ability (Fu et al., 2017). Migration typically
homogenizes genetic differentiation among populations (Wei et al., 2013). Our previous work
revealed asymmetric migration between the eastern and western BAW populations in China, with
the eastern population exhibiting a greater proportion of potential migrants. Additionally, the East
Asian monsoon in the eastern range facilitates BAW migration and promotes gene flow (Wang et
al., 2023). However, the seasonal population genetic differentiation of this pest has rarely been
studied. In this study, a high level of genetic differentiation among the seasonal populations was
detected (average Fsy = 0. 1452) (Figure 1). Spatiotemporal separation can lead to random genetic
drift and adaptive mutations, ultimately resulting in reproductive isolation and speciation (Wang
et al., 2023). Genetic divergence is likely to be particularly pronounced in genes associated with
migration and those subjected to strong selection pressures.

Understanding population genetic structure provides valuable insights into the evolutionary and
ecological processes of species. Microsatellite data reveal a temporal population structure, where
genetic turnover leads to a distinct temporal genetic pattern (Che et al., 2015). Rapid genetic

turnover in populations of Bemisia tabaci was also investigated in an agricultural landscape in the
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lockyer Valley, Australia. There was significant temporal varaition in local genetic composition
from the beginning to the end of the season, and the temporal genetic structure greatly exceeded
the spatial structure. Addditionally, two genetic clusters were obtained (Dinsdale et al., 2012).
Aphids also displayed rapid temporal genetic changes and low variation in population structure
between sample sites (Sunnucks et al., 1997), as well as temporal genetic changes in Helicoverpa
virescens (Han and Caprio, 2004). These studies suggest that agricultural pest insects can be
strongly influenced by cropping practices, as well as spatial and temporal factors. Similar findings
have been reported in the diamondback moth Plutella xylostella, where climatic variables
contribute to genetic differentiation between temperate and subtropical regions (Wei et al., 2013).
In this study, we investigated the seasonal genetic diversity and distinctly genetic structure of
BAW in Shenyang, Liaoning Province, Northeast China (Fig 2-Figure 5). One clade corresponded
to 28 populations collected from 2012-2018, and the second clade was composed of the remaining
22 populations collected from 2019-2022. Genetic turnover in populations of BAW were occurred.
The factors causing genetic turnover may be multifaceted. One reason is related to the local rapidly
changing climatic conditions (temperature, humidity, precipitation, etc.), host nutrition, natural
enemies and other factors (Ma et al., 2024). For example, the average annual temperature was
higher than the long-term average in 2019, ranking as the fifth warmest year since 1951. The
national average temperature was10.34 °C, which was 0.79 °C higher than the long-term average.
The temperature in Northeast China also significantly increased, with all four seasons being
warmer, especially spring and autumn (Li et al., 2020). Additionally, precipitation patterns may
affect the migration and settlement of BAW. Areas with abundant precipitation may provide more
suitable habitats, promoting the spread of the population and gene exchange (Han, 2004). In 2019,
the national average precipitation was 645.5 millimeters, which was 2.5% greater than the long-
term average. The Northeast Region receives more precipitation, characterized by an early start
and late end of the rainy season and increased rainfall (Li et al., 2020). Humidity also affects the
survival and reproduction of BAW. Higher humidity may be beneficial for the survival and

development of its larvae, thereby affecting the genetic diversity of the population (Han, 2004).
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The planting ratio and distribution of different crops may affect the population dynamics of insects.
Large-scale planting of a single crop may provide abundant food resources, promoting the
reproduction and spread of insects, thereby affecting its genetic structure (Avise et al., 1987). In
addition, genetic drift as the season progresses may have contributed to changes in genotype
frequencies. Such explanations may be related to temperature and/or farming practices (i.e.
insecticides). In 2019, the first capture date was earlier than in previous years, the trapped amounts
of BAW and migration durationis obviously higher than previous years trapped by sex pheromone
traps in Shenyang. The damage caused by BAW larvae is significantly more severe compared to
previous years. Threfore, multiple applications of chemical pesticides (e.g., emamectin) have been
carried out. Resistance selection pressure causes a change in the frequency of specific genes in the
population, resulting in genetic turnover. This change is usually due to the frequent spread of
resistance genes, resulting in a gradual increase in the proportion of resistant individuals in the
population, thus altering the genetic makeup of the population. This genetic turnover can impact
the effective control of BAW. For example, monitoring genotype aggregation allows for early
detection of changes in the genetic composition of pest populations, such as the emergence of
resistance (Che et al., 2015). This enables pest managers to quickly adjust their strategies, helping
prevent the escalation of infestations or the development of resistance.

Resistance to insecticides in insects exemplifies evolutionary adaptation to environmental changes
(Ffrench—Constant et al., 2004). For several decades, cultural and chemical control methods have
been employed to prevent the spread and damage caused by BAW. Currently, there are more than
586 instances of pesticide resistance among BAW populations worldwide (Akhtar et al., 2011),
with resistance to new chemistries emerging in several Asian countries (Che et al., 2015; Ahmad
et al., 2018). Therefore, quantifying the level of resistance to insecticides and investigating the
distribution of resistance genes in relation to the genetic structure and gene flow among BAW
populations in China are essential. In addition, understanding the dispersal ability, genetic
structure, and population demography of this pest is crucial for both elucidating the theoretical

aspects of its evolution and effectively implementing pest forecasting systems. In the future, we
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will investigate the population genetic differentiation and structure of BAW at the genomic level
to reveal its evolutionary relationships and reconstruct its population history in the future. This
research enhances our understanding of how BAW adapts to climate and ecological factors at the
genomic level. Additionally, by elucidating the influence of monsoon patterns on the migration
dynamics of BAW, we can improve predictions regarding the magnitude, timing, and geographic
distribution of immigrant pest populations in China. Thus, while characterizing the fine-scale
seasonal genetic structure of BAW in northern China, our work will also clarify its large-scale
temporal migration dynamics and provide vital information for refining monitoring, forecasting,

and integrated pest management (IPM) strategies.

Conclusions

This study provides further data on the seasonal genetic variation and genetic structure of BAW in
northern China. The results support moderate levels of genetic variation and two genetically
distinct groups among 50 BAW seasonal populations from 2012-2018. These unique insights into
BAW population genetics will aid in the development of strategies for managing this highly

migratory pest.
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Figure legends

Figure 1 Heatmap of pairwise Fsr values estimated from microsatellite data for 50 Spodoptera
exigua populations collected in Shenyang, Liaoning Province in northern China. The colours
indicate Fsr values ranging from purple for lower values to red for higher values. “indicates

significant differences following Bonferroni correction. See Table S1 for population codes.

Figure 2 Unrooted neighbor—joining phylogenetic tree based on microsatellite data from 50
populations of Spodoptera exigua in northern China. The numbers beside the nodes indicate

bootstrap support values above 50%.

Figure 3 Population structure analysis of 1095 individuals collected from 50 seasonal populations
of Spodoptera exigua in northern China on the basis of eight microsatellite loci. The likelihood of
the data is plotted against the number of genetic clusters (K) for (a) the mean posterior probability
values (mean InP(D) values) and (b) 4K values. (c) Individual Bayesian assignment probabilities
for K = 2 are shown, with each individual represented by a single vertical line. The sampling

location codes can be found in Table S1.

Figure 4 Seasonal sampling locations of Spodoptera exigua and distribution of microsatellite
lineages in northern China. The red triangle indicates the sampling site in Shenyang, Liaoning
Province (a). Lineage 1 is represented in blue, whereas Lineage 2 is shown in red (b). Groups
identified by STRUCTURE analysis of the microsatellite data are indicated. The population codes
can be found in Table S1. The monitoring and sampling position map was created via ArcGIS Pro
(https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview) on the basis of geographic
coordinates. The base map utilized in the analysis originates from the World Bank

(https://datacatalog.worldbank.org/search/dataset/0038272).
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Figure 5 Principal coordinate analysis (PCoA) illustrating the relationships among 50 Spodoptera
exigua seasonal populations in northern China, based on the genetic distance matrix of Fgr values
derived from microsatellite data. The population codes are provided in Table S1.

Tables

Table 1 Seasonal genetic variation in Spodoptera exigua based on eight microsatellite loci in

Shenyang, Liaoning Province, Northeast China from 2012-2022

Table 2 Results of the molecular variance analysis (AMOVA) for microsatellite markers
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Figure 1

Heatmap of pairwise Fg; values estimated from microsatellite data for 50 Spodoptera exigua

populations collected in Shenyang, Liaoning Province innorthern China. ‘indicates significant

differences following Bonferroni correction. See Table S1 for population codes.
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Figure 2

Figure 2

Unrooted neighbor-joining phylogenetic tree based on microsatellite data from @

populations of Spodoptera exigua in northern China. The numbers next to the nodes

represent bootstrap values.
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Figure 3

Population structure analysis of 1095 individuals collected from 50 seasonal populations of
Spodoptera exigua in northern China on the basis of eight microsatellite loci. The likelihood of
the data is plotted against the number of genetic clusters (K) for (a) the mean posterior
probability values (mean InP(D) values) and (b) AK values. (c) Individual Bayesian assignment
probabilities for K = 2 are shown, with each individual represented by a single vertical line.

The sampling location codes can be found in Table S1.
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Figure 4

Figure 4 Seasonal sampling locations of Spodoptera exigua and distribution of microsatellite
lineages in northern China. The red triangle indicates the sampling site in Shenyang, Liaoning
Province (a). Lineage 1 is represented in blue, whereas Lineage 2 is shown in red (b). Groups
identified by STRUCTURE analysis of the microsatellite data are indicated. The population
codes can be found in Table S1. The monitoring and sampling position map was created via

ArcGIS Pro ( https://www.esri.com/en-us/arcqgis/products/arcqis-pro/overview ) on the basis of

geographic coordinates. The base map utilized in the analysis originates from the World Bank

(https://datacatalog.worldbank.org/search/dataset/0038272).
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Figure 5

Principal coordinate analysis (PCoA) illustrating the relationships among 50 Spodoptera

exigua seasonal populations in northern China, based on the genetic distance matrix of F¢;

values derived from microsatellite data. Population codes are provided in Table S1.
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Table 1l(on next page)

Table 1

Seasonal genetic variation in Spodoptera exigua based on eight microsatellite loci in

Shenyang, Liaoning Province, Northeast China from 2012-2022
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1 Table 1 Seasonal genetic variation in Spodoptera exigua based on eight microsatellite loci in

2 Shenyang, Liaoning Province, Northeast China from 2012-2022

Pop Na Ne 1 Hy He uHe Ap Hs
SY2012 6.500 4.295 1.411 0.546 0.658 0.669 0.125 0.6100
SY2013 8.625 3.886 1.425 0.553 0.631 0.634 0.1250 0.6344
SY2014 8.000 2.943 1.212 0.452 0.543 0.546 0.2500 0.5470
SY2015 7.875 3.807 1.362 0.529 0.618 0.621 0.2500 0.6210
SY2016 9.125 3.777 1.403 0.526 0.612 0.615 0.3750 0.6159
SY2017 8.375 3.869 1.359 0.511 0.601 0.604 0.2500 0.6040
SY2018 7.625 3.675 1.279 0.521 0.561 0.564 0.1250 0.5643
SY2019 10.750 4.064 1.517 0.557 0.656 0.659 0.7500 0.6593
SY2020 10.625 4.209 1.527 0.688 0.677 0.680 0.6250 0.6801
SY2021 9.375 4.092 1.500 0.647 0.668 0.671 0.1250 0.6714
SY2022 10.625 4.105 1.527 0.670 0.668 0.671 0.2500 0.6710

Mean 6.270 3.510 1.272 0.569 0.597 0.619 0.052 0.6211

3 Abbreviations: N,, observed number of alleles; N,, effective number of alleles; 7, Shannon’s information index;

4  H,, observed heterozygosity; H., expected heterozygosity; uHe, unbiased expected heterozygosity; 4p, number

5  of private alleles; Hs, gene diversity.
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Table 2

Results of the molecular variance analysis (AMOVA) for microsatellite markers
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Table 2 Results of the molecular variance analysis (AMOVA) for microsatellite markers

Variance Percentage
Source of variation df. Sum of squares F-statistics
components variation (%)
Global analysis
Among populations 49 1327.779 0.561 Va 17.88
Within populations 2140 5510.564 2.575 Vb 82.12 Fsr=0.179"*"
Total 2189 6838.343 3.136 100.00
Hierarchical AMOVA (K=11)
Among groups 10 1042.527 0.487Va 15.36 Fsr=0.188""
Among populations within groups 39 285.207 0.111Vb 3.49 Fsc=0.041"""
Within populations 2140 5510.564 2.575Vce 81.16 Fer=10.153""
Total 2189 6838.343 3.173
Hierarchical AMOVA (K =2)
Among groups 1 825.349 0.766 Va 21.74 Fsr=0.269""
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Among populations within groups 48 502.430 0.181Vb 5.13 Fsc=0.066""
Within populations 2140 5510.564 2.575Vc 73.13 Fer=0.217"
Total 2189 6838.343 3.521 100.00

kK

d.f., degrees of freedom; ~"P < 0.001: significance level. Abbreviations: Fcr genetic diferences among groups, Fsc genetic diferences within a group, Fst

genetic diferences among populations.
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