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Background: The beet armyworm (BAW), Spodoptera exigua, is a destructive migratory
pest worldwide that has caused severe economic losses in China's major crop-producing
regions. To control this pest eûectively, it is crucial to investigate its seasonal genetic
variation and population genetic structure in northern China. Methods: In this study, we
used ten nuclear microsatellite loci to investigate the seasonal genetic diversity and
genetic structure of BAW in Shenyang, Liaoning Province, Northeast China, from 2012-
-2018. Results: Microsatellite data revealed moderate levels of genetic variation among
50 seasonal populations of BAW sampled from 2012--2018, along with signiûcant genetic
diûerentiation among these populations. Neighbor-joining dendrograms, STRUCTURE
analysis, and principal coordinate analysis (PCoA) revealed two genetically distinct groups:
the SY2012-2018 group and the SY2019-2022 group. Our results revealed seasonal
variation in the genetic subconstruction at this location, which may be related to the
presence of diûerent migratory individuals throughout the year. Accordingly, our unique
insights into the population genetics of BAW will contribute to the development of eûective
management strategies for this migratory pest.
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21 Abstract

22 Background: The beet armyworm (BAW), Spodoptera exigua, is a destructive migratory pest 

23 worldwide that has caused severe economic losses in China's major crop-producing regions. To 

24 control this pest effectively, it is crucial to investigate its seasonal genetic variation and population 

25 genetic structure in northern China.

26 Methods: In this study, we used ten nuclear microsatellite loci to investigate the seasonal genetic 

27 diversity and genetic structure of BAW in Shenyang, Liaoning Province, Northeast China, from 

28 2012-2018.

29 Results: Microsatellite data revealed moderate levels of genetic variation among 50 seasonal 

30 populations of BAW sampled from 2012-2018, along with significant genetic differentiation 

31 among these populations. Neighbor-joining dendrograms, STRUCTURE analysis, and principal 

32 coordinate analysis (PCoA) revealed two genetically distinct groups: the SY2012-2018 group and 

33 the SY2019-2022 group. Our results revealed seasonal variation in the genetic subconstruction at 

34 this location, which may be related to the presence of different migratory individuals throughout 

35 the year. Accordingly, our unique insights into the population genetics of BAW will contribute to 

36 the development of effective management strategies for this migratory pest.

37

38 Key words: beet armyworm; genetic differentiation; genetic structure; microsatellites; migration; 

39 seasonal genetic variation
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40 Introduction

41 The beet armyworm (BAW), Spodoptera exigua (Lepidoptera: Noctuidae), is a major polyphagous 

42 pest affecting a wide range of crops, including vegetables, maize, cotton, soybeans, and ornamental 

43 plants (Adamczyk et al., 2009; Guo et al., 2010). In general, BAW larvae feed on the leaves of 

44 host plants, resulting in reduced crop yields and potential plant death. Originally from South Asia, 

45 this species is now widely distributed across the tropical and temperate regions of Europe, Africa, 

46 North America, and Asia. (Wei et al., 2010). In China, BAW was first recorded in Beijing in the 

47 1890s. It is widely distributed in the primary crop-producing regions of China and has caused 

48 significant economic losses in recent years. For example, the beet armyworm has spread to several 

49 provinces in North China and East China, infesting a total area exceeding 2.7 million hectares (Luo 

50 et al., 2000). This pest particularly affects Welsh onions in northern China, which infest over 8,000 

51 hectares in Tianjin and result in a 30% reduction in annual Welsh onion production (Zheng et al., 

52 2009; Zhu et al., 2010).

53 BAW is a polyphagous insect known for its high fecundity and long-distance flight capabilities 

54 (Feng et al., 2003; Adamczyk et al., 2009). Typically, the eggs of this species are laid on the 

55 undersides of leaves. Newly hatched larvae feed gregariously on the upper surfaces of the leaves, 

56 whereas third-instar larvae begin to feed solitarily. By the fourth instar, they start consuming a 

57 variety of plant parts, including leaves, petals, and pods. Pupae predominantly overwinter in the 

58 soil, with no overwintering occurring in South China. BAW can reproduce year-round, and no 

59 diapause behavior has been observed (Zheng et al., 2011). Previous studies have indicated that 

60 BAW migrates seasonally once a year in eastern China (Si et al., 2012). There are significant 

61 interannual and seasonal variations in the capture number of BAW based on 11 years of monitoring 

62 data in northern China, which will contribute to a deeper understanding of population dynamics in 

63 northern China and provide a theoretical basis for regional monitoring, early warning, and the 

64 development of effective management strategies for long-range migratory pests (Ma et al., 2024). 

65 In addition, chemical pesticides remain the primary method for pest control. However, the 

66 prolonged use of these insecticides has led to the rapid development of resistance in BAW, notably 
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67 to chlorinated hydrocarbons and carbamates (Meinke & Ware, 1978; Chaufaux & Ferron, 1986). 

68 Therefore, effectively controlling this pest is difficult.

69 Populations of short-lived organisms can adapt to seasonal changes through various mechanisms, 

70 including genetic polymorphisms and phenotypic plasticity. These populations typically harbor 

71 significant adaptive genetic variation, enabling them to respond rapidly to environmental shifts 

72 (Brennan et al., 2019). The genetic variation and population genetic structure of a species can be 

73 influenced by numerous factors, including climate change, ecological conditions, natural barriers, 

74 migration patterns, and human activities (Fairley et al., 2000; Prugh et al., 2008; Pauls et al., 2013; 

75 Nater et al., 2013). Currently, a range of molecular markers are utilized to illuminate the 

76 biogeography and evolutionary history of this species (Susanta, 2006). Owing to its moderate 

77 evolutionary rate and distinct evolutionary pattern, the cytochrome c oxidase subunit I (COI) gene 

78 is well suited for reconstructing species phylogenies (Hebert et al., 2003; Wang et al., 2014). 

79 Owing to their high codominance and significant polymorphism, microsatellite markers have been 

80 widely utilized in population genetics studies (Aggarwa et al., 2007; Wang et al., 2007; Zhu et al., 

81 2020). Previous studies have focused on investigating the genetic variability and structure of BAW 

82 across different spatial scales (Wang et al., 2014; Wang and Zhou, 2016; Niu et al., 2006; Zhou et 

83 al., 2017). For example, previous studies have indicated that both mtDNA and microsatellite data 

84 indicate low levels of genetic diversity among all populations. Moderate genetic differentiation 

85 among some BAW populations and two genetically distinct groups in western China has been 

86 detected (Wang et al., 2020). These studies provide valuable information for understanding the 

87 dispersal patterns and causes of outbreaks of pest species. However, accurate assessments of the 

88 genetic diversity and population genetic structure of this pest across large temporal scales in 

89 northern China have not been performed.

90 In the present study, we investigated the seasonal genetic variation and structure of BAW in 

91 northern China. We utilized microsatellite loci to assess genetic variation, genetic differentiation, 

92 and population structure across 50 seasonal populations of BAW collected from October 2012 to 

93 2022 in Shenyang, Liaoning Province. Additionally, we discuss potential management strategies 
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94 for this species. This research aims to deepen our understanding of the population genetics of this 

95 moth and provide a robust theoretical foundation for developing effective pest management 

96 strategies.

97

98 Materials & Methods

99 Sample collection and DNA extraction. A total of 1095 individuals of BAW in the 50 seasonal 

100 populations were collected via three sex pheromone traps (Pherobio Technology Co. Ltd., Beijing, 

101 China) in a Welsh onion field (123.57°N, 41.82°E) over a period of 11 years, from June to October 

102 2012 to 2022 in Shenyang, Liaoning Province. The number of trapped moths was recorded weekly, 

103 and the trap cores were replaced every two weeks. All the BAW samples were preserved in 95% 

104 ethanol at 220 °C and stored at the Plant Protection College, Shenyang Agricultural University, 

105 Shenyang, China. Details regarding the locations of the populations and the number of samples 

106 are provided in Table S1. The samples were collected from private land with the permission of the 

107 landowners, and none of the field surveys in this study involved endangered or protected species. 

108 Genomic DNA was extracted from individual samples via Qiagen�s DNeasy Blood & Tissue Kit 

109 (Qiagen, Valencia, CA) following the manufacturer�s protocols.

110 MSI amplification and genotyping. In this study, individuals were genotyped via eight loci 

111 (Spe06, Spe07, Spe08, Spe09, Spe10, Spe11, Spe12, and Spe15) from a set of eight polymorphic 

112 microsatellite loci provided by Kim et al. (2012). Each microsatellite locus was assigned a unique 

113 fluorophore for fluorescent tagging of the DNA. For these isolated microsatellites, each PCR 

114 mixture consisted of 1.0 units of EasyTaq DNA polymerase, 2.5 mM dNTP mixture, 0.5 µL of 

115 DNA template, 1× EasyTaq® buffer (containing 2 mM MgCl¢; TransGen Biotech Co., Ltd., 

116 Beijing, China), and 0.4 µM of each primer, which was labelled with the fluorochromes HEX or 

117 FAM (Sangon Biotech, Shanghai, China). The PCR amplification conditions were as follows: 

118 initial denaturation at 94 °C for 4 minutes, followed by 30 cycles of denaturation at 94 °C for 30 

119 seconds, annealing at 58 °C for 30 seconds, and extension at 72 °C for 30 seconds. A final 

120 extension was performed at 72 °C for 5 minutes. After amplification, the products were visualized 
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121 at Sangon Biotech Co., Ltd. (Shanghai, China) via an ABI 3730XL automated sequencer (Applied 

122 Biosystems, Foster City, CA, USA). The microsatellite alleles were analysed with GeneMapper 

123 4.0 software (Applied Biosystems). The raw reads the amplified fragment length from 1095 

124 individuals of BAW were shown in Table S2.

125 Microsatellite data analyses

126 Genetic variation and genetic differentiation. Micro-Checker 2.2.3 was utilized to detect errors 

127 and null alleles in BAW microsatellite genotypes, excluding individuals with missing data (Van 

128 Oosterhout et al., 2004). Genotypic linkage disequilibrium (LD) was assessed for all pairs of loci 

129 across populations via GenePop 3.4 with exact probability tests (Raymond & Rousset, 1995). An 

130 exact test for Hardy2Weinberg equilibrium (HWE) was conducted for each locus as well as for all 

131 loci within each population.

132 Genetic diversity indices, including the mean number of alleles (Na), effective number of alleles 

133 (Ne), Shannon's information index (I), observed heterozygosity (HO), expected heterozygosity 

134 (He), and unbiased expected heterozygosity (uHe), were assessed via GenAlEx 6.5 (Peakall and 

135 Smouse, 2006). The allelic richness (AR), fixation index (FST), and inbreeding coefficient (FIS) 

136 among populations were calculated via FSTAT 2.9.3.2 (Goudet, 2002), whereas the polymorphism 

137 information content (PIC) was computed via Cervus 2 (Hearne et al., 1992). To assess the degree 

138 of genetic differentiation between pairs of BAW populations, we calculated pairwise FST values 

139 via Arlequin 3.0 (Excoffier et al., 2005) and created associated heatmaps of these values via R 

140 statistical software 3.0.2 (Dean and Nielsen, 2007).

141 Temporal genetic structure. To investigate the temporal population structure of BAW, we 

142 followed a stepwise process. First, we used POPTREE 2 to construct an unrooted tree via the 

143 neighbor-joining method (Takezaki et al., 2010). Next, we employed a Bayesian clustering model 

144 to assess the degree of genetic structure and admixture among populations. The software 

145 STRUCTURE 2.3 (Evanno et al., 2005) was utilized to identify clusters of genetically similar 

146 populations. We specified an initial range of potential genotype clusters (K) from 1-10 under the 

147 admixture model, assuming correlated allele frequencies among populations (Falush et al., 2003). 
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148 The Markov chain Monte Carlo simulation was run 10 times for each value of K, with a total of 5 

149 × 105 iterations following a burn-in period of 5 × 104. The most likely number of clusters was 

150 determined via the �K approach (Evanno et al., 2005), as implemented in Structure Harvester 

151 0.56.3 (Earl and vonholdt, 2012). The optimal alignment of the ten replicate analyses for the "best" 

152 K was achieved via CLUMPP 1.1 (Jakobsson, 2007) and visualized with DISTRUCT 1.1 (Guillot 

153 et al., 2012). Third, we conducted principal coordinate analysis (PCoA) on the basis of the 

154 covariance of the genetic distance matrix via GenAl 6.41 (Piry et al., 1999). Fourth, we assessed 

155 the hierarchical partitioning of genetic structure among groups through analysis of molecular 

156 variance (AMOVA), which was performed via Arlequin 3.0 (Excoffier et al., 2005). As mentioned 

157 previously, populations were grouped into (1) genetic structure, (2) year groups, and (3) month 

158 groups.

159

160 Results

161 Seasonal and interannual genetic variation

162 In this study, we used 8 microsatellite loci to genotype 1095 individuals from 50-month 

163 populations during eleven years from 2012-2022 in Shenyang, Liaoning Province, Northeast 

164 China. Low null allele frequencies per locus were observed, with an average of 0.066 (Table S3). 

165 Furthermore, the average FST values calculated with and without applying the ENA correction 

166 were 0.159 and 0.145, respectively, and these values did not differ significantly. Therefore, the 

167 presence of null alleles did not affect the FST estimations (Table S4). The average number of alleles 

168 (Na) varied from 2.680 in spe06 to 10.300 in spe09, with an overall average of 6.270. The 

169 maximum polymorphic information content (PIC) was 0.860 for spe09, whereas the minimum was 

170 0.392 for spe06, resulting in an average PIC of 0.694. Eight microsatellite loci presented a low 

171 inbreeding coefficient (FIS) in most BAW populations. The mean observed heterozygosity was 

172 0.569, whereas the expected heterozygosity was 0.597 (Table S5).

173 Overall, the eight microsatellite loci selected in this study were modestly polymorphic. Seasonal 

174 genetic variation analysis indicated that the average number of alleles (Na) ranged from 2.625 in 
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175 SY1408 to 7.625 in SY2009 and SY2209 (average = 6.270). The effective number of alleles (Ne) 

176 ranged from 1.766�4.295 (average = 3.510). The observed heterozygosity (Ho) ranged from 

177 0.382�0.813, whereas the expected heterozygosity (He) ranged from 0.359�0.673. The unbiased 

178 expected heterozygosity (uHe) ranged from 0.367 in SY1408 to 0.750 in both SY2106 and 

179 SY2206. Furthermore, the interannual genetic variation analysis revealed that the mean observed 

180 heterozygosity (Ho = 0.564) was comparable to the mean expected heterozygosity (He = 0.627) 

181 across all the BAW populations. The estimates of microsatellite genetic variation varied among 

182 the populations. For example, the unbiased expected heterozygosity (uHe) ranged from 0.546 in 

183 2014 to 0.680 in 2020. The average number of effective alleles (Ne) across the different BAW 

184 populations was 3.884. Additionally, the average observed number of alleles (Na) across 

185 microsatellite loci ranged from 6.500 in SY2012 to 10.750 in SY2019, with an overall mean value 

186 of 8.864 (Table 1).

187 Table 1

188 Population genetic differentiation

189 On the basis of the microsatellite data, pairwise FST values for genetic differentiation ranged from 

190 0 to 0.473, with 1,038 out of 1,225 comparisons showing significant differences. Overall, a high 

191 level of genetic differentiation among the populations was observed, with an average FST of 

192 0.1452. Only a few pairwise FST comparisons did not indicate genetic differentiation, as evidenced 

193 by the low pairwise FST values (Figure 1).

194 Figure 1

195 Temporal genetic structure

196 POPTREE analysis based on microsatellite data

197 A comparison of samples taken at different times of the year revealed that the BAW genetic 

198 signature population in Shenyang significantly increased throughout the year. On the basis of 

199 microsatellite data, the unrooted neighbor-joining tree, which included the 50 BAW seasonal 

200 populations, revealed two major clades: the SY2012-2018 group and the SY2019-2022 group 

201 (Figure 2). One clade corresponded to 28 populations collected from 2012�2018, and the second 
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202 clade was composed of the remaining 22 populations collected from 2019�2022.

203 Figure 2

204 Bayesian clustering

205 Using microsatellite data, we applied a clustering algorithm in STRUCTURE 2.3.3 to analyse the 

206 relationships among the 50 BAW populations in Shenyang (Figure 3). The mean LnP (D) values 

207 gradually increased from K = 2, suggesting that this is likely the optimal number of primary 

208 clusters. The highest value of ôK was reached at K = 2. This result was consistent with the 

209 hypothesis that these populations could be divided into two groups: the SY2012-2018 group and 

210 the SY2019-2022 group (Figure 3, Figure 4). One clade corresponded to 28 populations collected 

211 from 2012�2018, and the second clade was composed of the remaining 22 populations collected 

212 from 2019�2022. This finding aligned with the results from the NJ phylogenetic tree analyses.

213 Figure 3

214 Figure 4

215 Principal coordinate analysis (PCoA)

216 Population-based PCoA was performed on the basis of Nei's genetic distance matrix derived from 

217 the allele frequencies of the eight microsatellite markers in the 50 BAW populations (Figure 5). 

218 The first and second axes explained 37.19% and 62.1% of the total variance, respectively. The 

219 neighbor-joining tree and Bayesian clustering analyses, which were based on data from 1095 

220 individuals, indicated the presence of two distinct groups, corroborating the effectiveness of the 

221 PCoA method.

222 Figure 5

223 Analysis of molecular variance (AMOVA)

224 The global AMOVA of the microsatellite genotype data from the 50 BAW populations indicated 

225 that most genetic variation was partitioned between populations and individuals within those 

226 populations. Approximately 82.12% of the total genetic variation was attributed to individuals 

227 within populations, whereas 17.88% was attributed to variation among populations. Interannual 

228 AMOVA indicated that 15.36% of the total genetic variation could be attributed to differences 
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229 between major groups, whereas the majority of the variation (81.16%) was due to variation within 

230 populations. When K = 2, AMOVA revealed that 21.74% of the total genetic variation was 

231 explained by differences between major groupings, with the most variation (73.13%) occurring 

232 within populations. Additionally, the FCT for K = 2 was 0.217. The variation rates of the two groups 

233 were similar and statistically significant. Therefore, the group with K = 2 was considered the 

234 optimal grouping for these 50 BAW populations (Table 1). Consistent with the results from the NJ 

235 tree, PCoA, and STRUCTURE analyses, the AMOVAs also supported the existence of two distinct 

236 genetic groups.

237 Table 2

238 Discussion

239 A comprehensive understanding of the genetic makeup of migratory pest populations is crucial for 

240 developing forecasting tools, biosecurity protocols, and sustainable management practices (Simon 

241 and Peccoud, 2018). Despite this importance, there is still a lack of critical insights into long-range 

242 dispersal events influenced by allelic drift and migration (Rosetti and Remis, 2012). BAW is a 

243 polyphagous species that feeds on more than 300 plant species, indicating its significant adaptive 

244 potential. Originally from South Asia, it is now widely distributed across many major crop-

245 producing areas in China. Understanding seasonal genetic variation and genetic structure can offer 

246 valuable insights into the evolutionary and ecological processes of this species. In this study, the 

247 microsatellite markers used presented a high average number of alleles (Na), ranging from 2.625 

248 to 7.625, indicating that they are potentially informative tools for population genetics analysis of 

249 this species (Kalinowski 2004; Rueda et al. 2011). Populations frequently exhibit substantial 

250 adaptive genetic variation, enabling rapid responses to environmental changes (Bitter et al., 2019; 

251 Brennan et al., 2019). Fluctuating selection can result in stable oscillations in the relative 

252 abundance or frequency of various alleles within a population, especially when these alleles 

253 correspond to phenotypes adapted to the differing environments encountered throughout the year 

254 (such as winter and summer morphs; Bergland et al., 2014). The microsatellite markers used in 

255 this study exhibited a high number of alleles, indicating that they are potentially informative tools 
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256 for population genetics analysis of this species (Kalinowski 2004; Rueda et al. 2011). The 

257 microsatellite data indicated moderate levels of genetic variation among all 50 BAW seasonal 

258 populations. Seasonal genetic variation analysis indicated that the average number of alleles (Na) 

259 ranged from 2.625 in SY1408 to 7.625 in SY2009 and SY2209 (average = 6.270). The effective 

260 number of alleles (Ne) ranged from 1.766�4.295 (average = 3.510). This result is consistent with 

261 those of previous studies (Niu et al., 2006; Wang et al., 2014; Wang et al., 2016). This high level 

262 of diversity is likely due to BAW not experiencing significant founder effects, genetic bottlenecks, 

263 or strong selection pressures (e.g., from insecticides) in this region. In contrast, several studies 

264 have indicated low levels of genetic diversity in other migratory Lepidoptera, such as monarch 

265 butterflies (Danaus plexippus) (Lyons et al., 2012).

266 In general, species capable of dispersal exhibit minimal genetic differentiation between 

267 populations. While BAW is a significant agricultural pest, there is limited information available 

268 regarding its dispersal ability (Fu et al., 2017). Migration typically homogenizes genetic 

269 differentiation among populations (Wei et al., 2013). Our previous work revealed asymmetric 

270 migration between the eastern and western BAW populations in China, with the eastern population 

271 exhibiting a greater proportion of potential migrants. Additionally, the East Asian monsoon in the 

272 eastern range facilitates BAW migration and promotes gene flow (Wang et al., 2023). However, 

273 the seasonal population genetic differentiation of this pest has rarely been studied. In this study, a 

274 high level of genetic differentiation among the seasonal populations was detected (average FST = 

275 0. 1452) (Figure 1). Similar findings have been reported in the diamondback moth Plutella 

276 xylostella, where climatic variables contribute to genetic differentiation between temperate and 

277 subtropical regions (Wei et al., 2013). Spatiotemporal separation can lead to random genetic drift 

278 and adaptive mutations, ultimately resulting in reproductive isolation and speciation (Wang et al., 

279 2023). Genetic divergence is likely to be particularly pronounced in genes associated with 

280 migration and those subjected to strong selection pressures.

281 Understanding population genetic structure provides valuable insights into the evolutionary and 

282 ecological processes of species. In this study, neighbor-joining dendrograms, STRUCTURE 
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283 analysis, and principal coordinate analysis (PCoA) were used to identify two genetically distinct 

284 groups: the SY2012-2018 group and the SY2019-2022 group. We also investigated the seasonal 

285 genetic diversity and genetic structure of BAW in Shenyang, Liaoning Province, Northeast China, 

286 via six temporal samples collected over 11 years. POPTREE, PCoA, STRUCTURE, and 

287 AMOVAs, which are based on microsatellite data, divided all individuals into two clusters: the 

288 SY2012-2018 group and the SY2019-2022 group (Fig 2-Figure 5). One clade corresponded to 28 

289 populations collected from 2012-2018, and the second clade was composed of the remaining 22 

290 populations collected from 2019-2022. This may be attributed to either relatively recent population 

291 expansion or the capacity of migratory populations to sustain genetic diversity over time. Such 

292 turnover can impact the control of BAW, particularly in terms of pesticide resistance, as it may 

293 lead to the rapid spread of resistance alleles (Che et al., 2015)

294 Resistance to insecticides in insects exemplifies evolutionary adaptation to environmental changes 

295 (Ffrench�Constant et al., 2004). For several decades, cultural and chemical control methods have 

296 been employed to prevent the spread and damage caused by BAW. This pest has developed 

297 resistance to certain insecticides. For example, it has a long history of exposure to carbamate 

298 pesticides and has exhibited a high level of resistance to methomyl in California, USA, since 1989 

299 (Meinke and Ware, 1978). Therefore, quantifying the level of resistance to insecticides and 

300 investigating the distribution of resistance genes in relation to the genetic structure and gene flow 

301 among Chinese BAW populations are essential. Understanding the dispersal ability, genetic 

302 structure, and population demography of this pest is crucial for both elucidating the theoretical 

303 aspects of its evolution and effectively implementing pest forecasting systems. In the future, we 

304 will investigate the population genetic differentiation and structure of BAW at the genomic level 

305 to reveal its evolutionary relationships and reconstruct its population history. This research 

306 enhances our understanding of how BAW adapts to climate and ecological factors at the genomic 

307 level. Additionally, by elucidating the influence of monsoon patterns on the migration dynamics 

308 of BAW, we can improve predictions regarding the magnitude, timing, and geographic distribution 

309 of immigrant pest populations in China. Thus, while characterizing the fine-scale seasonal genetic 
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310 structure of BAW in northern China, our work will also clarify its large-scale temporal migration 

311 dynamics and provide vital information for refining monitoring, forecasting, and integrated pest 

312 management (IPM) strategies.

313

314 Conclusions

315 This study provides further data on the seasonal genetic variation and genetic structure of BAW in 

316 northern China. The results support moderate levels of genetic variation and two genetically 

317 distinct groups among 50 BAW seasonal populations from 2012-2018. These unique insights into 

318 BAW population genetics will aid in the development of strategies for managing this highly 

319 migratory pest.
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518 Figure legends

519

520 Figure 1 Heatmap of pairwise FST values estimated from microsatellite data for 50 Spodoptera 

521 exigua populations collected in Shenyang, Liaoning Province in northern China. *indicates 

522 significant differences following Bonferroni correction. See Table S1 for population codes.

523

524 Figure 2 Unrooted neighbor2joining phylogenetic tree based on microsatellite data from 14 

525 populations of Spodoptera exigua in northern China. The numbers next to the nodes represent 

526 bootstrap values.

527

528 Figure 3 Population structure analysis of 1095 individuals collected from 50 seasonal populations 

529 of Spodoptera exigua in northern China on the basis of eight microsatellite loci. The likelihood of 

530 the data is plotted against the number of genetic clusters (K) for (a) the mean posterior probability 

531 values (mean lnP(D) values) and (b) �K values. (c) Individual Bayesian assignment probabilities 

532 for K = 2 are shown, with each individual represented by a single vertical line. The sampling 

533 location codes can be found in Table S1.

534

535 Figure 4 Seasonal sampling locations of Spodoptera exigua and distribution of microsatellite 

536 lineages in northern China. The red triangle indicates the sampling site in Shenyang, Liaoning 

537 Province (a). Lineage 1 is represented in blue, whereas Lineage 2 is shown in red (b). Groups 

538 identified by STRUCTURE analysis of the microsatellite data are indicated. The population codes 

539 can be found in Table S1. The monitoring and sampling position map was created via ArcGIS Pro 

540 (https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview) on the basis of geographic 

541 coordinates. The base map utilized in the analysis originates from the World Bank 

542 (https://datacatalog.worldbank.org/search/dataset/0038272).

543
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544 Figure 5 Principal coordinate analysis (PCoA) illustrating the relationships among 50 Spodoptera 

545 exigua seasonal populations in northern China, based on the genetic distance matrix of FST values 

546 derived from microsatellite data. Population codes are provided in Table S1. 

547

548 Tables

549

550 Table 1 Seasonal genetic variation in Spodoptera exigua based on eight microsatellite loci in 

551 Shenyang, Liaoning Province, Northeast China from 2012-2022

552

553 Table 2 Results of the molecular variance analysis (AMOVA) for microsatellite markers
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Figure 1
Figure 1

Heatmap of pairwise FST values estimated from microsatellite data for 50 Spodoptera exigua

populations collected in Shenyang, Liaoning Province innorthern China. *indicates signiûcant
diûerences following Bonferroni correction. See Table S1 for population codes.
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Figure 2
Figure 2

Unrooted neighbor2joining phylogenetic tree based on microsatellite data from 14
populations of Spodoptera exigua in northern China. The numbers next to the nodes
represent bootstrap values.
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Figure 3
Figure 3

Population structure analysis of 1095 individuals collected from 50 seasonal populations of
Spodoptera exigua in northern China on the basis of eight microsatellite loci. The likelihood of
the data is plotted against the number of genetic clusters (K) for (a) the mean posterior
probability values (mean lnP(D) values) and (b) �K values. (c) Individual Bayesian assignment
probabilities for K = 2 are shown, with each individual represented by a single vertical line.
The sampling location codes can be found in Table S1.
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Figure 4
Figure 4

Figure 4 Seasonal sampling locations of Spodoptera exigua and distribution of microsatellite
lineages in northern China. The red triangle indicates the sampling site in Shenyang, Liaoning
Province (a). Lineage 1 is represented in blue, whereas Lineage 2 is shown in red (b). Groups
identiûed by STRUCTURE analysis of the microsatellite data are indicated. The population
codes can be found in Table S1. The monitoring and sampling position map was created via
ArcGIS Pro ( https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview ) on the basis of
geographic coordinates. The base map utilized in the analysis originates from the World Bank
(https://datacatalog.worldbank.org/search/dataset/0038272).
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Figure 5
Figure 5

Principal coordinate analysis (PCoA) illustrating the relationships among 50 Spodoptera
exigua seasonal populations in northern China, based on the genetic distance matrix of FST

values derived from microsatellite data. Population codes are provided in Table S1.
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Table 1(on next page)

Table 1

Seasonal genetic variation in Spodoptera exigua based on eight microsatellite loci in
Shenyang, Liaoning Province, Northeast China from 2012-2022
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1 Table 1 Seasonal genetic variation in Spodoptera exigua based on eight microsatellite loci in 

2 Shenyang, Liaoning Province, Northeast China from 2012-2022

Pop Na Ne I H0 He uHe Ap Hs

SY2012 6.500 4.295 1.411 0.546 0.658 0.669 0.125 0.6100 

SY2013 8.625 3.886 1.425 0.553 0.631 0.634 0.1250 0.6344 

SY2014 8.000 2.943 1.212 0.452 0.543 0.546 0.2500 0.5470 

SY2015 7.875 3.807 1.362 0.529 0.618 0.621 0.2500 0.6210 

SY2016 9.125 3.777 1.403 0.526 0.612 0.615 0.3750 0.6159 

SY2017 8.375 3.869 1.359 0.511 0.601 0.604 0.2500 0.6040 

SY2018 7.625 3.675 1.279 0.521 0.561 0.564 0.1250 0.5643 

SY2019 10.750 4.064 1.517 0.557 0.656 0.659 0.7500 0.6593 

SY2020 10.625 4.209 1.527 0.688 0.677 0.680 0.6250 0.6801 

SY2021 9.375 4.092 1.500 0.647 0.668 0.671 0.1250 0.6714 

SY2022 10.625 4.105 1.527 0.670 0.668 0.671 0.2500 0.6710 

Mean 6.270 3.510 1.272 0.569 0.597 0.619 0.052 0.6211 

3 Abbreviations: Na, observed number of alleles; Ne, effective number of alleles; I, Shannon�s information index; 

4 Ho, observed heterozygosity; He, expected heterozygosity; uHe, unbiased expected heterozygosity; AP, number 

5 of private alleles; HS, gene diversity.
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1 Table 2 Results of the molecular variance analysis (AMOVA) for microsatellite markers

Source of variation d.f. Sum of squares

Variance 

components

Percentage

variation (%)

F-statistics

Global analysis

Among populations 49 1327.779 0.561 Va 17.88

Within populations 2140 5510.564 2.575 Vb 82.12

Total 2189 6838.343 3.136 100.00

FST =0.179***

Hierarchical AMOVA (K = 11)

Among groups 10 1042.527 0.487Va 15.36 FST = 0.188***

Among populations within groups 39 285.207 0.111Vb 3.49 FSC = 0.041***

Within populations 2140 5510.564 2.575Vc 81.16 FCT = 0.153***

Total 2189 6838.343 3.173

Hierarchical AMOVA (K = 2)

Among groups 1 825.349 0.766 Va 21.74 FST = 0.269***
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Among populations within groups 48 502.430 0.181Vb 5.13

Within populations 2140 5510.564 2.575Vc 73.13

Total 2189 6838.343 3.521 100.00

FSC = 0.066***

FCT = 0.217***

2 d.f., degrees of freedom; ***P < 0.001: significance level.
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