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ABSTRACT

Bortezomib, as a proteasome inhibitor, is used in clinical trials related to solid cancers.
However, its use is not always associated with a good response to treatment. Taking
into account the above, we decided to analyze the effect of the time-dependency (24 vs.
48 h) and the dose-dependency of bortezomib (2, 4, 8 and 16 nM) on apoptosis and
activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD),
glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione transferase
(GST), as well as concentrations of reduced glutathione (GSH) and malondialdehyde
(MDA) in hepatoblastoma cell line (HepG2) cells. We have shown that increasing
concentrations of bortezomib caused (I) a gradual decrease in the levels of GSH; (II)
changes in MDA concentrations and antioxidant enzymes activities; (III) increase
in apoptosis levels in HepG2 cells. We did not find significant association between
antioxidant parameters and number of apoptotic cells. Our study showed that the
analyzed parameters (such as: CAT, SOD, GR, GPx, GST, GSH, MDA) changed after
bortezomib treatment. It is important to search for new anti-cancer therapies based on
next-generation proteasome inhibitors. It is possible that the use of proteins associated
with oxidative stress will help enhance the action of these inhibitors and will provide a
better treatment effect.

Subjects Biochemistry, Cell Biology, Oncology
Keywords Bortezomib, Apoptosis, HepG2 cells, Oxidative stress

INTRODUCTION

Proteasome inhibitors are a promising class of compounds that reduce the ability of cancer
cells to cope with the increase in by-products obtained from protein synthesis, such as
the accumulation of misfolded proteins, leading to cell death (Manasanch ¢ Orlowski,
2017). The bortezomib, a potent proteasome inhibitor, is a boronic acid dipeptide
that induces cancer cell death (Park et al., 2018). It is an effective drug for both newly
diagnosed or relapsed multiple myeloma patients and is widely used in the treatment of
various kinds of lymphomas, solid cancers and other diseases. In light of their success
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in hematologic malignancies, proteasome inhibitors have been evaluated in various solid
tumours, including hepatocellular cancer (HCC) (Kim ¢ Viatour, 2020; Roeten, Cloos ¢
Jansen, 2017). There are several studies showing the mechanisms of bortezomib action
(called Velcade or PS341) in the HepG2 cell line (hepatoblastoma cell line), including
the application of HepG2 in an animal model (Yang et al., 2016). Bortezomib affects
the function and signalling of HepG2 cells (Calvaruso et al., 2006; Baiz et al., 2009; Liao
et al., 2023). In preclinical studies using HCC cell lines, proteasome inhibitors induced
various antitumor responses, such as cell cycle arrest, apoptosis, induction of endoplasmic
reticulum stress, repression of NF« B signalling, and inhibition of epithelial-mesenchymal
transition (Augello et al., 2018; Huang et al., 2019). Bortezomib induces apoptosis in HepG2
cells by both extrinsic and intrinsic pathways (Lauricella et al., 2006). Moreover this drug
can cause oxidative stress development via cytochrome in mitochondrial fraction. However,
the exact effect of bortezomib on glutathione enzymes and other antioxidant parameters
in HepG2 cells was not analyzed. Bortezomib affects the redox homeostasis in multiple
myeloma cells decreasing the levels of intracellular glutathione (Caillot et al., 2021; Nerini-
Molteni et al., 2008; Abou-Ghali ¢ Stiban, 2015). Reduced glutathione (GSH) is one of
the most important endogenous antioxidants. It is found in the mitochondria, nucleus,
endoplasmic reticulum and the cytoplasm. Cellular GSH protects DNA, proteins and
fats against the harmful effects of free oxygen radicals. In addition to its important role
in maintaining redox homeostasis, it regulates metabolic processes and affects apoptosis
(Greenberg, 1996; Paduch, Klatka ¢» Klatka, 2015). Glutathione interacts with enzymes
such as: glutathione S-transferases (GSTs), glutathione reductase (GR) and glutathione
peroxidase (GPx). GSTs reduce or eliminate the toxicity of xenobiotics and exogenous
toxins. GPx promotes the reduction of superoxide hydrogen to water using GSH as a
reducing compound (Flohé, Toppo ¢ Orian, 2022). As a result of this reaction oxidized
glutathione (GSSG) is produced. GR catalyzes GSSG reduction using NADPH as a reducing
agent (Caillot et al., 2020). The first line of cellular antioxidant defence is formed not only
by GPx, but also by superoxide dismutase (SOD) and catalase (CAT) (Caillot et al., 2020).
Superoxide dismutases are the only enzymes that can eliminate superoxide radicals by
catalysing their dismutation into hydrogen peroxide and oxygen (Greenberg, 1996). CAT
catalyses hydrogen peroxide transformation into water and oxygen (Caillot et al., 2020).
The level of oxidative stress is associated with high cytotoxic potential of malondialdehyde
(MDA), which acts as a carcinogen (Gubaljevic et al., 2018). MDA concentration is a
cytotoxic substance resulting from lipid peroxidation, oxidising glutathione, cysteine, and
SH group proteins. In addition, it inhibits the action of enzymes and membrane proteins
and is one of the markers of oxidative stress (Khoubnasabjafari, Ansarin ¢ Jouyban, 2015).

In recent years, molecular targeted anticancer drugs with fewer side effects than classical
anticancer drugs have applied for cancer therapy (Zhang et al., 2020).

HCC is the seventh most common cancer and the third most common cause of
cancer-related mortality worldwide (Hentze et al., 2002; Circu ¢ Aw, 2008). The majority
of patients with HCC suffer from liver dysfunction and cannot be treated with intensive
chemotherapy (Bray et al., 2001); thus, there is a need to develop novel therapies for
HCC. The lack of effective treatment options, especially for patients with advanced and
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unresectable HCC is a significant clinical challenge. The lack of effective treatment options
for advanced HCC requires ongoing research into new treatments and new therapeutic
targets (Lim ef al., 2022). HepG2 cells are also used as a model system for studies concern
liver metabolism, xenobiotics toxicity, and chemotherapeutic drugs effects including
apoptosis induction (Evan ¢ Vousden, 2001). Additionally, this line is often used in
research due to the very low proliferative potential of normal hepatocytes. Apoptosis
can be generated by a number of different factors of external origin (extrinsic apoptosis
pathway), or a condition inside the cell (intrinsic apoptosis pathway). The intrinsic
apoptotic pathway is activated by various intracellular stimuli, such as oxidative stress
(Pfeffer ¢ Singh, 2018; Modanloo ¢ Shokrzadeh, 2019).

Taking into account above, we have decided to analyse the relationship between the
activity/concentration of selected oxidative stress-related substances (glutathione and its
enzymes, as well as catalase, superoxide dismutase and malondialdehyde). HepG2 cells
were exposed to various bortezomib doses and incubation times. The hypothesis of the
research is as follows: the activity of antioxidant enzymes and concentrations of reduced
glutathione, as well as malondialdehyde depends on bortezomib doses and incubation
time with this drug. The higher concentration of bortezomib and the longer incubation
time should result in greater dynamics of changes in activity of the antioxidant enzymes.
Furthermore, the correlation between the level of apoptosis and antioxidant markers was
analyzed. According to our knowledge aforementioned parameters were not analyzed to
such an extent in HepG2 cells in the context of bortezomib concentrations. The work
aimed at evaluating the impact of bortezomib on redox dynamics of human HCC cells,
what can be used in the future to develop new treatment strategies.

MATERIALS AND METHODS

Cell cultures and bortezomib treatment

The study was conducted on the human hepatoma cell line (HepG2) (from the Institute
of Biology at Jan Kochanowski University in Kielce). The cells were plated 2.0 x 10°—3.0
x 10° per dish in one mL of complete growth medium, according to manufacturer’s
recommendations (ATCC, Manassas, VA, USA). Bortezomib was added to the culture
medium at concentrations of: 2 nM, 4 nM, 8 nM and 16 nM. Bortezomib (LC Laboratories,
Woburn, MA, USA) 10 mg (free base, B-1408) was dissolved in DMSO (with final
concentration 200 mg/ml, as recommended by the manufacturer) and stored at —80 °C.
The final DMSO (Merck, Burlington, MA, USA) concentration in culture medium was
less than 0.1%. As a control, cell cultures without bortezomib (with 0.1% DMSQO) were
used. The cultures were incubated in an atmosphere of 5% CO,, at 37 °C for 24 h or 48 h.
Passaging procedures were repeated until 12 dishes were obtained for each concentration
and control. The cell pellet was suspended in a medium consisting of: 2.4 mL of HepG2
(William’s Medium) A549 (F12-HAM), 0.9 mL of FCS and 0.4 mL of DMSO.

Apoptosis/necrosis determination
In order to determine the apoptosis level in HepG2 cells, the commercial FITC Annexin
V Apoptosis Detection Kit I from BD Pharmingen Sigma-Aldrich (Darmstadt, Germany)
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was used, following the manufacturer’s instructions. Trypsin (0.25%) was added to collect
the cells of all groups, and the cell density was adjusted to 1 x 10° cells/ml. Annexin
V-FITC and PI were added, respectively, for dyeing before analysis with flow cytometry.
The effect of bortezomib variation on cell apoptosis by annexin V-FITC/PI staining and
flow cytometry was evaluated. The cells are double stained with annexin V/PI and three
different populations of cells were observed. The cells which were not stained with both
dyes were alive (viable) and resided in region Q3. The cells the stage of early apoptosis
that were stained with only annexin V, resided in region Q4. The cells that were stained
with both reagents were in late apoptosis and scattered in region Q2. The cells in region
Q1 were undergoing necrosis. The cells that stain with both reagents are in late apoptosis.
But the cells that stain with only annexin V are in the stage of early apoptosis. Early
apoptotic cells are annexin V-positive and PI-negative (annexin V-FITC+/PI—), whereas
late (end-stage) apoptotic cells are annexin V/PI-double-positive (annexin V-FITC+/PI+).
However, to verify the stages of apoptosis, time-course analyses and caspase assays are
necessary. Necrosis is a nonapoptotic, accidental cell death. It is a term used to designate
the presence of dead tissues or cells and is the sum of changes that have occurred in cells
after they have died, regardless of the prelethal processes. Necrosis, therefore, refers to
morphological stigmata seen after a cell has already died and reached equilibrium with
its surroundings. Thus, in the absence of phagocytosis, apoptotic bodies may lose their
integrity and proceed to secondary or apoptotic necrosis. Measurement was performed
with a Becton Dickinson LSR II flow cytometer using the CellQuest Pro computer system
from Becton Dickinson, determining the percentage of cells during early and late apoptosis
and necrosis.

Determination of cell viability (MTT test)

After 24-hour or 48-hour incubation with bortezomib (2, 4, 8 and 16 nM) the
culture medium was removed and the cells were resuspend in tetrazolium salt 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT in concentration
(0.5 mg/ml PBS). The incubation with MTT was for 3 h at 37 °C. The formed formazan
crystals were dissolved in dimethyl sulfoxide (DMSO) and the absorbance was read at 570
nm using a TECAN ELISA microplate reader. The cell viability was then calculated as a
percent of the control. It was done by dividing the absorbance of the cultures treated with
bortezomib by the absorbance of the control cultures. The resulting number was multiplied
by 100 to give a percentage.

Analysis of enzymes activities

Superoxide dismutase

SOD activity measurements were performed using the adrenaline method according to
Misra ¢ Fridovich (1972). The absorbance changes were measured at a wavelength of 480
nm against black samples containing 2,000 wL of 0.05M carbonate buffer (pH 10.2) and
1,000 wL of 0.3 mM EDTA. The control sample contained: 0.05 M carbonate buffer pH 10.2
(1,900 pl), 0.3 mM EDTA (1,500 pl) and 9 mM adrenaline (200 pl). The samples used for
assessing enzymes activity contain 1,800 pl of 0.05 M carbonate buffer (pH 10.2), 1,500 1
of 0.3 mM EDTA, 100 pl of the enzyme extract and 200 ul of 9 mM adrenaline, which
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was added immediately before the measurement. The activity of SOD was determined
at one-minute time intervals based on changes in absorbance in the sample containing
the enzyme, in relation to analogous time changes in absorption in the control sample
(measurement for 3 min). SOD activity is expressed in U/mg protein/min.

Catalase

The measurement of catalase activity was assessed on the basis of the rate of decomposition
of 54 mM H,O; hydrogen peroxide in 50 mM phosphate buffer (pH 7.0) and 20 wL of
the assayed enzyme extract in a total volume of three mL according to Bartosz (2006). The
absorbance was measured at a wavelength of A = 240 nm over a period of 3 min. CAT
activity was expressed in U/mg protein/min. The unit of catalase is defined as the reduction
of 1 pmol/L of the peroxide per minute. For details of the methods used to assess activity
of CAT see Nowakowska, Caputa & Rogalska (2011).

Glutathione peroxidase

Activity of glutathione peroxidase was measured with a Glutathione Peroxidase Cellular
Activity Assay Kit (Sigma-Aldrich, Darmstadt, Germany). Extinction was measured
spectrophotometrically in a kinetic program at a wavelength of A = 340 nm every 15 s for
1 min. GPx activity was expressed in U/mg protein/min.

Glutathione reductase

Glutathione reductase activity was measured with Glutathione Reductase Assay Kit (Sigma-
Aldrich, Darmstadt, Germany). The activity was measured by the increase in absorbance
caused by the reduction of DTNB [5.5”-dithiobis(2-nitrobenoic acid)] at 412 nm. GR
activity was expressed in U/mg protein/min.

Glutathione transferase

Glutathione transferase was measured with the Glutathione S-Transferase (GST) Assay Kit
(Sigma-Aldrich, Darmstadt, Germany). GST catalyses the conjugation of L-glutathione to
the 1-chloro-2,4-dinitrobenzene (CDNB) through the thiol group of the glutathione at
340 nm. The rate of increase in the absorption is directly proportional to the GST activity
in the sample. GST activity was expressed in U/mg protein/min.

Determination of reduced glutathione concentration

The concentration of reduced glutathione was determined using the Sigma Aldrich
Glutathione Assay Kit (Darmstadt, Germany). Fluorometric test (CS0260 1 KT) was
performed using the TECAN ELISA microplate reader at the wavelength A = 412 nm.
Total protein concentration was determined according to the method by Lowry et al.
(1951). The GSH concentration was expressed in uM/mg protein.

Protein content

Protein content was determined using the method by Lowry et al. (1951) using bovine
serum albumina (Sigma Chemical, Steinheim, Germany) as a standard. Absorbance was
read at a wavelength of A = 750 nm against a reagent blank (500 pl and 2.5 ml of solution).
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Determination of malondialdehyde concentration

The MDA concentration was measured spectrophotometrically (ELISA, TECAN) using
the thiobarbituric (TBA) acid assay (Lipid Peroxidation MDA Assay Kit). An excitation
source with a wavelength of A = 532 nm was used. Results were expressed in nmol/pL
For each sample, two independent replicates of the experiment were performed in relation
to the blank sample and the properly prepared MDA standard. The MDA concentration
was expressed in nmol/pl. All assays for oxidative stress factors were performed on Specol
Genesys 10SUV-V spectrophotometer but protein contents were run on EVOLUTION
300B spectrophotometer.

Statistical analysis

All results concerning oxidant/antioxidant status of HepG2 cells are presented as mean of
four experiment repetitions. The values obtained in the individual experimental groups
were compared to the control group, which consisted of cells not treated with bortezomib.
The significance of differences between indices of oxidative stress (SOD, CAT, GPx, GSH,
MDA and protein control) was determined using the non-parametric Kruskal-Wallis test.
The non-parametric test was used due to small numbers in groups. These analyzes and
the graphical representation of dependencies were performed using Statistica 9.0 software
(StatSoft, Inc., Tulsa, OK, USA). Detailed comparisons were made using Dunn’s post
hoc test. To determine the association between bortezomib treatment and cell survival,

a Chi® test was applied. These tests were performed in PAST 4.16¢ (Hammer, Harper ¢
Ryan, 2001). To determine whether the differences in the MTT test results for different
bortezomib concentrations were statistically significant, one-way ANOVA and Tuckey’s
test as post-hoc were performed (McHugh, 2011). Normality tests (Shapiro-Wilk tests)
were also performed and parametric tests were performed based on their results. Results
of MTT test were presented as graphs with standard error and standard deviation. PAST
4.16¢ (Hammer, Harper ¢ Ryan, 2001) programs were used. Data on the rate of apoptosis
in relation to time and bortezomib concentration were used to perform a direct ordination
analysis (CCA, Canonical Correspondence Analysis). To determine which of the studied
variables were statistically significant for the rate of apoptosis, a Monte Carlo permutation
test was performed during the CCA. The result of CCA is an ordination diagram in which
the percentage of cells in each experimental variant is marked with geometric symbols and
time and bortezomib concentration (and control) are marked with vectors. The analysis
was performed in the Canoco 5.0 program (Ter Braak ¢ Smilauer, 2012).

RESULTS

Effect of bortezomib on apoptosis in HepG2 cells
The examples of flow cytometry analysis after bortezomib treatment are shown in Fig. 1.
The results obtained from all experimental groups are shown in Fig. 2.

The effect of bortezomib variation on cell apoptosis by annexin V-FITC/PI staining and
flow cytometry was evaluated. The cells are double stained with annexin V/PI and three
different populations of cells were observed. The cells which were stained with both dyes
were alive (viable) and resided in region Q3. The cells the stage of early apoptosis that were
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Figure 1 Flow cytometry analysis of apoptosis in HepG2 cells treated with 2 nM and 16 nM of borte-
zomib. Control for (A) 24 h; (B) 48 h; the cells treated with 2 nM of bortezomib for (C) 24 h, (D) 48 h;
and 16 nM of bortezomib (C) for 24 h and, (D) 48 h.

Full-size G4l DOI: 10.7717/peerj.19235/fig-1

stained with only annexin V, resided in region Q4. The cells that were stained with both
reagents were in late apoptosis and scattered in region Q2. The cells in region Q1 were
undergoing necrosis. Flow cytometry analysis showed apoptosis induced by bortezomib
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Figure 2 The cell viability obtained by MTT after 24 (green) and 48 (blue) h of treatment with borte-
zomib. (A) The cell viability obtained by MTT after 24 h of treatment with bortezomib. (B) The cell via-
bility obtained by MTT after 48 h of treatment with bortezomib.
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in HepG2 cells in a time-dependent and dose-dependent manner (Figs. 1 and 2). HepG2
cells were incubated with bortezomib for 24 or 48 h and cells in late and early apoptosis
were analyzed. After 24 h the lowest number of cells in early apoptosis compared to the
control group was observed at bortezomib dose of 16 nM (Figs. 1A and 1C, 2A). Stronger
effect of bortezomib on early apoptosis induction was recorded after 48 h at doses of 4 nM
(p <0.001), 8 nM (p <0.001) and 16 nM (p < 0.001) (Fig. 2B). After 24 h higher number
of cells in late apoptosis was identified at bortezomib concentrations of 4 nM, 8 nM and
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16 nM (Fig. 2A). After 48-hour incubation with bortezomib higher number of cells in
late apoptosis was observed at all bortezomib concentrations. After 24-hour treatment
the concentrations of bortezomib (16 nM) increased the number of necrotic cells (2% vs.
0.9% in control group). After 48-hour incubation similar effects (compared to the control
group) were observed at bortezomib concentrations of 4 nM (7.6% vs. 1.3%), 8 nM (8.5%
vs. 1.3%) and 16 nM (10.1% vs. 1.3%).

The Chi? test indicated no significant results between bortezomib doses and cell survival
after 24 h. However, after 48 h, this test showed a significant association between the number
of viable cells in the control (most) and a significant association between the number of cells
with late apotosis in the control (least). The same parameters were significantly associated
with the 16 nM concentration of bortezomib, with viable cells being the least and those
with late apoptosis the most.

Changes in antioxidant status of HepG2 cell

Increasing concentrations of bortezomib caused a gradual decrease in the level of GSH.
Among all experimental groups the lowest level of GSH (Fig. S1) was recorded after 24-
and 48-hours exposure to bortezomib at a concentration of 16 nM and the highest level was
found in both control groups (incubated 24- and 48-hours in an atmosphere of 5% CO2,
at 37 °C). Further analysis with Kruskal-Wallis and Dunn’s as a post hoc tests revealed
that statistically significant drops in concentrations of intracellular GSH (in comparison
to control) were recorded after 48-hours exposure to bortezomib at a concentration of
4 nM, as well as after 24- and 48-hours exposure to bortezomib at concentrations of 8
nM and 16 nM. Neither 24- nor 48-hours incubation with 2 nM bortezomib evoked any
effect on GSH concentration. Similarly, 24-hours incubation with 4 nM bortezomib did
not induced changes in GSH concentration. Exposure to bortezomib at concentrations of
8 nM and 16 nM, regardless of the incubation time, causes the same effect on glutathione
concentration.

The effect of bortezomib on GPx activity was inconsistent (Fig. S2). The incubation time
affected GPx activity in the cell line not treated with bortezomib as well as in that treated
with bortezomib at a concentration of 8 nM. In both cases there were statistically significant
decreases in GPx activity after the prolonged exposure. A significant decrease in GPx activity
in relation to that in the control group was observed only after 24-hours incubation with
bortezomib at concentrations of 8 nM and 16 nM. The 48-hours incubation caused a
decrease in activity of GPx but only at bortezomib concentrations of 4 nM, 8 nM and 16
nM.

In control group as well as in all experimental groups incubation time affected GST
activity (Fig. S3). The 48-hours incubation induced significant decrease in GST activities
comparing to those recorded after 24-hours. Bortezomib at concentrations of 8 nM and 16
nM reduced significantly the activity of GST, compared to that in control group, as well as
in groups with bortezomib at concentrations of 2 nM and 4 nM after 24-hours incubation.
However, after the prolonged exposure, bortezomib at concentrations of four, eight and
16 nM reduced GST activity compared to that recorded at the concentration of two nM.
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The highest activity of GR was recorded in HepG2 cells treated with bortezomib at
concentrations of two nM and four nM (Fig. S4). The GR activities after 24- and 48-hours
incubation with bortezomib at concentrations of two nM and four nM changed statistically
significantly compared to that recorded in the control groups, respectively. However, there
were no statistically significant differences between 24- and 48-hours incubation at these
concentration.

Time of incubation affected CAT activity in control group as well as in cells that treated
with bortezomib at a concentration of two nM (Fig. S5). After the prolonged incubation,
the highest CAT activities were recorded in both groups. Activity of CAT after 48-hours
incubation with bortezomib at a concentration of two nM was significantly higher than
those recorded after 48-hours incubation with bortezomib at a concentration of 16 nM
and in control group. The lowest activities of CAT were recorded 24-hours incubation with
bortezomib at concentrations of eight nM and 16nM but the values were not statistically
significant.

The 48-hours incubation affected SOD activity in control group as well as in that
treated with bortezomib at a concentration of two nM but the increase was statistically
significant only in the control group (Fig. 56). The lowest activities of SOD were recorded
at bortezomib at concentrations of eight nM and 16 nM but the decreases were significant
statistically after 48-hours incubation. Time of incubation had no effect on the activity of
SOD in any of the experimental groups.

The highest levels of MDA concentration were recorded in groups treated with
bortezomib at concentrations of two nM and four nM after 48-hours incubation (Fig.
S7). In both cases the concentration of MDA was significantly higher than that in the
control group. In neither group, a 24-hours incubation resulted in an increase in MDA
concentration.

The results of one-way ANOVA for the MTT test, for 24 h and 48 h are analogous.
They indicate that the percentage of live cells is the highest at a concentration of two nM
and significantly different from the lowest value at a concentration of eight nM (Figs.
3A and 3B). CCA analysis indicated that significantly more live cells were associated
with bortezomib concentration of two nM and shorter exposure time. There was also a
significant association with increasing number of dead cells after 48 h of exposure at the
highest bortezomib concentration (Fig. 4).

DISCUSSION

In this study, we have explored the association of bortezomib concentrations with the
activity/concentration of selected oxidative stress factors (glutathione and its enzymes,
as well as catalase, superoxide dismutase and malondialdehyde) in HepG2 cell line. To
the best of our knowledge, this is the first study elucidating the correlation between
activity/concentration of the factors and the drug-induced apoptosis of HepG2 cells.
Many studies have showed that bortezomib can reversibly suppress the proteasome
pathway by binding with the 20S proteasome complex directly and blocking its enzymatic
activity (Xing et al., 2017). Moreover, bortezomib concentration (two nM) was effective
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Figure 3 The cell viability obtained by MTT after 24 and 48 h of treatment with bortezomib. (A) The
cell viability obtained by MTT after 24 h of treatment with bortezomib. (B) The cell viability obtained by

MTT after 48 h of treatment with bortezomib.
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Swiderska-Kotacz et al. (2025), PeerJ, DOI 10.7717/peerj.19235

11/21


https://peerj.com
https://doi.org/10.7717/peerj.19235/fig-3
http://dx.doi.org/10.7717/peerj.19235

Peer

48h

' L 4

L 2
¢  od

g

2nM
control

4
*o? oo
.

16nM

Legend

<> viable cells

‘ early apoptosis
’ late apoptosis
0 necrotic

.

bortezomib
] concentration

&
o

4nM

4

Figure 4 Canonical correspondence analysis. Canonical correspondence analysis of data on the depen-
dence of apoptosis rate on time and bortezomib concentration. Variables significant for the variability in
the data set are marked in red (Monte Carlo Permutation Test, p < 0.05).
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in most cell-based models starting from research on PS-341, before this inhibitor was

accepted for use in human (Reece et al., 2011). Zmorzyriski et al. (2024) provided an effect

of bortezomib on reduced glutathione (GSH) and the activity of glutathione enzymes in

multiple myeloma cells. Bortezomib increased the number of apoptotic cells and decreased

the activities of S-glutathione transferase (GST) and glutathione peroxidase (GPx).

The induction of the apoptosis process is one of the main goals of anticancer therapies.

This a challenge is due to efficacious mechanisms of tumor cell resistance to the

programmed death. Recent studies have shown that oxidative stress induces cell apoptosis

in physiological, as well as pathological states through both mitochondria-dependent and

mitochondria-independent pathways (Radi et al., 2014; Kane et al., 20065 Hanikoglu et al.,

2020; Fan et al., 2021).
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The accumulation of unfolded proteins within the cell can increase the rate of oxidative
stress and induce apoptosis (Sharma et al., 20065 Akhigbe et al., 2022). The proteasome
system is involved in degradation of unfolded proteins (Starheim et al., 2016). However,
the activities of proteasomes in cancer cells are higher than in normal cells. Furthermore,
a number of proteasome substrates, which are involved in the cell cycle or apoptosis,
have been identified (Obeng, 2006). Preclinical and clinical trials in both hematological
malignancies and solid tumors have demonstrated that bortezomib is a relatively well-
tolerated drug and can act in combination with traditional chemotherapeutic drugs
(Holmstrom &~ Finkel, 2014). Bortezomib promotes the cell death via overproduction of
reactive oxygen species (ROS) (Wu, Yang & Saitsu, 2016; El-Kenawi & Ruffell, 2017). W,
Yang & Saitsu (2016) found that resistance to bortezomib can be achieved in the HCC cell
line. Moreover, the high basal levels of proteasome activities in bortezomib-resistant HCC
cells are due to increased expression of proteasome subunits and bortezomib-resistant
HCC cells acquire resistance to apoptosis by losing the ability to stabilize and accumulate
pro-apoptotic proteins. The production of ROS increases the number of mutations
in genetic material and causes malignant transformation or cell death (Aykin-Burns et
al., 2009; Canli et al., 2017). Carcinogenesis leads to development of cancer cells, which
frequently show altered oxidative metabolism inducing the initiation of bortezomib-
induced apoptosis (Perez-Galan, 2006; Cong, 2019). The changes in the activity and
concentration of intracellular antioxidants are associated with higher susceptibility to
bortezomib-induced apoptosis (Reece, 20115 Zmorzyiski et al., 2019). As a part of our
study, we examined the effect of bortezomib doses on apoptosis in HepG2 cells. The applied
experimental model was designed to check time- and dose-dependent effect of bortezomib
on cell viability. Our investigation confirmed that bortezomib reduced the number of viable
cells. Lauricella et al. (2006) have shown that bortezomib induced apoptosis in HepG2 cells
is due to stimulating both the extrinsic and intrinsic apoptotic pathways. However, they
examined the apoptotic effect induced by proteasome inhibitor (Cbz-leu-leu-leucinal)
(MG132) in human hepatoma HepG2 cells at bortezomib concentration of 50 nM, which
induced apoptotic effects after a lag phase of 16-24 h. In our study bortezomib increased
the number of cells in late apoptosis after 48-hours incubation (Fig. 1). It is consistent with
results obtained by other researchers (Kane et al., 2006; Trachootham, Alexandre & Huang,
2009). The redox-directed therapies inhibiting activity of antioxidant enzymes, as well as
decrease in the concentration of antioxidant compounds such as reduced glutathione have
been offered to induce cytotoxicity in cancer cells (Schafer & Buettner, 2001; Salem et al.,
2015). In our investigation bortezomib decreased GSH concentration after 24 and 48 h
(Fig. S1). This suggests a possible approach to using this drug in clinical trials for liver
cancers. Nerini-Molteni et al. (2008) analyzed the relationships between redox homeostasis
and bortezomib treatment in MM cells. They have shown that decreasing intracellular
glutathione strongly enhances bortezomib toxicity, whilst antioxidants protect MM cells
from bortezomib-mediated cell death, According to Hanikoglu et al. (2020), the decrease
in GSH impairs the antioxidant system and leads to an increase in ROS production,
which accelerates mitochondrial damage and induces apoptosis. Bortezomib-resistant cells
show increased GSH concentration (Baiz et al., 2014). The intracellular decrease in GSH
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concentration precedes the destruction of mitochondrial integrity, release of cytochrome
c and caspase activation, and is recognized as an early step in apoptosis progression in
response to various stimuli. Stimulation of glutathione synthesis can effectively protect
cells against loss of mitochondrial membrane potential and inhibit apoptosis (Zniorzyriski
et al., 2024). Baiz et al. (2014) demonstrated that bortezomib induced a dose-and time-
dependent increase in cell toxicity and decrease of cell viability with JHH6 (human HCC
cell line JHH-6) being less sensitive than HepG2. Hentze et al. (2002) have shown that
cancer cells maintain an increased GSH pool compared to that in normal tissue, and this
has an impact on drug resistance. Cells containing a higher concentration of glutathione
are also more resistant to apoptosis. Moreover, activation of caspase-apoptosis-inducing
proteins requires an appropriate concentration of glutathione (Robaczewska et al., 2016).
Our research shows that lowering the GSH concentration contributes to an increase in the
induction of apoptosis in HepG2 cells. Oxidative stress affects intracellular antioxidants
such as GPx (Fig. S2), GST (Fig. S3), GR (Fig. S4) well as CAT (Fig. S5), SOD (Fig.
S6), and leads to MDA production (Fig. S7). Cong (2019) noted that changes in the
concentration and activity of cellular antioxidants play a role in increasing susceptibility to
bortezomib-induced apoptosis.

Glutathione peroxidase reduces phospholipid peroxides found in cell membranes and
is critical in maintaining survival against oxidative stress (Buldak et al., 2014; Robaczewska
et al., 2016). Increased activity of GPx can aid in maintaining the net redox state within the
malignant cells as a result of chemotherapy (Salem et al., 2015). In neuroblastoma cells,
increased glutathione peroxidase activity promotes cytoprotection against proteasome
inhibitors (Michiels et al., 1994). In the present investigation, recorded decrease in GPx,
activity at two highest bortezomib concentrations (Fig. 52), which may prevent the drug
resistance. Accordingly, bortezomib-resistant malignant cells show a higher activity of GPx
(Kalivendi et al., 2004).

The GSTs enzymes are involved in protection of genome and cell organelles against
the ROS (Brigelius-Flohé ¢ Maiorino, 2013; Allocati et al., 2018). In the presented material
we were able to show a decrease in glutathione S-transferase activity at all bortezomib
doses (Fig. S3). Similar effect, but only at some bortezomib doses, concerns glutathione
peroxidase. An important part of the defense system against oxidative damage constitute
superoxide dismutase’s. These enzymes catalyze superoxide anions dismutation and yield
hydrogen peroxide and oxygen (Allocati et al., 2018). In this investigation we did not
find correlation between MDA concentration and activities of the enzymes. Limitations
of our study are associated with applied cell lines and methods. We found spontaneous
apoptosis and necrosis in cell cultures without bortezomib (Figs. 1A and 1B), which may
be due to the laboratory conditions including culture medium. The minimum essential
medium Eagle could be used instead of William’s medium. Another investigation could
be carried out on additionally commercial hepatocellular carcinoma cell lines for example
Hep3B or Huh7B12. Then obtained results could be compared between groups/cell lines.
Unfortunately, these cell lines were not available for us. Another limitation of our study
is the lack of ROS analysis. Caillot et al. (2020) have shown, that bortezomib at five nM
and 10 nM increased the ROS levels in HepG2 cells. Given this data, we have focused our
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analysis on other factors. Considering the limitations described above our results should
be treated as the first step of the journey. However, it is important to note that we have

performed many repetitions of the experiment to get reproducible data. Moreover, in the
future we would like to expand the study including analysis of gene expression at mRNA
level (with the use of real-time PCR) and protein level (with use of Western blot) to have
a full picture of the changes in oxidative status of HepG2 cells.

CONCLUSIONS

In our study, bortezomib affected the levels/activities of selected oxidative stress
components depending on the dose of the applied drug and the duration of its action
(24 h vs. 48 h). In general, the higher the dose of the drug and the longer the time of action,
the more significant changes of studied parameters were observed.
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