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ABSTRACT
Plasma cell-free RNA (cfRNA) is derived from cells in various tissues and organs
throughout the body and reflects the physiological and pathological conditions.
Identifying the origins of cfRNA is essential for comprehending its variations.Only a few
tools are designed for cfRNA deconvolution, andmost studies have relied on traditional
bulk RNA methods. In this study, we employed human tissue and cell transcriptomic
data as reference sets and evaluated the performance of seven deconvolution methods
on cfRNA. We compared the analysis results of cell types and tissues of origin of
plasma cfRNA and chose to use single-cell RNA sequencing (scRNA-seq) data as
reference to conduct further evaluation of deconvolution methods. Subsequently, we
assessed the accuracy and robustness of the methods by utilizing simulated cfRNA data
generated from scRNA-seq. We also evaluated the methods’ accuracy on real plasma
cfRNA data by analyzing the correlation between the predicted cell proportions and the
corresponding clinical indicators. Moreover, we compared the methods’ effectiveness
in revealing the impacts of diseases on cells and evaluated the performance of cancer
classification models based on the cell origin data they provided. In summary, our
study provides valuable insights into cfRNA origin analysis, enhancing its potential in
biomedical research.

Subjects Bioinformatics, Oncology, Data Mining and Machine Learning
Keywords Plasma cfRNA, Cell origins, Tissue origins, Cancer classification

INTRODUCTION
Plasma cell-free RNA (cfRNA), released from cells through active secretion, apoptosis, or
necrosis, reflects the health status of tissues and organs (Koh et al., 2014). Primarily sourced
from blood cells, plasma cfRNA also includes genes specific to various other cell types and
tissues (Moufarrej et al., 2023; Ibarra et al., 2020). Changes in specific tissue or cell activity,
function, and quantity under disease conditions can cause abnormal fluctuations in the
corresponding origin signals in plasma cfRNA (Pös et al., 2018). Research through tissues
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of origin of plasma cfRNA has discovered increased lung and breast tissue signals in the
plasma cfRNA of lung and breast cancer patients (Larson et al., 2021). Additionally, studies
analyzing the cell types of origin of plasma cfRNA have identified increased liver cell signals
in the plasma cfRNA of liver cancer patients (Safrastyan, zu Siederdissen & Wollny, 2023).
Beyond reflecting changes in the tissue regions or cell signals where cancer is located,
analyzing the cell types of origin of plasma cfRNA can also characterize changes in blood
cells involved in immune regulation. Research has indicated that the signal from platelets
in the plasma of lung cancer patients is increased (Beck et al., 2019). There are also studies
that have built disease classification models based on the results of analyzing the cell types
of origin of plasma cfRNA, which can effectively distinguish liver cancer patients from
healthy individuals (Safrastyan, zu Siederdissen & Wollny, 2023). Analyzing the cell types
or tissues of origin in plasma cfRNA can characterize the magnitude of cell or tissue signals
in the plasma, infer the impact of diseases on cells, and classify diseases.

Many studies treat plasma cfRNA, which is a mixture composed of signals frommultiple
cell types, as bulk data for origin analysis. Some research employs gene set scoring methods
to quantify specific tissue and cell signals in plasma cfRNA, such as using liver-specific genes
for liver disease analysis and trophoblast-specific genes for preeclampsia studies (Vorperian
et al., 2022; Sun et al., 2023). However, this strategy cannot provide a whole picture of
the origins of cfRNA. Some studies use bulk deconvolution methods to generate gene
expression profiles (GEPs) based on tissue or cell reference data and calculate the relative
proportions of different tissue or cell origin signals in plasma cfRNA. Deconvolution
methods such as CIBERSORTx (CSx) and non-negative matrix factorization (NMF) are
employed to analyze cell types and tissues proportions in plasma cfRNA, utilizing single-cell
data from Tabula Sapiens project (TSP) and tissue data from Genotype-Tissue Expression
(GTEx), respectively (Ibarra et al., 2020; Vorperian et al., 2022; Lonsdale et al., 2013; The
Tabula Sapiens Consortium, 2022).

Traditional deconvolution methods designed for bulk data analysis, typically involving
fewer and clearer cell types, may not be as effective for plasma cfRNA, which originates
from a diverse range of cell types and is prone to significant RNA degradation, leading to
high gene absence rates. These factors may compromise the accuracy of such methods. A
new method, Deconformer (Yan et al., 2024), has been developed by our research group
specifically for body fluid cfRNA analysis. Utilizing pathway information, Deconformer
trains on extensive simulated data based on deep learning, enhancing its ability to accurately
identify the relative proportions of cell types, even despite high gene absence rates.
Therefore, comparing the results of analyzing cell types and tissues of origin in plasma
cfRNA, and systematically evaluating the performance of different types of deconvolution
methods when applied to plasma cfRNA will provide valuable insights into cfRNA origin
analysis.

In this study, we evaluated the performance of seven methods across three categories:
deconvolution based on GEPs (CSx (Newman et al., 2019), AutoGeneS (Aliee & Theis,
2021), GEDIT (Nadel et al., 2021), MuSiC (Wang et al., 2019), SCDC (Dong et al., 2020)),
scoring based on feature gene sets (xCell (Aran, Hu & Butte, 2017)), and deconvolution
based on deep learning combined with pathway information (Deconformer (Yan et al.,
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Figure 1 Study overview. INPUT: We used bulk RNA-seq and scRNA-seq data as references to ana-
lyze cell-free RNA (cfRNA) and simulated data. GTEx: Genotype-Tissue Expression. TSP: Tabula Sapi-
ens project. METHOD: We used CIBERSORT(CSx), AutoGeneS, GEDIT, MuSiC, and SCDC to analyze
cfRNA based on input reference data, while Deconformer and xCell were based on built-in models or gene
sets, respectively. OUTPUT: xCell generates enrichment scores, while other methods generate the propor-
tions which sum to 1. ANALYSIS: We compared the major signal sources in the results of cell and tissue
types of origin. We generated simulated data at different levels of gene detection to assess the accuracy and
robustness of different methods in results of cell types of origin. We evaluated the accuracy of different
methods when applied to plasma cfRNA, by comparing the correlation between the results of cell types of
origin and clinical indicators. We also identified changes in signals of cell types in patients to evaluate their
effectiveness in characterizing several diseases. Finally, we evaluated the performance of building cancer
classification models by using the results of cell types of origin.

Full-size DOI: 10.7717/peerj.19241/fig-1

2024)). We compared the results of tissues and cell types of origin, evaluated the accuracy,
robustness, and effectiveness of different methods in characterizing disease and classifying
diseases. The flowchart is shown in Fig. 1 and the methods assessed are introduced in
Table 1.

MATERIALS & METHODS
Deconvolution methods
We evaluated seven methods: CSx, AutoGeneS, GEDIT, MuSiC, SCDC, xCell, and
Deconformer in our study. For AutoGeneS, GEDIT, MuSiC, SCDC, Deconformer, and
xCell, analyses were conducted after installing the required Python modules or R packages
locally. For CSx, the feature matrix was first generated through the online platform, and the
deconvolution function obtained from their website was applied locally for deconvolution.
All tools were run using default parameters.

xCell only provides scoring for specific cell types, rather than relative proportions.
Moreover, xCell does not allow for reference file adjustments or scoring across different
tissue origin ranges. As a result, this tool was not used when comparing cell types of origin
with tissue of origin results, or in assessments using simulated data. Additionally, due to the
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Table 1 Overview of methods assessed.

Method Approach Custom
reference

Reference
input
format

Gene
Pre-selection

Algorithm Output Programming
Language

AutoGeneS
(Aliee & Theis, 2021)

GEP-based Yes h5ad MOO LR,
Nu-SVR,
NNLS

Predicted
fraction

Python

GEDIT
(Nadel et al., 2021)

GEP-based Yes dataframe Filter by signature
score

LR Predicted
fraction

Python

MuSiC
(Wang et al., 2019)

GEP-based Yes rds NA W-NNLS Predicted
fraction

R

SCDC
(Dong et al., 2020)

GEP-based Yes rds NA W-NNLS Predicted
fraction

R

CSx
(Newman et al., 2019)

GEP-based Yes dataframe Minimizing an
inherent matrix
property

ν-SVR Predicted
fraction

R

Deconformer
(Yan et al., 2024)

GEP&pathway –based Yes h5ad Pathway-related Transformer Predicted
fraction

Python

xCell
(Aran, Hu & Butte, 2017)

Gene signature-based No NA Marker gene ssGSEA Scores R

Notes.
MOO, multi-objective optimization; LR, Logistic Regression; NNLS, Non-Negative Least Squares; SVR, Support Vector Regression; ssGSEA, single-sample Gene Set En-
richment Analysis.

lack of specific cells around the lesion of colorectal cancer (CRC) and multiple myeloma
(MM) in its built-in dataset, xCell was excluded from evaluations of howwell deconvolution
tools characterize cell impacts in these cancers. It was only used to compare the signal of
hepatocytes and platelets and to build classificationmodels based on deconvolution results.
Deconformer only provides a cell-type deconvolution model based on the TSP dataset.

Reference data preprocessing
At the tissue level, we obtained bulk RNA-seq data from the GTEx. Quality control was
performed on the collected samples for each tissue by assessing gene detection counts
and within-tissue sample correlations. We calculated the correlation of each sample with
all other samples within the same tissue using Spearman’s method, and then determined
the correlation threshold for each tissue by subtracting five times the variance of these
correlations from their mean value. Following the same criteria, we calculated the gene
count threshold for each tissue. Samples with a mean correlation or gene count below these
thresholds were considered as outliers and excluded. Tissue types with similar average gene
expression, biological functions, and spatial proximity were merged. For example, exposed
and non-exposed skin tissues were combined into a single skin category. Details of quality
control and merging results are provided in supplementary tables (Table S1). Ultimately,
we used bulk RNA-seq data of 31 tissues as reference.

At the cell type level, we utilized scRNA-seq data from the TSP. Following the approach
by Vorperian et al. (2022) and Yan et al. (2024), we combined cell types from TSP. We only
kept cell types that had more than 10 cells, resulting in a total of 60 merged cell types. Due
to the lengthy names of the merged cell types, we assigned each a representative name and
included detailed correspondences in the supplementary tables (Table S2).
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In order to reduce the time of analysis of CSx, AutoGeneS, GEDIT, MuSiC, and SCDC,
we performed downsampling on the scRNA-seq and bulk RNA-seq data, sampling 100
samples per tissue or cell type, and using all available samples if fewer than 100 were
present. The downsampled expression data were then converted into the appropriate file
formats to be used as reference, according to the requirements of the various tools.

Simulated cfRNA data
Simulated cfRNA data were generated from TSP as previously described (Yan et al., 2024)
and were briefly summarized below. Cell types were randomly sampled from a pool of
original types with equal probability. For each selected cell type, between 200 to 800 cells
were randomly sampled for the mixture. If the total number of cells for a specific type was
fewer than 200, all available cells were included. The mixture fractions for the cell types
were specified by assigning a random ratio to each cell type, ensuring the sum of all ratios
equaled 1. The expression data for each cell type was accumulated by first averaging the
expression values for that cell type, then aggregating them into a weighted sum based on
the mixture fractions. We generated 1,000 simulated cfRNA samples. To simulate data
with different levels of gene detection, we randomly set 10%, 20%, 30%, 40%, and 50% of
gene expression values to zero.

cfRNA data preprocessing
The plasma cfRNA data were obtained from Chen et al. (2022), Roskams-Hieter et al.
(2022), and Tao et al. (2023). The plasma cfRNA data of patients with hepatitis B virus
(HBV) and corresponding control was obtained from Sun et al. (2023). These counts
data were processed into TPM format, with sample quality control conducted according
to the criteria outlined in the original articles. The Chen et al. (2022) dataset contains a
total of 35 healthy samples, 21 esophageal carcinoma (ESCA) samples, 21 hepatocellular
carcinoma (HCC) samples, 34 lung adenocarcinoma (LUAD) samples, and 36 stomach
adenocarcinoma (STAD) samples. The Roskams-Hieter et al. (2022) dataset includes 30
healthy samples, 28 HCC samples, and 19 MM samples. The Tao et al. (2023) dataset
comprises 50 healthy samples, 41 CRC samples, and 36 STAD samples. The Sun et al.
(2023) dataset consists of 171 healthy samples and 40 HBV samples. To avoid the influence
of batch effects from different datasets, when comparing the results of cell types of origin
between disease and healthy individuals, we used the healthy individuals from the same
datasets as the control group.

Construction and evaluation of classification models
We used the results of cell types of origin as input features to build classification models.
Each dataset was split into a training set and validation set at 7:3 ratio. We generated
100 different training-validation set combinations through random sampling. Given the
class imbalance present in some datasets, we applied synthetic minority over-sampling
technique (SMOTE) to upsample both the training and validation sets. A random forest
model was used for training and prediction, and the area under the curve (AUC) was
recorded for each model’s prediction on the validation set. The classification performance
of different tools based on their results of cell types of origin was evaluated by averaging the
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AUCs from the 100 models. To compare the effectiveness of cancer classification models
constructed using the results of cell types of origin from different tools, we defined a
classification performance score. This score was calculated for each cancer type within each
dataset by subtracting the average AUC of all tools from the average AUC of a given tool,
then dividing the result by the variance of the AUCs from all tools.

Statistical analysis
When comparing the accuracy of different tools applied to simulated cfRNA, we used root
mean square error (RMSE) and concordance correlation coefficient (CCC), calculated
in the same way as in previous studies using R (Menden et al., 2020). For evaluating the
correlation between deconvolution results and clinical indicators, we applied Spearman’s
correlation, setting a significance threshold of p-value < 0.01 and absolute correlation
coefficient |r | ≥ 0.2. In analyzing differentially expressed genes from datasets of various
sources and comparing the results of cell types of origin across groups, statistical differences
were assessed using the Wilcoxon rank-sum (Mann–Whitney U) test. We calculated the
RankGap based on the results of the rank-sum test, which quantifies the degree of difference
in platelet signals between groups.

RESULTS
Comparing the results of cell types of origin and tissues of origin in
plasma cfRNA
We obtained expression profiles of different types of cells and tissues from the TSP (The
Tabula Sapiens Consortium, 2022) and the GTEx (Lonsdale et al., 2013) as reference datasets
to conduct both tissues of origin and cell types of origin analysis on plasma cfRNA from
healthy individuals across four datasets.

For the results of cell types of origin, we found that the overall signal proportion of
blood cells ranges from 67% to 93%, making them the primary sources of plasma cfRNA
(Fig. 2A). Upon further examination of specific cell signal proportions, we discovered
that platelet signals are the highest (exceeding 31%), followed by red blood cells, NK cells,
monocytes, and other blood-derived cells (Fig. 2B). As for the results of tissues of origin, we
observed that the proportion of whole blood is less than 20%, which is significantly lower
than previous research findings (Koh et al., 2014; Ibarra et al., 2020), while the proportion
of spleen is high in most of the methods. We conducted the same analysis on plasma cfRNA
from healthy individuals in other datasets, and the results were similar (Fig. S1). As we
know, whole blood and spleen share a group of cell types, the contribution of whole blood
could be calculated on the spleen.

In summary, by comparing the results of cell types of origin and results of tissues of
origin in plasma cfRNA from healthy individuals, we believe that the results of cell types
of origin are more rational when using deconvolution methods based on single-cell data
to analyze cfRNA. Therefore, all subsequent evaluations will be based on the strategy of
analyzing the cell types of origin.
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Figure 2 Comparing the results of cell types of origin and tissues of origin in plasma cfRNA. (A) Cell
types of origin, displaying proportions of each major blood-derived cell type (> 5%) on the left, while
other blood cell types (<5%) and other cell types (non-blood) are shown on the right. (B) Tissues of ori-
gin, displaying proportions of whole blood and major tissue types on the left, while other tissue contribu-
tions on the right. X-axis: origin proportions, Y -axis: different methods, different colors represent differ-
ent cell or tissue types.

Full-size DOI: 10.7717/peerj.19241/fig-2

Assessment of accuracy and robustness across methods
To evaluate the accuracy of different methods for analyzing the cell types of origin, we
generated simulated data based on the TSP dataset by mixing expression profiles of various
cell types in different proportions. Additionally, we noted that the initially generated
simulated data had an average gene detection count of 17,000, while the gene detection
rates in real plasma cfRNA data are much lower (approximately 8,000–14,000). To make
the simulated data more closely resemble the detection conditions of actual plasma cfRNA,
we set different gene missing rates in the simulated data. The simulated data with a missing
rate of 30–50% closely matches the gene detection conditions of actual plasma cfRNA
(Fig. S2).

We conducted cell type origin analysis on the simulated data and compared the predicted
proportions to the actual proportions to calculate the CCC (Fig. 3A) and RMSE (Fig. 3B)
for the results of different methods. These metrics indicate the accuracy of the cell types of
origin analysis by different methods. We found that as the gene missing rate increases, the
CCC of most methods decreases, and the RMSE increases. As the missing rate increases
from 0% to 50%, MuSiC (median CCC maintains 0.87, median RMSE maintains 0.02)
and Deconformer (median CCC decreases from 0.99 to 0.96, median RMSE increases
from 0.005 to 0.011) are minimally affected by gene dropout. In contrast, other methods
are more significantly affected by the missing rate, such as AutoGeneS (CCC decreasing
from 0.81 to 0.28, RMSE increasing from 0.02 to 0.045), CSx (CCC decreasing from 0.98
to 0.59, RMSE increasing from 0.007 to 0.037). We found that for simulated data with
gene detection numbers more closely to actual plasma cfRNA data (dropout rate of 0.3),
Deconformer performed the best (median CCC = 0.98, median RMSE = 0.006), followed

Yang et al. (2025), PeerJ, DOI 10.7717/peerj.19241 7/21

https://peerj.com
https://doi.org/10.7717/peerj.19241/fig-2
http://dx.doi.org/10.7717/peerj.19241#supp-2
http://dx.doi.org/10.7717/peerj.19241


Figure 3 Evaluating the accuracy and robustness of methods. (A, B) Evaluating the accuracy and ro-
bustness of methods on simulated data. (A) Concordance correlation coefficient (CCC) and (B) Root
mean square error (RMSE) between predicted proportions and actual proportions for different methods
analyzing data with varying dropout rates. The intensity of the colors represents the levels of dropout. (C)
Correlation between hepatic signals and liver injury indicators. The X-axis shows levels of Alanine Amino-
transferase (ALT) and Aspartate Aminotransferase (AST), while the Y -axis represents hepatocyte signal
levels. (D) Correlation between neutrophil signals and neutrophil counts. The X-axis indicates neutrophil
counts, and the Y -axis represents neutrophil signal levels. Results with significant correlations (R ≥ 0.2, p-
value< 0.01) are highlighted in bold.

Full-size DOI: 10.7717/peerj.19241/fig-3

by CSx (median CCC = 0.95, median RMSE = 0.01) and Music (median CCC = 0.87,
median RMSE = 0.02).
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Across different levels of gene missing rates, Deconformer consistently shows the best
performance, especially on data with lower gene detection numbers, maintaining high
accuracy. While CSx performs well at lower missing rates, its accuracy is significantly
affected as the missing rate increases, with a noticeable decline in performance when
the missing rate reaches 50%. Therefore, we believe CSx is not suitable for data with
low gene detection numbers. Compared to these two methods, MuSiC has shown the
highest robustness, likely due to its approach of assessing weights across all genes without
pre-selection. Our results indicate that Deconformer, CSx, and MuSiC demonstrate higher
accuracy when applied to data similar to plasma cfRNA.

Evaluating the correlation between the results of cell types of origin
and clinical indicators
Previous studies have indicated that elevated levels of hepatocyte injury indicators suggest
increased hepatocyte damage, which leads to the release of more cfRNA, thereby increasing
the hepatocyte signal in the blood (Sun et al., 2023). To evaluate the accuracy of different
methods in analyzing the cell types of origin in real plasma cfRNA data, we calculated the
correlation between the hepatocyte signals in the origin results and liver injury indicators
Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST) (Fig. 3C). We
found that hepatocyte signals from all methods showed a positive correlation with liver
injury indicators. Among these, only Deconformer’s hepatocyte signals were significantly
correlated with levels of AST (R≥ 0.2, p-value < 0.01), and showed the highest correlation
with ALT. Other methods that performed well in correlation with ALT include AutoGeneS
(0.34), CSx (0.33), and MuSiC (0.29).

Blood cells are the primary source of plasma cfRNA. We hypothesized that an increase
in the number of blood cells might lead to a rise in corresponding cell signals in the plasma.
We also assessed the correlation between neutrophils (Fig. 3D), monocytes, basophils,
erythrocytes, platelets, and their corresponding counts. We found that in the results of
all methods, the signal from neutrophils positively correlated with neutrophil counts.
These methods that showed significant positive correlations are: MuSiC (0.22), CSx (0.21),
Deconformer (0.2), and SCDC (0.2). On the other hand, we found that all methods did not
show significant correlations between signals of other cell types and their corresponding
counts (Fig. S2).

Overall, Deconformer, MuSiC, and CSx demonstrated high consistency in analyzing the
cell types of origin in real plasma cfRNA data with clinical indicators.

Evaluating the effectiveness of methods in characterizing the impact
of liver diseases
To evaluate the effectiveness of these methods in characterizing the impact of liver disease
on cells, we collected datasets related to liver diseases. We analyzed plasma cfRNA data
from patients with HBV infection or HCC (HBV data from Sun et al. (2023), HCC data
from Chen et al. (2022) and Roskams-Hieter et al. (2022)) using seven methods to analyze
the cell types of origin. We examined the changes in signals of various cell types in the
plasma cfRNA of liver diseases patients as indicated by the results of different methods.
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Figure 4 Changes in signals of hepatocytes and platelets in plasma cfRNA from liver disease patients.
(A) Changes in the relative proportions and scores of hepatocytes in plasma cfRNA in hepatitis B virus
(HBV) patients from the Sun et al. (2023) study. (B, C) Changes in the relative proportions and scores
of hepatocytes in plasma cfRNA in hepatocellular carcinoma (HCC) patients from (B) Chen et al. (2022)
study and (C) Roskams-Hieter et al. (2022). (D) Changes in proportions and scores of platelet in plasma
cfRNA in liver disease patients. The absolute value of the rank gap (abs(rank_gap)) represents the magni-
tude of signal change. The significance of differences is assessed using the Wilcoxon rank-sum test, with p-
values denoted as: *<0.05; **<0.01; ***<0.001. ns: not significant. NC, Normal control.

Full-size DOI: 10.7717/peerj.19241/fig-4

For both HBV and HCC (Chen et al., 2022), results from all methods demonstrated a
significant increase in hepatocyte signals in the plasma cfRNA of patients (Fig. 4A, 4B).
Previous research has shown that hepatocytes in patients with HBV and HCC are often
in a damaged state, and increased hepatocyte apoptosis could lead to the release of more
cfRNA into the plasma, thus elevating hepatocyte signals in plasma cfRNA. However,
in the Roskams-Hieter et al. (2022) dataset, while most methods showed an increase in
hepatocyte signals in the plasma cfRNA of HCC patients, only the cell type origin results
from Deconformer exhibited a significant increase in hepatocyte signals (Fig. 4C).
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Additionally, we observed in all three liver disease datasets that the results from nearly
all methods indicated a decrease in platelet signals in the plasma cfRNA of liver disease
patients (Fig. 4D). Platelets are a major source of signals in plasma cfRNA and are involved
in immune regulation. In the Roskams-Hieter et al. (2022) dataset, the decrease in platelet
signals was noted but not significant.

We found that, compared to the other two datasets, the changes in hepatocyte and
platelet signals in the plasma of patients from Roskams-Hieter et al. (2022) were lower,
regardless of the method used. Further analysis of differentially expressed genes in the
plasma cfRNA profiles revealed that the Roskams-Hieter et al. (2022) dataset has fewer
differentially expressed genes (DEGs) in HCC patients, particularly lacking up-regulated
liver-specific and down-regulated platelet-specific DEGs (Table S3). We speculate that
the low degree of gene expression differences might result in less significant changes in
cell signals in the results of methods based on GEPs or feature gene sets. On the other
hand, Deconformer, which incorporates pathway information in its analysis, shows higher
sensitivity.

Evaluating the effectiveness of methods in characterizing the impact
of other cancers
To evaluate the performance of different methods for analyzing the cell types of origin in
other cancer datasets, we further analyzed plasma cfRNA data from patients with various
types of cancer, including CRC, STAD, MM, ESCA, and LUAD. Using six methods to
analyze the cell types of origin, we examined the changes in signals from various cell types
in the plasma cfRNA of liver disease patients across different methods.

When analyzing the results of cell types of origin in plasma cfRNA fromCRCpatients and
healthy individuals, we found that AutoGeneS, CSx, and Deconformer robustly captured
signals from intestinal enterocytes or immature enterocytes across different datasets (Chen
et al., 2022; Tao et al., 2023), with consistent trends in cell signal changes across these
datasets (Fig. 5A, 5B). Specifically, the cell types of origin results from CSx and AutoGeneS
showed a significant decrease in intestinal enterocyte signals in the plasma cfRNA of CRC
patients, while Deconformer’s results showed a significant decrease in immature enterocyte
signals in the plasma of CRC patients. In the results from most other methods, the signals
from these two cell types were extremely low. Existing research indicates that the normal
differentiation of intestinal stem cells in CRC patients is hindered, leading to a reduction
in the number of immature intestinal cells and intestinal cells derived from these stem
cells, which we believe could be the cause of the reduced signals in the plasma (Liang et al.,
2022).

When analyzing the results of cell types of origin in plasma cfRNA fromMMpatients and
healthy individuals, we observed that the results from all methods indicated a decrease in
B-cell signals and a significant increase in red blood cell signals (Fig. 5C).MM is amalignant
tumor affecting the blood and bone marrow. In MM patients, abnormal B cells accumulate
in the bone marrow and form tumors. These abnormal B cells undergo significant changes
in their expression profiles and fail to perform normal immune functions. The reduction
in the proportion of normal B cells might explain the decreased B-cell signals in the

Yang et al. (2025), PeerJ, DOI 10.7717/peerj.19241 11/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.19241#supp-6
http://dx.doi.org/10.7717/peerj.19241


Figure 5 Changes in proportions of cell types in plasma cfRNA from patients with several cancers. (A,
B) Changes in the relative proportions of intestinal-related cells in plasma cfRNA from colorectal cancer
(CRC) patients from Chen et al. (2022) and (B) Tao et al. (2023). (C) Changes in the relative proportions
of B cells and erythrocytes in plasma cfRNA from multiple myeloma (MM) (continued on next page. . . )

Full-size DOI: 10.7717/peerj.19241/fig-5
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Figure 5 (. . .continued)
patients from Roskams-Hieter et al. (2022). (D) Changes in the relative proportions of platelets in plasma
cfRNA from several cancer patients. The absolute value of the rank gap (abs(rank_gap)) represents the
magnitude of signal change. The significance of differences is assessed using the Wilcoxon rank-sum test,
with p-values denoted as: *<0.05; **<0.01; ***<0.001. ns: not significant. NC, Normal control.

plasma (Liu et al., 2021). Additionally, the progression of MM increases erythroid cell
apoptosis, releasing more cfRNA into the plasma, which could be the cause of the increased
red blood cell signals in the plasma (Moyo et al., 2015).

For other types of cancer, the reference data does not include cell types from the tumor
regions or cell types specifically affected by the cancer. Platelets are affected by almost every
type of cancer. We characterized the changes in platelet signals in the plasma cfRNA from
patients with various cancers including CRC, STAD, ESCA, LUAD, and MM (Fig. 5D).
We found that for patients with CRC, STAD, ESCA, and LUAD, the results of cell types
of origin of plasma cfRNA from all methods indicated an increase in platelet signals,
with most of these increases being significant. Previous research has shown that cancer
significantly affects platelets, with increased platelet production and activity observed in
patients with gastric cancer, lung cancer, esophageal cancer, etc. These effects of cancer
on platelets are likely the cause of changes in platelet signals in plasma cfRNA. We found
that for patients with STAD from Tao et al. (2023), only the results from MuSiC and CSx
showed a significant increase in platelet proportions.

Evaluating the effectiveness in cancer classification
To evaluate the effectiveness in cancer classification, we utilized the cell proportions or
scores generated by methods as input features to classify between cancer patients and
healthy individuals across various datasets. We assessed the classification performance
of the models by calculating the average AUC from models generated through multiple
random samplings.

Our results indicate that for most classification tasks, the results of cell types of origin
from most methods demonstrate good classification performance. We observed that
the best-performing methods vary across different classification tasks (Figs. 6A–6C).
Specifically, for HCC data fromChen et al. (2022) (Fig. 6A), the results of cell types of origin
fromDeconformer (AUC: 0.81) and xCell (AUC: 0.80) performed best. For CRC data from
Tao et al. (2023) (Fig. 6B), CSx (AUC: 0.87) and Deconformer (AUC: 0.85) performed best.
For CRC data from Chen et al. (2022) (Fig. 6A), AutoGeneS (AUC: 0.87) and Deconformer
(AUC: 0.87) performed best. The details of classification performance (AUC, sensitivity,
specificity, standard deviation ofAUC) are provided in the supplementary tables (Tables S4–
S6).

We found that when using results of cell types of origin to construct models, the
classification performance for the same cancer type varies significantly across different
datasets (Fig. 6D). For example, in the HCC data from Chen et al. (2022), the average AUC
across different methods reached as high as 0.9, whereas in the HCC data from Roskams-
Hieter et al. (2022), the average AUCwas less than 0.7. This lower classification performance
reflects smaller differences in cell origin results between groups. Additionally, we observed
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Figure 6 Comparison of cancer classification model performance based on cell types of origin re-
sults. (A–C) Average area under the curve (AUC) values for cancer classification models constructed for
five types of cancer from (A) Chen et al. (2022) and (B) Tao et al. (2023) (C) Roskams-Hieter et al. (2022).
The error bars are calculated based on the mean AUC±the standard deviation of the AUC. (D) Relative
performance of models constructed using different methods for different types of cancer from various
sources, with a color gradient from red to blue indicating relative performance from high to low.

Full-size DOI: 10.7717/peerj.19241/fig-6

that within the same dataset, the classification performance varies between different cancers.
HCC generally showed the best classification results, while ESCA showed the worst. This
variationmay be due, in part, to the cell types of origin possibly not encompassing the main
cell types affected by the cancer; on the other hand, different cells are affected differently by
cancer, leading to varying degrees of change in cfRNA cell signals. Given that both cancer
type and dataset can indirectly influence classification performance, we assessed the relative
effectiveness of different methods for results of cell types of origin in each classification task.
To do this, we normalized each method’s AUC against the average AUC for all methods
within each classification task, generating a classification effectiveness score. A score above
zero indicates that the method’s classification performance is above the average level,
and vice versa. The best-performing method varied across different classification tasks.
For CRC in the Chen et al. (2022) dataset, AutoGeneS showed the highest classification
effectiveness score of 0.3. In the Roskams-Hieter et al. (2022). dataset for MM, GEDIT
showed the highest score of 0.1. When considering the overall performance of each method
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across all classification tasks, we found that CSx and Deconformer consistently achieved
classification effectiveness scores of zero or higher for all cancer types across all datasets.
In contrast, other methods showed less robust performance across different classification
tasks, sometimes scoring very low, such as SCDC with a score of −0.18 for ESCA in the
Chen et al. (2022) dataset and xCell with a score of −0.22 for HCC in the Roskams-Hieter
et al. (2022) dataset.

In summary, by evaluating the effectiveness of different methods’ results applied to
constructing cancer classification models, we found that using results of cell types of origin
as features provides good classification performance for distinguishing between cancer
patients and healthy individuals. CSx and Deconformer, in particular, showed consistently
good classification performance across various datasets.

DISCUSSION
Analyzing the origins of plasma cfRNA is a computationally challenging problem.
Although past studies have made some attempts, they lack a comparative evaluation
of the effectiveness of using different strategies and methods. Our research compared
results of tissues of origin and results of cell types of origin, systematically assessing the
accuracy and robustness of various types of methods applied to the cell types of origin of
plasma cfRNA. Furthermore, our study evaluated how well these methods characterize
the impact of diseases on cells and their performance in constructing cancer classification
models.

Previous studies have already demonstrated that plasma cfRNA primarily originates
from blood cells (Ibarra et al., 2020). We found in our results of cell types of origin that
blood cells are the predominant source, accounting for over 70% of the total, whereas
in the results of tissues of origin, the proportion of whole blood is much lower, less than
25%. The discrepancy between the two strategies might be due to the high similarity in
expression profiles among different tissues, which often contain many of the same types of
cells.

Many studies have noted that high correlation in reference datasets can diminish
the effectiveness of deconvolution (Avila Cobos et al., 2020; Sturm et al., 2019; Sutton et al.,
2022). Additionally, the methods we evaluated were originally developed for deconvolution
based on single-cell data, andmay not be ideally suited for using tissue bulk data as reference
datasets, leading to poorer deconvolution results. Furthermore, the presence of various
types of blood cells in blood means that cell types of origin can more precisely quantify
the proportions of different types of blood cells, such as platelets, red blood cells, and
various immune cells, offering a higher resolution analysis compared to tissues of origin.
Therefore, we recommend employing a strategy of using results of cell types of origin.

In our evaluation of method accuracy and robustness using simulated data, we found
that Deconformer developed by our research group exhibited the highest accuracy and
was least affected by gene dropout rates. CSx also performed well overall, but its accuracy
significantly decreased as gene dropout rates increased. Although MuSiC has the best
robustness, being almost unaffected by gene dropout, its accuracy is lower than the
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first two methods when analyzing simulated data with gene detection counts closest to
typical cfRNA levels. When assessing the correlation between the results of cell types of
origin and clinical indicators, we observed that Deconformer, CSx and MuSiC showed
a relatively high correlation with clinical indicators. In evaluating the effectiveness of
methods in characterizing the impact of disease on cells, we noted that most methods
could identify an increase in hepatocyte signals in the plasma cfRNA of patients from
Sun et al. (2023) HBV dataset and Chen et al. (2022) HCC dataset. However, for the
Roskams-Hieter et al. (2022) HCC dataset, which had smaller differences in expression
profiles, only Deconformer was able to detect an increase in hepatocyte signals. We also
discovered that CSx, Autogene and Deconformer could characterize the decrease in signals
of immature enterocytes or enterocytes in the plasma cfRNA of CRC patients from different
datasets. When evaluating the effectiveness of constructing cancer classification models, we
found that Deconformer and CSx consistently maintained good predictive performance
across different datasets and cancer types, demonstrating their robustness and utility in
cancer classification tasks.

During the evaluation process, in addition to the choice of methods, we identified other
factors that could potentially affect the results of cell types of origin analysis of plasma
cfRNA. Firstly, the gene detection count in plasma cfRNA influences the accuracy of cell
types of origin results. Our findings suggest that a lower gene detection count in plasma
cfRNA can lead to reduced accuracy of cell types of origin results. Deconformer andMuSiC
have the highest robustness, whichmaymitigate the impact of this factor, resulting in better
performance on data with lower gene detection count, compared to other methods.

Additionally, the degree of difference in the cfRNA expression profiles between
diseased and healthy individuals affects the effectiveness of cell types of origin results
in characterizing cell signal changes and constructing classification models. We found
that, among HCC patients, compared to data from Chen et al. (2022)., the analysis of
HCC patients’ plasma cfRNA cell types of origin results from Roskams-Hieter et al. (2022)
showed smaller changes in hepatocyte and platelet signals, and the classification models
constructed based on these cell types of origin results also performed poorly. The dataset
from Roskams-Hieter et al. (2022) exhibited fewer differences in cfRNA expression in HCC
patients. Thus, we speculate that the low degree of gene expression differences can lead to
poorer performance in characterizing disease-related cell signal changes and constructing
disease classification models. Deconformer and CSx have the highest sensitivity, which
may mitigate the impact of this factor, resulting in better performance on datasets in this
situation, compared to other methods. However, the choice of reference datasets and the
scope of cells analyzed according to the research goal, the normalization methods for
plasma cfRNA expression profiles, and the various parameters set during the use of the
methods can all affect the effectiveness of analyzing the origins of plasma cfRNA, which
were not evaluated in this study.

CONCLUSIONS
Overall, our study provides a systematic evaluation of strategies and methods for analyzing
the origins of plasma cfRNA. Regarding strategies, we recommend adopting cell types
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of origin analysis; for methods, we suggest using Deconformer or CSx for analysis. We
identified factors that affect the effectiveness of cell types of origin analysis, including that
lower gene detection counts can reduce method accuracy, and minimal differences in
cfRNA expression profiles between diseased and healthy individuals can result in outcomes
that fail to characterize the impact of the disease on cells. In summary, our research
advances the understanding and application of plasma cfRNA.
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