Optimizing sowing time and weather conditions for enhanced growth and seed yield of chia (*Salvia hispanica* L.) in semi-arid regions (#109131)

First submission

Guidance from your Editor

Please submit by 17 Dec 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 6 Figure file(s)
- 4 Table file(s)
- 1 Raw data file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Optimizing sowing time and weather conditions for enhanced growth and seed yield of chia (*Salvia hispanica* L.) in semi-arid regions

C B Harisha Corresp., Equal first author, 1 , K M Boraiah Equal first author, 1 , P S Basavaraj 1 , Hanamant M Halli Corresp., 1 , R N Singh 1 , Jagadish Rane $^{1,\,2}$, K Sammi Reddy 1 , G R Halagundegowda 3 , Amresh Chaudhary $^{1,\,4}$, Arvind Kumar Verma 5 , Y Ravi 5 , Honnappa Asangi 6 , E Senthamil 7

Corresponding Authors: C B Harisha, Hanamant M Halli Email address: Harisha.B@icar.gov.in, hmhalli4700@gmail.com

Background: Climate change influenced weather events, especially during the flowering, grain filling, and maturity stages, adversely affecting crop yield and quality. Therefore, standardization of sowing dates is crucial to understand the phenological behavior and the yield potential of new crops such as chia to mitigate yield reductions due to adverse weather caused by change in sowing dates. This study aimed to assess the impact of sowing dates on the flowering behavior and yield attributes of chia morphotypes, as well as to identify optimal weather conditions for achieving higher chia yields. **Methods:** The study was conducted during 2021-22 and 2022-23 consisting of two chia morphotypes

(white and black seed) with fifteen sowing windows from 1st July to 1st February (at 15 days interval), arranged in a factorial randomized block design with three replications. All flowering characters, seed yield and yield traits were recorded regularly. The weather parameters recorded from weather observatory located in the experimental farm.

Results: The results revealed that weather conditions such as relative humidity (RH) and rainfall favoured the flowering phenology, yield attributes, and seed yield of chia, whereas maximum temperature (T_{max}), bright sunshine hours, and accumulated growing degree days had negative effects. Black-seeded chia morphotypes consistently produced higher seed yields (10.8% greater) and better yield-contributing traits compared to white types across various sowing dates. Sowing chia between August 1st and September 1st (with a 30-

¹ ICAR-National Institute of Abiotic Stress Management, Baramati, Maharashtra, India

² ICAR-Central Institute of Arid Horticulture, Bikaner, Rajasthan, India

³ Central Silk Board, Bangalore, Bangalore, Karnataka, India

⁴ ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India

⁵ ICAR-National Research Centre on Seed Spices, Ajmer, Rajasthan, India

⁶ ICAR-Indian Institute of Spice Research Regional station, Appangala, Karnataka, India

⁷ University of Agricultural Sciences, Dharwad, Karnataka, India

day window) was found to be optimal for achieving higher seed yields (811–793.1 kg ha⁻¹) due to improved growth and yield-related parameters. Chia seed yield was significantly influenced by weather parameters during the cropping period: RH (positive, R^2 =86.1%), T_{max} (negative, R^2 =67.4%), rainfall (positive, R^2 =52.9%), and diurnal temperature range (negative, R^2 =74.9%). Therefore, the maximum chia seed yield can be achieved with sowing dates between August 1st and September 1st, benefiting from favourable weather conditions in semi-arid regions of India. The performance was good under weather favourable conditions, including relative humidity (~67–72%), maximum temperature (~30–31°C), day length (<12.0 hours), rainfall (~200–350 mm), and accumulated growing degree days (~1521–1891. Understanding the relationship between chia morphotypes and weather conditions can help to identify suitable regions for chia cultivation, thereby enhancing chia seed supply.

Optimizing sowing time and weather conditions for enhanced growth and seed yield of chia 1 (Salvia hispanica L.) in semi-arid regions 2 CB Harisha¹, KM Boraiah¹, PS Basavaraj¹, Hanamant M. Halli¹, RN Singh¹, Jagadish Rane^{1,2}, K 3 Sammi Reddy¹, GR Halagundegowda³, Amresh Chaudhary^{1,4}, Arvind Kumar Verma⁵, Y Ravi⁵, 4 Honnappa Asangi⁶, E Senthamil⁷ 5 6 ¹ Scientist, ICAR-National Institute of Abiotic Stress Management, Baramati, Pune- 413 115, 7 Maharashtra, India 8 ² ICAR-Central Institute of Arid Horticulture, Bichhwal-334006, Bikaner-334006, Rajasthan, 9 India 10 ³ Central Silk Board, Bangalore 560035, India 11 ⁴ ICAR-Central soil Salinity Research Institute, Karnal- 132001, Haryana, India 12 ⁵ ICAR-National Research Centre on Seed Spices, Ajmer-305006, Rajasthan, India 13 ⁶ ICAR-Indian Institute of Spice Research, RS Appangala-571201, Karnataka, India 14 ⁷ Ph.D. Scholar, University of Agricultural Sciences, Dharwad-580005, Karnataka, India 15 Correspondence to: 16 17 Scientist, ICAR-National Institute of Abiotic Stress Management, Pune-413115, India. Email address: Harisha.B@icar.gov.in (CB Harisha); hmhalli4700@gmail.com (Hanamant M. 18 19 Halli) 20 **ABSTRACT Background:** Climate change influenced weather events, especially during the flowering, grain 21 filling, and maturity stages, that adversely affecting crop yield and quality. Therefore, standardization 22 23 of sowing dates is crucial to understand the phenological behavior and the yield potential of new 24 crops such as chia to mitigate yield reductions due to adverse weather caused by change in 25 sowing dates. This study aimed to assess the impact of sowing dates on the flowering behavior

- and yield attributes of chia morphotypes, as well as to identify optimal weather conditions for
- 27 achieving higher chia yields.
- 28 **Methods:** The study was conducted during 2021-22 and 2022-23 consisting of two chia
- 29 morphotypes (white and black seed) with fifteen sowing windows from 1st July to 1st February
- 30 (at 15 days interval), arranged in a factorial randomized block design with three replications. All
- 31 flowering characters, seed yield and yield traits were recorded regularly. The weather parameters
- 32 recorded from weather observatory located in the experimental farm.
- 33 **Results:** The results revealed that weather conditions such as relative humidity (RH) and rainfall
- 34 favoured the flowering phenology, yield attributes, and seed yield of chia, whereas maximum
- 35 temperature (T_{max}), bright sunshine hours, and accumulated growing degree days had negative
- 36 effects. Black-seeded chia morphotypes consistently produced higher seed yields (10.8% greater)
- and better yield-contributing traits compared to white types across various sowing dates. Sowing
- 38 chia between August 1st and September 1st (with a 30-day window) was found to be optimal for
- achieving higher seed yields (811–793.1 kg ha⁻¹) due to improved growth and yield-related
- 40 parameters. Chia seed yield was significantly influenced by weather parameters during the
- 41 cropping period: RH (positive, R²=86.1%), T_{max} (negative, R²=67.4%), rainfall (positive,
- 42 $R^2=52.9\%$), and diurnal temperature range (negative, $R^2=74.9\%$). Therefore, the maximum chia
- 43 seed yield can be achieved with sowing dates between August 1st and September 1st, benefiting
- 44 from favourable weather conditions in semi-arid regions of India. The performance was good
- under weather favourable conditions, including relative humidity (~67–72%), maximum
- 46 temperature (~30–31°C), day length (<12.0 hours), rainfall (~200–350 mm), and accumulated
- 47 growing degree days (~1521–1891. Understanding the relationship between chia morphotypesThe present tudy
- and weather conditions can help to identify suitable regions for chia cultivation, thereby

findings can help.....

- 49 enhancing chia seed supply.
- 50 *Keywords:* Chia, flowering phenology, sowing dates, weather parameters, growing degree days,
- 51 temperature, yield attributes.

Introduction

52

- Climate change-induced weather events adversely influence the yield and quality of
- oilseeds by altering crop-growing conditions at both regional and national levels (Attia et al.,


```
2021). The global average yields of major oilseed crops such as sunflower, soybean, and canola
55
     have plateaued over the last several years (Attia et al., 2021; Ray et al., 2019). In the last few
56
     decades, the import of oilseed crops has increased tremendously in the Indian subcontinent due
57
     to decreased productivity of major oilseed (Brassicaceae) crops (Jingar et al., 2023). An average
58
     healthy adult intakes about 20–35% of their calories through oil and fats. The human body is
59
     unable to synthesize two essential fatty acids: alpha-linolenic and linoleic acids (Saini and Keum,
60
     2018). Thus, causing ever-increasing pressure on global food and nutritional security and
61
     determining the Sustainable Development Goals (SDG-2, zero hunger) (Halli et al., 2024).
62
     Therefore, these two essential fatty acids must be directly obtained from healthy sources like fish
63
     and oilseed crops such as chia to reduce the risk of cardiovascular diseases and high blood
64
     pressure (Kris-Etherton and Krauss, 2020).
65
            In this context, chia (Salvia hispanica L.) is an important crop belonging to the
66
     Lamiaceae family with high nutritional and medicinal values, thriving well in tropical and
67
     subtropical climates (Capitani et al., 2013). Besides, chia oil can also be used for industrial
68
     purposes such as a stabilizer and binder in food processing (Felisberto et al., 2015; Pathak et al.,
69
70
     2015), and as an anti-corrosive agent. Along with its higher protein content, chia seeds contain a
     notable amount of fixed oil (20.3% to 38.6%), prominently featuring \alpha-linolenic acid (55%) and
71
     linoleic acid (19%) (Attia et al., 2023; Ayerza and Coates, 2011). The well-balanced profile of
72
     essential amino acids makes chia a preferred ingredient for the development of health-oriented
73
74
     products, hence it is often referred to as a "superfood" (Fernandes et al., 2020). Accordingly, the
     consumer tendency to choose food crops like chia, nutri-millets, and grain amaranth is increasing
75
76
     due to multiple health benefits and to combat malnutrition. Consequently, in India, chia
     cultivation extends across many central and southern states to meet the increasing demand for
77
78
     balanced edible oil and industrial demands. In 2023, the global market for chia was valued at
     US$ 203 million, and further market insights anticipate a cumulative growth rate of at least 7%,
79
     reaching US$ 390 million by 2033 (Chia Seed Market, 2024). Because of its suitability under
80
     resource-scarce conditions (water, poor soils, and nutrients) of tropical and subtropical regions,
81
     the area under chia cultivation is increasing (Harisha et al., 2023). However, limited technical
82
83
     information on cultivation practices, such as optimum sowing time and weather relation with
     flowering behavior and yield traits in semi-arid regions (Attia et al., 2023; Jingar et al., 2023).
84
```


85 In recent years, deviated weather events such as rainfall, temperature, and relative humidity have altered crop performances, necessitating farmers to adopt sowing windows that 86 may not be optimum for crop performance in general. Similarly, in the case of chia, varied 87 sowing windows from July-August to mid-winter December-January result in dwindling 88 responses in terms of flowering, maturity, seed yield, and oil quality (Karim et al., 2015; Ram et 89 al., 2024). Chia seed yield is highly responsive to sowing dates, yielding 150 kg ha⁻¹ in 90 December sowing and 354 kg ha⁻¹ in October sowing under Indian conditions (*Guttedar et al.*, 91 2023). These variations could be predominantly attributed to the wide range of prevailing 92 weather conditions (temperature, relative humidity, and rainfall), especially in photosensitive 93 crops (Averza and Coates, 2009; Hirich et al., 2014). Flower induction in chia requires 94 temperatures between 20–30°C, annual rainfall between 500–1000 mm, and a photoperiod of less 95 96 than 12 hours (Jamboonsri et al., 2012). Suboptimal photoperiods can lead to reduced reproductive phases and increased vegetative growth (*Baginsky et al., 2016*). For example, early 97 98 sowing in June or July encounters high temperatures and long day lengths initially, extending the growth period or accumulating higher heat units, which leads to enhanced vegetative biomass but 99 100 decreased seed yield and oil content in chia (Brandan et al., 2022; Benetoli da Silva et al., 2020). A positive relation was observed between pre-flowering duration and verticilaster flower weight. 101 102 The longer the duration more flower dry weight and seed yield in chia. However, the study is limited to growing degree days and photoperiod and the effect of weather parameters before and 103 104 after flowering was not considered to explain the yield related traits *Brandan et al.*, (2020). Similarly, delayed sown chia experiences initial cooler temperatures and shorter days, followed 105 by hot and dry conditions, which lead to premature floral initiation and shorten the vegetative 106 phase. Therefore, timely sowing is a basic requirement to provide ideal weather conditions for 107 determining the growth and yield of chia (Baginsky et al., 2016). Favourable day length and 108 109 weather conditions during flowering and seed setting stages of chia can optimize yield and oil quality (*Lobo et al.*, 2011). 110 Apart from climate, diverse morphotypes of chia respond differently to environmental 111 112 conditions and sowing times (Benetoli da Silva et al., 2020). Both white and black-seeded chia types differ in their growth, yield, and oil content (33.8% and 32.7%, respectively) (Suri et al., 113 114 2016). However, many studies did not explore how chia morphotypes respond to varying sowing dates, photoperiods, day lengths, temperatures, and relative humidity concerning growth, pre and 115

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

post-flowering behaviour, and seed development in semi-arid conditions. The growth dynamics and distribution of assimilates strongly depend on temperature, relative humidity, and moisture availability, which influence growth rate and crop physiology (Silva et al., 2017). Limited previous studies have investigated the performance of either white or black-seeded chia morphotypes under limited sowing dates and overlooked remaining sowing windows. Yet, no studies have clearly deciphered the impact of wider sowing windows (fifteen dates at intervals of 15 days) in a year on flowering phenology and maturity in chia morphotypes. This lack of information on how chia morphotypes behave in terms of phenology and seed yield in response to prevailing weather parameters limits the ability to maximize seed yield. Therefore, choosing the ideal sowing time to achieve better synchronized flowering and high seed yield is a primary requirement for any grower or plant breeder. Understanding crop phenology and its relationship with weather helps plant breeders in generation advancement and enables growers to assess yield potential. Such information on how sowing dates and weather parameters influence chia seed and oil yield is crucial for characterizing photoperiod sensitivity and guiding the selection of new niches for chia intensification, thereby reducing climate-induced weather uncertainties to meet the increasing market demand for quality vegetable oil and addressing SDG 13 (climate action). Thus, we hypothesize that sowing dates favouring weather conditions influence flowering phenology and yield attributes of chia types, and the interaction of temperature, relative humidity, and rainfall would optimize vegetative and reproductive phases. Therefore, a two-year study was planned to determine the effect of varied sowing windows and weather conditions on flower phenology, maturity, and seed yield of chia, and to decipher the association between critical weather parameters in determining chia seed yield.

Materials and methods

Weather details of the study location

Field trials were conducted for two consecutive years (2021–22 and 2022–23) at ICAR–National Institute of Abiotic Stress Management (NIASM), Baramati, Pune, Maharashtra, India. The study site is positioned at 18.15850556° N and 74.50085556° E at an elevation of 570 meters above sea level (MSL). This region falls within the hot and semi-arid zone of the Deccan Plateau region, which is known as the water scarcity zone of the state. The mean maximum and

154

155

156

157

158

159

minimum temperature of the region was 31.2°C and 21.9°C respectively. The region receives an 145 average annual precipitation of 576 mm, a major portion (75%) is received between August and 146 October (*Harisha et al.*, 2023). The annual open-pan evaporation rate of the region is 1965 mm, 147 which is three times more than annual rainfall. The detailed weather parameters for the cropping 148 seasons (2021–22 and 2022–23) are outlined in Fig. 1 and Supplementary Table S1. The weather 149 data on maximum temperature (Tmax), minimum temperature (Tmin), bright sunshine hours 150 (BSS), open pan evaporation, rainfall, relative humidity (RH) for the location during the 151 152 cropping season was obtained from weather observatory of ICAR-NIASM, Baramati.

Soil details of the experimental site

The soil type of the experimental site was shallow basaltic with 81.9% sand, 10.4% silt, and 7.5% clay exhibits low water holding capacity (*Rajagopal et al., 2018*). The chemical properties of the soil are; pH (7.48), an electrical conductivity (0.21 dS m⁻¹), a moderate level of organic carbon (6.5 g kg⁻¹), low available nitrogen (81.2 kg ha⁻¹), phosphorus (3.6 kg ha⁻¹ as P_2O_5), and potassium (80.0 kg ha⁻¹ as K_2O).

Experimental details and crop management

160 The experiment consists of two factors; chia morphotypes and dates of sowing were laid out in a factorial randomized block design (RBD) with three replications. Two chia types (White 161 and Black) were treated as main factor and fifteen dates of sowing (S1; 1st July, S2; 15th July, S3; 162 1st August, S4: 15th August, S5: 1st September, S6: 15th September, S7: 1st October, S8: 15th 163 October, S9; 1st November, S10; 15th November, S11; 1st December, S12; 15th December, S13; 164 1st January, S14; 15th January, and S15; 1st February) as sub factor. The plots of size 3 m × 2.5 m 165 were prepared for sowing the seeds of white and black types (2.5 kg ha⁻¹) after mixing with sand 166 in 60 cm wider rows. Subsequently, excess and weak plants by retaining one healthy, and 167 maintained a uniform distance of 20 cm between plants within rows. Recommended nutrients 168 (N:P₂O₅:K₂O at 90:60:75 kg ha⁻¹) was applied through fertilizers such as urea, di-ammonium 169 phosphate, and muritae of potash. The full dose of P₂O₅ and K₂O, and 50% of N was applied 170 during field preparation as a basal, whereas the remaining 50% of N was top dressed in three 171 splits at 30, 45, and 60 days after sowing (DAS). Weeds were controlled by manual hand 172

weeding, however, the crop remained unaffected by pests and diseases during both cropping periods.

Measurement of chia morphological parameters and phenology

Chia growth attributes such as plant height and dry biomass production were recorded at harvest from five randomly selected plants separately in each treatment. Floral characters such as days to flower bud appearance (FBA), completion of flowering, and maturity were recorded from randomly selected five plants as per the procedure outlined by *Brandan et al.* (2019). Days to 50% flowering was recorded treatment wise when 50% of plants open their first flower. Likewise, growing degree days (GDD) also called heat unit accumulated up to maturity was calculated for each sowing date as suggested by *Nuttonson* (1957).

$$GDD = \frac{T_{Max} + T_{Min}}{2} - T_{base}$$

T_{max} is maximum temperature, T_{min} is minimum temperature, T_{base} is base temperature (10°C) *Ayerza and Coates, (2009)*.

Likewise, heat use efficiency (HUE) indicates the capacity of a plant to produce yield per unit of heat used. HUE of the chia crop was calculated using the formula suggested by *Singh and Khushu* (2012).

HUE (kg ha⁻¹ °C⁻¹ day⁻¹) =
$$\frac{\text{Grain yield (kg ha}^{-1})}{\text{Accumulated GDD (°C day)}}$$

Seed yield and yield attributes of chia

Yield determinants of chia such as the number of spikes per plant, spike length, seed yield per spike and 1000 seed weight were recorded from five randomly selected plants in each treatment (*Harisha et al., 2024*). Then, seed yield was determined by recording the seed weight from fifty plants in the plot of 7.5 m² and sun dried for 3–4 days to attain moisture content of 7±0.5% and expressed in kg ha⁻¹. Likewise, plot wise dry biomass yield was determined from randomly selected five plants after sun drying for 2–3 days followed by oven drying at 63 °C for 72 h to attain constant weight and expressed as dry biomass kg ha⁻¹. Later, the harvest index (HI) was calculated based on the seed and biological yield of chia.

HI (%) = $\frac{\text{Grain yield (kg ha}^{-1})}{\text{Dry Biomass (kg ha}^{-1})}$

Later, grain filling duration (GFD) was calculated considering the number of days between 50% flowering and physiological maturity. Similarly, the grain filling rate was calculated by dividing seed yield with grain filling duration as explained by *Sattar et al.* (2023) in wheat.

Statistics

Before conducting an analysis of variance, the data recorded on various growth, phenology, and yield parameters of chia during both years was tested for normality by the Shapiro–Wilk test using the PROC UNIVARIATE procedure in SAS 9.3 (SAS Institute, Inc., Cary, NC, USA). Then, normal data was subjected to analysis of variance (ANOVA) using the mixed model (proc GLIMMMIX in SAS v 9.3). Chia morphotypes, year, and sowing dates were considered as fixed effects and replications as random effects. Post–hoc test was conducted to compare the difference ($\alpha = 0.05$) using Tukey's honest significant difference (HSD) test. Further, Pearson's correlation coefficient was used to describe the association between weather parameters (T_{max} , T_{min} , RH, accumulated GDD, bright sunshine hours, and rainfall), vs grain yield, days to flower bud appearance, flowering duration, and maturity (*Gomez and Gomez*, 1984). To interpret multi-environment (chia types × weather parameters) interaction, GGE biplot analysis was carried out using R software (version 4.2.3) (*Gopinath et al.*, 2021).

Results

Chia growth and floral phenology

Growth determinants such as plant height and biomass accumulation in chia morphotypes differed significantly (p<0.05) across sowing dates (Fig. 2a-b). Among chia types, black seeded plants were found to be more vigorous with greater height (119.6 cm) and biomass accumulation (2883.9 kg ha⁻¹) over white seeded plants (117.3 cm, and 2662.2 kg ha⁻¹ respectively,). Regarding fifteen sowing dates, early sowing (S1: 1st July, S2: 15th July, S3: 1st August) demonstrated the highest plant height (199.1 cm, 195.1 cm, and 185.3 cm respectively,), and biomass production (4294.2–4021.9 kg ha⁻¹) compared to other sowing dates (Fig. 2a-b).

244

245

246

247

248

249

250

251

252

253

Whereas, delayed sowing after S3 up to S15 conspicuously reduced the plant height and biomass accumulation (1735.1–1899.4 kg ha⁻¹) in chia types.

Similarly, floral phenological events such as days to flower bud appearance (FBA), days 228 229 to 50% flowering, days to completion of flowering, days to maturity and flowering duration have responded (p<0.05) to dates of sowing (Table 1 and Supplementary Table S2). Particularly, 230 flowering phenology did not differ among white and black seeded chia morphotypes. Whereas, 231 early sown plants (S1 and S2) took more days to FBA (70.5–78.2), and it was drastically reduced 232 233 to 35.0 days in late sown conditions (S7: 1st October). Further delay in sowing after S8: 15th October to S15: 1st February gradually delayed the FBA (54.8 days). Similarly, days to 50% 234 flowering, days to complete flowering and days to maturity followed a similar trend as that of 235 FBA (Table 1). The flowering duration was significantly delayed in late sown conditions (S13 to 236 237 S15; 63.6 to 77.5 days) over other sowing dates. The shortest flowering duration of 47 days was observed in S8 and S9 sowing conditions. Moreover, early sown conditions (S1 to S4) enhanced 238 the grain filling duration (39.8 to 41.8 days) with a decreasing trend up to S11 and a subsequent 239 increase up to S15. Across years of cultivation, the second year (2022–23) noticed maximum 240 plant height (122.4 cm), and biomass accumulation (2934.7 kg ha⁻¹) with and with delayed 241 flowering duration, grain filling duration and maturity (115.3 days). 242

Relation between prevailing weather parameters and flowering phenology of chia

Weather conditions during the vegetative phase (germination to bud appearance) strongly influenced the flowering phenology of chia (Fig. 3a). The Pearson's correlation suggested that FBA exhibited a positive correlation with day length (r=0.7), accumulated GDD (r=0.87), and T_{min} (r=0.42), and RH (r=0.38). While FBA was negatively related to diurnal temperature difference (T_{diff}) (r=-0.38) and bright sunshine hours (BSS) (r=-0.43). Likewise, flowering duration had a positive correlation with day length (r=0.85), T_{max} (r=0.79), T_{min} (r=0.59), and accumulated GDD (r=0.84) prevailed during flowering phase (flower initiation to completion). However, flowering duration was negatively correlated with RH prevailing during the flowering phase (r=-0.64) (Fig. 3b).

Yield attributes and seed yield of chia

Yield attributes of chia morphotypes responded to sowing dates during two years of investigation (Table 2). Black seeded chia types produced more spikes per plant (30.3), spike length (17.99 cm), 1000 seeds weight (1.15 g), HUE (0.37 kg ha⁻¹ °C⁻¹ day⁻¹), grain filling rate (17.8 kg ha⁻¹ day⁻¹), and seed yield (564.6 kg ha⁻¹) compared to white types. While white seeded morphotypes maintained a greater harvest index (21.32%) across sowing dates. Within sowing dates, treatments (S3–S6; 1st August–15th September) maintained a greater number of spikes, spike length (20.1–21.71 cm), 1000 seeds weight (1.15–1.16 g), and seed yield (741.0–811.0 kg ha⁻¹) with greater HUE, grain filling rate, and HI. In contrast, delayed sowing after S7 to S15 adversely influenced the HUE, grain filling rate, and seed yield of chia morphotypes. Regarding year effect, the first year (2021–22) recorded a superior number of spikes, 1000 seed weight, HUE, grain filling rate, and seed yield (579.2 kg ha⁻¹) over 2022–23 (Table 2). Therefore, sowing up to 15th September could favour the seed yield and heat use efficiency of chia morphotypes in semi-arid conditions.

Weather parameters vs yield attributes of chia

Weather parameters across the growing period up to maturity established a significant (p<0.05) relation with yield attributes of chia. The seed yield was positively influenced by RH (r=0.93 and R²=0.856), HUE (r=0.9), and RF (r=0.76 and R²=0.529), however, T_{max} (r=-0.82 and R²=0.674), T_{diff} (r=-0.87 and R²=0.856), accumulated GDD (r=-0.31), BSS (r=-0.84) were negatively influenced the seed yield (Fig. 4 and 5a-d). Besides, T_{max} negatively related to chia yield attributes; seed yield per spike (r=-0.76), spike length (r=-0.65), and 1000 seed weight (r=-0.58) (Fig. 4). Notably, RH during the entire cropping period displayed a strong positive associations with chia yielding traits; (r=0.71 to 0.85). Analysis of diurnal temperature difference revealed a negative correlation with all growth and yield-related traits of chia. Moreover, the relation between seed yield and plant traits was also found significant (Fig. 4). Seed yield exhibited positive correlations with plant height (r=0.73), spike length (r=0.78), number of spikes per plant (r=0.80), number of branches per plant (r=0.76), seed yield per spike (r=0.89), and 1000 seed weight (r=0.74). Conversely, seed yield showed a negative correlation with flowering duration (r=-0.66) and crop duration (r=-0.28). Hence, prevailing weather parameters had a considerable role in determining the growth and yield of chia morphotypes.

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

Interrelationship between chia yield traits and weather parameters due to sowing dates

Multivariate analysis was conducted to elucidate the relationship and variations among various yield traits and weather parameters that prevailed during the entire chia duration. Principal Component Analysis (PCA) revealed that the first two components (PC1 and PC2) captured 94.1% of the total variability (Fig. 6a). In PC1, traits such as seed yield, spike length, number of spikes, seed weight per spike, plant height, and biomass production demonstrated strong positive associations as indicated by the narrow angles between their vectors. Similarly, weather parameters RH, RF, and T_{min} showed strong positive associations with seed yield and yield-related traits. These variables explained the maximum total variability as evidenced by the length of their vectors. Conversely, BSS, flowering duration, and T_{max} exhibited negative associations. In PC2, variables such as accumulated GDD, day length, flowering duration, days to 50% flowering, days to maturity, and FBA were positively associated with each other but negatively influenced the seed yield (Fig. 6a). Furthermore, sowing times (S4, S5, and S6) were closely related to higher seed yield, and yield traits as favoured by weather parameters like RH and rainfall. Conversely, delayed sowing times (S13, S14, and S15) coincided with intense sunshine hours, poor RH, and higher T_{max} resulting in longer flowering duration, and accumulated GDD negatively determined the seed yield and yield traits of chia (Fig. 6b).

Discussion

The deviation in ideal weather conditions due to changing sowing dates notably influences the flowering phenology, maturity, and determines the yield of short day crops like chia. Therefore, this is a kind of first report that exhaustively screened chia morphotypes under various dates of sowing, and established the cause and effect relationship between weather and yield parameters.

Growth parameters of chia

Black seeded chia morphotypes was found more vigorous over white seeded owing to greater plant height and biomass accumulation. This might be due to its superior genetic characteristics and adaptation as described by Grimes et al. (2018) and Guttedar et al. (2023). Early sowing during the rainy season (July S1-S2) resulted in higher plant height and biomass accumulation because of long day conditions (average day length; 12.5 hours and accumulated

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

GDD; >2000°C) (Fig. 1c) led to more vegetative growth and delayed reproductive growth over subsequent sowing dates (*Guttedar et al., 2023*). This was also due to the receipt of sufficient rain and the prevailing ideal temperature around ~30°C during the vegetative phase favoured the growth and biomass accumulation in both types of chia, thus increasing the risk of lodging. Our findings corroborate the results of *Goergen et al. (2018)* in chia, where higher GDD and longer photoperiod increase plant height and biomass. Similarly, *Silva et al. (2018)* reported enhanced vegetative growth in chia due to a greater number of branches during early sowing. Whereas, shorter plants with reduced biomass accumulation in case of delayed sowings after December (S11) to February (S15) were attributed to prevailing dry weather (high temperature and low RH) with the least rainfall during active growth stages (Fig. 1a–c). The crop biomass production is closely associated with dominant environmental factors such as temperature, RH, and rainfall together decide crop duration. Thus, chia is very sensitive to day length, RH, and temperature, which determines its biomass accumulation and yield.

Flowering phenology and maturity in chia

The delayed FBA in chia during early (S1–S3) and delayed sowings (S14–S15) was possibly due to longer day length conditions (>12.5 hours) compared to intermediate sowings (S4–S13) with shorter day lengths (<12 hours). As a result, flowering duration was extended (56.6 to 77.5 days) owing to more number of days between FBA and completion of flowering. The positive correlation between the flowering duration and T_{max} during flowering phase indicates the potential cause for delayed flower opening due to high temperatures (Fig. 4). It is important to note that hot weather (high temperature; >34 °C, low RH; <50%, and no rainfall; Fig. 1) during flowering phase (March–April) in delayed sowing resulted in the conversion of floral structures into vegetative parts, that may be the reason for delayed FBA in chia (Guttedar et al., 2023). Whereas, delayed flowering in early sowing (S1–S2) was probably related to higher RH, rainfall and accumulated GDD during the vegetative stage. Similarly, *Grimes et al.* (2018) and Benetoli da Silva et al. (2020) highlighted that alterations in chia phenology are primarily linked to fluctuations in RH and higher GDD. Brandan et al. (2020) also reported more the growing degree days longer than the pre-flowering phase. Therefore, aligning chia flowering with optimal RH and rainfall conditions synchronizes flower opening, and ensuring a shorter flowering duration are crucial for efficient resource utilization and mitigating high temperatures

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

and long days with higher accumulated GDD (*Foulkes et al., 2011; Sylvester-Bradley et al., 2012*).

Days taken for flower opening and its completion decide the duration of crop maturity. In the present study, early sowings as well as delayed sowings extended the chia maturity (125 to 143 days) compared to intermediate sowings (93 to 114 days), mostly due to delayed FBA, and flowering duration in chia. Similarly, Lobo et al. (2011) in Tucumán, Argentina and Baginsky et al., (2016) in Las Cruces, Chile, demonstrated that January sowing resulted in delayed flowering (105–111 days) and crop maturity (160–170 days respectively). Subsequently, grain filling duration (between 50% flowering and maturity) was extended with early and delayed sowing dates. A similar trend was observed with the completion of flowering (Jamboonsri et al., 2012; Sattar et al., 2023). Further, chia maturity was slightly delayed in 2022–23. This delay was likely attributed to increased accumulated GDD, higher RH and the occurrence of rainfall fostering enhanced vegetative growth. Thus taken more days to complete flowering and extended grain filling duration, as a positive correlation was observed between FBA and RH, rainfall, and day length (Fig. 3a). A similar pattern of extended maturity and grain filling duration was found in lentil (Jamboonsri et al., 2012; Maphosa et al., 2023). Both white and black seed chia types did not differ with respect to flowering phenology and maturity. Therefore, chia, being a shortday tropical plant, thrives well under photoperiods of less than 12.5 hours of light.

Seed yield and yield attributes of chia

Black seeded chia morphotypes produced greater (564.6 kg ha⁻¹, 10.8% higher) seed yield over the white type (509.2 kg ha⁻¹). This improvement in seed yield with black types could be attributed to improved biomass accumulation and yield-contributing parameters such as number of spikes, spike length, and 1000 seed weight (1.05 g). Previous researchers have noticed the genetic variation and superiority of black seeded chia types for yielding characters because of their wider adaptability (*Ayerza and Coates, 2009; Guttedar et al., 2023*). In this investigation, the seed yield of chia varied from 47.6 to 811.0 kg ha⁻¹ across fifteen sowing dates. The higher seed yield with mid sowing dates (S3–S5) was mainly due to improved yield contributing parameters (Table 2 and Fig. 3b). Similar associations between seed yield and traits such as the number of spikes, spike length, and harvest index have been reported in both black and white

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

types of chia (Baginsky et al., 2016). The positive relation between flower dry weight and seed 371 vield in chia was also reported by *Brandan et al.* (2020). Despite congenial RH, rainfall and 372 temperature, early sowing dates (S1 and S2) produced lower seed yield because the plants 373 produced a lower number of spikes because of more height and canopy spread because of 374 prolonged vegetative phase under long days. This might hinder the production of branches, 375 inflorescences, and subsequent translocation of photosynthates towards seed filling. This concurs 376 with the finding of *Han et al.* (2006) in soybean where overcrowding canopy leads to poor 377 branching with less number of pods. Interestingly, delayed sowing after S5 to S15 drastically 378 reduced the seed yield of chia, ranging between 8.63% to 94.13% (Table 2). The poor chia seed 379 vield was primarily due to under development of vield governing traits as reported by Guttedar 380 et al. (2023) that delayed sowing (October) reduced the seed yield in Indian conditions. 381 Therefore, it is crucial to complete sowing by 1st August (S3) to 1st September (S5) to achieve 382 higher seed yield (790–811 kg ha⁻¹) in chia. 383

Weather and yield attributes of chia

This study among a few, clearly deciphered the impact of weather parameters in determining the chia yield across various (fifteen) sowing windows in a year. The biplot analysis confirmed that prevalence of optimum temperature (30–31°C), rainfall (200–350 mm), and RH (67–72%) during S3–S5 sowing (1st August to 1st September) resulted in higher seed yield attributes (Fig. 6b). Our findings are in conformity with the results of *Grimes et al.* (2018) and Benetoli da Silva et al. (2020) that climatic requirements of moderate to high temperature, minimum temperature (< 10°C) with adequate rainfall enhanced the chia yield in Germany and Brazil. Meanwhile, delayed sowings (S10–S15) reduced the 1000 seed weight of chia, mainly due to higher temperatures during the flowering phase, leading to prolonged flowering and grainfilling durations. This might also affect pollination, resulting in grain shrinkage due to the production of reactive oxygen species, reduced pollen tube development, increased pollen mortality, and grain abortion (Nawaz et al., 2013; Dubey et al., 2019). Thus, prolonged flowering and maturity durations negatively influenced the seed yield, owing to nonsynchronized flowering, resulting in poor seed setting and seed yield per spike, as evidenced by a negative correlation between seed yield per spike and flowering duration (r=-0.56). Therefore, the increased temperature during the grain filling period increases the percentage of chaffy seed

formation, as found in cases of soybean and rice (*Borowska and Prusiński, 2021; Sanwong et al.*, 402 2023).

Similarly, the reduced grain filling rate in chia might be due to increased thermal load, which is manifested in terms of higher accumulation of GDD leading to higher grain filling duration in early (S1–S4) and delayed sowings (S8–S15). These sowing dates also decreased the HUE in chia, despite higher seed yield in S3 and S4, poor HUE was possibly related to more accumulation of GDD. Similar findings were reported in wheat that very early and delayed sowings significantly reduced the thermal use efficiency (*Kaur and Pannu, 2008; Singh et al., 2016*). It's also found that exposing crops to higher temperatures at critical growth phases tends to affect the phenophase duration, HUE and yield (*Parya et al., 2010*). The sowing dates; S4–S6 result in a medium flowering phase (50–51 days), and maturity (98.8–114.4 days), leading to ideal plant height and biomass accumulation in chia over early and delayed sowing dates. Therefore chia sowing from 1st August to 15th September coincides with optimum RH, lower diurnal temperature difference, and rainfall favoured the yield attributes and seed yield of chia in semi-arid conditions.

Conclusions

Adjusting crop sowing dates can be an effective adaptation measure to mitigate crop yield losses in response to a changing climate. The study emphasizes that chia, being a short-day plant, shows significant responsiveness to different sowing windows. Weather conditions during the cropping period play a crucial role in chia's floral phenology, maturity, yield-contributing traits, and overall seed yield. Among chia morphotypes, black seed varieties exhibit greater vigour compared to white types. Optimal chia sowing between August 1st and September 1st enhances the likelihood of favourable conditions, including relative humidity (~67–72%), maximum temperature (~30–31°C), day length (<12.0 hours), rainfall (~200–350 mm), and accumulated growing degree days (~1521–1891), thereby maximizing seed yield. A favourable sowing window of 30–45 days can assist farmers in aligning chia cultivation with weather patterns, cropping systems, and resource availability, thereby reducing climate-related risks. Extra-early sowing (July) reduces chia seed yield by 10.35%, moderately delayed sowing (September 15th to November 15th) by 24.1%, and extra-delayed sowing (December 1st to February 1st) resulting in a drastic reduction of 72.7%. Understanding these weather associations

can support intensified chia cultivation practices. The findings suggest practical guidance for selecting suitable regions and optimal sowing dates for chia cultivation under evolving climate conditions, thereby contributing to sustainable development goals, particularly SDG 13 (climate action). Enhanced production also presents export opportunities to meet the growing industrial demand for chia seeds. However, alongside breeding efforts to develop varieties suitable for different sowing times, standardizing water and nutrient management practices for chia varieties under varied sowing windows is crucial to ensure sustainable oilseed production, aligning with global goals for nutritional food security.

Authorship contribution statement

CB Harisha: Conceptualization and design of experiment, performed experiments, analysis of data, manuscript preparation. KM Boraiah: Conceptualization and design of experiment, performed experiments, manuscript preparation and reviewing. PS Basavaraj: Conceptualization and design of experiment, performed experiments, manuscript editing. HM Halli: performed experiments, analysis of data, manuscript preparation and editing. RN Singh: weather data analysis and manuscript editing. Jagadish Rane: Conceptualization and design of experiment, manuscript editing. Kotha Sammi Reddy: Supervision, manuscript editing and approved the final draft. GR Halagunde Gowda: Analysis of data, preparation of graphs and images, manuscript editing. A Chaudhary: data analysis, manuscript editing. AK Verma: design of experiment, data analysis, manuscript editing. Ravi Y: Analysis of data, preparation of graphs and images. H Asangi: data analysis, Preparation of graphs, manuscript editing. E. Senthamil: Analysis of data, preparation of graphs, and manuscript editing.

Acknowledgements

The authors sincerely acknowledge the ICAR-National Institute of Abiotic Stress Management for supporting this research under the in-house flagship project on "Augmenting farm income in water-scarce regions with alternative crops (IXX15656)".

Declaration of Competing Interest

There are no conflicts involved in the research and submission of this article.

Funding

- This research was carried out in support of the ICAR-National Institute of Abiotic Stress
- 460 Management in-house flagship project on "Augmenting farm income in water-scarce regions
- 461 with alternative crops (IXX15656)".

References

- Attia AS, Algharib AM, Ahmed FA and Abou El-Nasr THS. 2023. Effect of environmental
- 464 conditions and sawiong date on Growth, and Yield PERFORMANCE OF Chia (Salvia hispanica
- 465 L.) Cultivated in Nubaria, egypt. Al-Azhar Journal of Agricultural Research, **48(3)**:58-67. doi:
- 466 10.21608/AJAR.2024.218675.1178.
- Attia Z, Pogoda CS Reinert S, Kane NC and Hulke BS. 2021. Breeding for sustainable oilseed
- crop yield and quality in a changing climate. Theoretical and Applied Genetics, 134(6): 1817-
- 469 1827.
- 470 Ayerza R, Coates W. 2009. Influence of the environment on growing period and yield, protein,
- oil and α-linolenic content of three chia (Salvia hispanica L.) selections. Industrial crops and
- 472 *products* **30(2)**: 321–324 Doi: 10.1016/j.indcrop.2009.03.009.
- 473 Ayerza R, Coates W. 2011. Protein content, oil content and fatty acid profiles as potential criteria
- 474 to determine the origin of commercially grown chia (Salvia hispanica L.). Industrial crops and
- 475 *products* **34**:1366–1371.
- 476 Baginsky C, Arenas J, Escobar H, Garrido M, Valero NA, Tello DS, Pizarro L, Valenzuela A,
- 477 Morales L, Silva H. 2016. Growth and yield of chia (Salvia hispanica L.) in the Mediterranean
- and desert climates of Chile. *Chilean Journal of Agricultural Research* **76**:255-264.
- Benetoli da Silva TR, de Melo SC, Nascimento AB., Ambrosano L, Bordin JC, Alves CZ, Secco
- D, Santos RF, Gonçalves-Jr AC, da Silva GD. 2020. Response of chia (Salvia hispanica) to
- sowing times and phosphorus rates over two crop cycles. *Heliyon* **6(9)**, e05051.
- 482 Doi:10.1016/j.heliyon.2020.e05051.
- Borowska M, Prusiński J. 2021. Effect of soybean cultivars sowing dates on seed yield and its
- correlation with yield parameters, *Plant, Soil and Environment* **67(6)**: 360–366.
- 485 <u>https://doi.org/10.17221/73/2021-PSE</u>.
- 486 Brandan JP, Curti RN, Acreche MM. 2020. Developmental responses of chia (Salvia hispanica)
- 487 to variations in thermo-photoperiod: impact on subcomponents of grain yield. Crop and Pasture
- 488 Science 71(2): 183-189. https://doi.org/10.1071/CP19218.

- Brandan JP, Izquierdo N, Acreche MM. 2022. Oil and protein concentration and fatty acid
- 490 composition of chia (Salvia hispanica L.) as affected by environmental conditions, Industrial
- 491 *Crops and Products* **177**: 114496.
- 492 Brandan, JP, Curtib RN, Acrechea MM, 2019. Phenological growth stages in chia (Salvia
- 493 hispanica L.) according to the BBCH scale. Scientia Horticulturae 255: 292–297.
- 494 Capitani MI, Ixtaina VY, Nolasco SM, Tomás MC. 2013. Microstructure, chemical composition
- and mucilage exudation of chia (Salvia hispanica L.) nutlets from Argentina. Journal of the
- 496 Science of Food and Agriculture. **93(15)**:3856-62. doi:10.1002/jsfa.6327.
- 497 Chia Seed Market, 2024, Future Market Insights. Available at
- 498 https://www.futuremarketinsights.com/reports/chia-seed-market (accessed 04.04.2024).
- Dubey R, Pathak H, Singh S, Chakraborty B, Thakur AK, Fagodia RK. 2019. Impact of Sowing
- Dates on Terminal Heat Tolerance of Different Wheat (Triticum aestivum L.) Cultivars. National
- 501 Academy Science Letters **42**:445–449. doi:10.1007/s40009-019-0786-7.
- Felisberto MHF, Galvão MTEL, Picone CSF, Cunha RL, Pollonio MAR. 2015. Effect of
- 503 prebiotic ingredients on the rheological properties and microstructure of reduced-sodium and
- low-fat meat emulsions. LWT Food Science and Technology. **60**: 148–155.
- 505 Fernandes SS, Romani VP, Filipini GS, Martins VG. 2020. Chia seeds to develop new
- 506 biodegradable polymers for food packaging: properties and biodegradability. *Polymer*
- 507 Engineering and Science **60(9)**: 1–10 https://doi.org/10.1002/pen.25464.
- Foulkes MJ, Slafer GA, Davies WJ, Berry PM, Sylvester-Bradley R, Martre P, Calderini DF,
- 509 Griffiths S, Reynolds MP. 2011. Raising yield potential of wheat. III. Optimizing partitioning to
- grain while maintaining lodging resistance. *Journal of Experimental Botany* **62**(2):469–486
- 511 Doi:10.1093/jxb/erq300.
- 512 Goergen PCH, Nunes UR, Stefanello R, Lago I, Nunes AR, Durigon A. 2018. Yield and physical
- and physiological quality of Salvia hispanica L. seeds grown at different sowing dates. Journal
- 514 of Agricultural Science **10(8)**: 182-191. <u>10.5539/jas.v10n8p182</u>.
- 515 Gomez KA, Gomez AA. 1984. Statistical procedures for agricultural research. 2nd Edition, John
- 516 Wiley and Sons, New York, p 680.
- Gopinath PP, Prasad R, Joseph B, Adarsh VS. 2021. grapesAgri1: Collection of Shiny Apps for
- Data Analysis in Agriculture. *Journal of Open Source Software*, **6(63)**, 3437,
- 519 <u>https://doi.org/10.21105/joss.03437</u>.

- 520 Grimes SJ, Phillips TD, Hahn V, Capezzone F, Graeff-Hönninger S. 2018. Growth, Yield
- Performance and Quality Parameters of Three Early Flowering Chia (Salvia hispanica L.)
- 522 Genotypes Cultivated in Southwestern Germany. *Agriculture* **8(10)**: 154
- 523 https://doi.org/10.3390/agriculture8100154.
- 524 Guttedar A, Hunje R, Badiger B, Sharma Y. 2023. Effect of dates of sowing on seed yield and
- quality of chia (Salvia hispanica L.). The Pharma Innovation Journal 12(11): 1857-1861.
- Halli HM, Govindasamy P, Wasnik VK, Shivakumar BG, Swami S, Choudhary M, Yadav VK,
- 527 Singh AK, Raghavendra N, Govindasamy V, Chandra A. 2024. Climate-smart deficit irrigation
- and nutrient management strategies to conserve energy, greenhouse gas emissions, and the
- profitability of fodder maize seed production. *Journal of Cleaner Production* **442**: 140950.
- 530 https://doi.org/10.1016/j.jclepro.2024.140950.
- Han T, Cunxiang W, Tong Z, Mentreddy R, Tan T, Gai J. 2006. Postflowering photoperiod
- regulates vegetative growth and reproductive development of soybean. *Environmental and*
- 533 *Experimental Botany* **55**:120-129.
- Harisha CB, Narayanpur VB, Rane J, Ganiger VM, Prasanna SM, Vishwanath YC, Reddi SG,
- Halli HM, Boraiah KM, Basavaraj PS, Eman A. Mahmoud EA, Casini R, Elansary HO. 2023.
- Promising Bioregulators for Higher Water Productivity and Oil Quality of Chia under Deficit
- 537 Irrigation in Semiarid Regions. *Plants* **12(3)**: 662 Doi: 10.3390/plants12030662.
- Harisha CB, Rane, J, Halagunde Gowda GR, Chavan SB, Chaudhary A, Verma AK, Ravi Y,
- Asangi H, Halli HM, Boraiah KM, Basavaraj PS, Kumar P and Reddy KS, 2024. Effect of
- 540 Deficit Irrigation and Intercrop Competition on Productivity, Water Use Efficiency and Oil
- Quality of Chia in Semi-Arid Regions. *Horticulturae* **10**:101. Doi:
- 542 10.3390/horticulturae10010101.
- Hirich A, Choukr-Allah R, Jacobsen SE. 2014. Quinoa in Morocco-effect of sowing dates on
- development and yield. *Journal of Agronomy and Crop Science* **200**: 371–377.
- Jamboonsri W, Phillips T, Geneve R, Cahill J, Hildebrand D. 2012. Extending the range of an
- ancient crop, Salvia hispanica L. a new ω3 source. Genetic Resources and Crop Evolution
- **547 59**:171-178.
- 548 Jingar A, Preet MS, Kumar A and Ram M. 2023. Response of Date of Sowing and Crop
- 549 Geometry on Yield Potential of Chia under Tropical conditions. *Biological Forum An*
- 550 *International Journal* **15(8)**: 470-473.

- Karim MM, Ashrafuzzaman M, Hossain MA. 2015. Effect of planting time on the growth and
- 552 yield of chia (Salvia hispanica L.). Asian Journal of Medical and Biological Research. 1(3):502-
- 553 507 doi: 10.3329/ajmbr.v1i3.26469.
- Kaur A, Pannu RK. 2008. Effect of sowing time and nitrogen schedules on phenology, yield and
- 555 thermal-use efficiency of wheat (Triticum aestivum L.). Indian Journal of Agricultural Sciences
- **78(4)**: 366-369.
- Kris-Etherton PM, Krauss RM. 2020. Public health guidelines should recommend reducing
- saturated fat consumption as much as possible: YES. The American Journal of Clinical Nutrition
- 559 **112**(1):13-18. doi: 10.1093/ajcn/nqaa110.
- Lobo R, Alcocer M, Fuentes FJ, Rodríguez, WA, Morandini M, Devani MR. 2011. Chia crop
- production in Tucuman, Argentina, Avance Agroindustrial 32(4): 27-30.
- Maphosa L, Preston A, Richards MF. 2023. Effect of Sowing Date and Environment on
- Phenology, Growth and Yield of Lentil (*Lens culinaris* Medikus.) Genotypes. *Plants* 12: 474.
- 564 https://doi.org/10.3390/plants12030474.
- Ram M, Meena RC, Ambawat S, Bhardwaj R, Kumar M, Meena DS, Kumawat R, Choudhary S.
- 566 2024. Chia (Salvia hispanica L.) production potential in western India influenced by planting
- date and crop geometry. *International Journal of Research in Agronomy* **7(1)**: 277-282.
- Nawaz A, Farooq M, Cheema SA, Wahid, A. 2013. Differential response of wheat cultivars to
- terminal heat stress. *International Journal of Agriculture and Biology*. **15(6)**:1354–1358.
- Nuttonson MY. 1957. Wheat-climate relationship and the use of phenology in ascertaining the
- thermal and photo thermal requirement of wheat *BioScience*, **7**(1):39–40
- 572 https://doi.org/10.2307/1292056.
- Parya, M., Nath, D., Mazumdar, D., and Chakraborty, P. K. (2010). Effect of thermal stress on
- wheat productivity in West Bengal. *Journal of Agrometeorology* **12(2)**:217–220.
- Pathak PO, Nagarsenker MS, Barhate CR, Padhye SG, Dhawan VV, Bhattacharyya D,
- 576 Viswanathan CL, Steiniger F, Fahr A. 2015. Cholesterol anchored arabinogalactan for
- asialoglycoprotein receptor targeting: synthesis, characterization, and proof of concept of
- 578 hepatospecific delivery. Carbohydrate Research 408:33
- 579 https://doi.org/10.1016/j.carres.2015.03.003.

- Rajagopal V, Choudhary RL, Kumar N, Krishnani KK, Singh Y, Bal SK, Minhas PS, Singh NP.
- 581 2018. Soil health status of NIASM southern farm land. ICAR–National Institute of Abiotic
- 582 Stress Management, Baramati, India, p 51-52.
- Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, Chatterjee S. 2019. Climate change
- has likely already affected global food production. *Plos One*, **14(5)**:e0217148.
- Saini RK, Keum YS. 2018. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources,
- metabolism, and significance—A review. *Life Sciences* **203**:255–267.
- Sanwong P, Sanitchon J, Dongsansuk A, Jothityangkoon D. 2023. High Temperature Alters
- Phenology, Seed Development and Yield in Three Rice Varieties. *Plants* **12**:666.
- 589 https://doi.org/10.3390/plants12030666.
- 590 Sattar A, Nanda G, Singh G, Jha RK, Bal SK. 2023. Responses of phenology, yield attributes,
- and yield of wheat varieties under different sowing times in Indo-Gangetic Plains. Frontiers in
- 592 *Plant Science*. **14**:1224334 doi: 10.3389/fpls.2023.1224334.
- 593 Silva BP, Anunciação PC, Matyelka JCDS, Della Lucia CM, Martino HSD, Pinheiro-Sant'Ana
- 594 HM. 2017. Chemical composition of Brazilian chia seeds grown in different places. Food Chem.
- **221**: 1709–1716. Doi: 10.1016/j.foodchem.2016.10.115.
- 596 Silva H, Arriagada C, Campos-Saez S, Baginsky C, Castellaro-Galdames G, Morales-Salinas L.
- 597 2018. Effect of sowing date and water availability on growth of plants of chia (Salvia hispanica
- 598 L.) established in Chile. *Plos One.* **13**(**9**):e0203116.
- 599 <u>https://doi.org/10.1371/journal.pone.0203116</u>.
- 600 Singh M, Khushu MK. 2012. Growth and yield prediction of wheat in relation to agroclimatic
- 601 indices under irrigated and rainfed condition. *Journal of Agrometeorology* **14**(1):63–66 doi:
- 602 10.54386/jam.v14i1.1386.
- Singh S, Kingra PK, Singh SP. 2016. Heat unit requirement and its utilization efficiency in
- wheat under different hydrothermal environments. Annals of Agricultural Research 37(2): 130-
- 605 140.
- Suri S, Passi SJ and Goyat J. 2016. Chia Seed (Salvia hispanica L.). A new age functional food.
- International Journal of Advanced technology in Engineering and Science, **4(3)**: 286-299.
- 608 Sylvester-Bradley R, Riffkin P, O'Leary G. 2012. Designing resource efficient ideotypes for new
- cropping conditions: wheat (*Triticum aestivum* L.) in the High Rainfall Zone of southern
- 610 Australia. Field Crops Research **125**:69–82 Doi: 10.1016/j.fcr.2011.07.015.

Manuscript to be reviewed

611

Table 1(on next page)

Influence of sowing windows on flower phenology and maturity of chia morphotypes † †Means followed by the same letter (s) within the column are not significantly differed (p < 0.05).

Table 1
 Influence of sowing windows on flower phenology and maturity of chia morphotypes.

Treatments	Days to Flower bud	Days to 50%	Days to completion	Days to Maturity	Flowering duration	Grain filling	
	appearance	plants	of	iviaturity	(days)	duration	
		flowering	flowering		(3.1.52)	(days)	
Year (Y)							
2021-22	49.6°†	78.8^{a}	102.6 ^b	114.1 ^b	53.0 ^b	35.2^{b}	
2022-23	48.8 ^b	78.8^{a}	106.2a	115.3a	57.4a	36.5^{a}	
P value	< 0.001	NS	< 0.001	< 0.001	< 0.001	0.015	
Chia type (S)							
White	49.0^{a}	78.9^{a}	104.1a	114.6a	55.1a	35.8a	
Black	49.3a	78.7^{a}	104.6a	114.9a	55.3a	36.0^{a}	
P value	NS	NS	NS	NS	NS	NS	
Date of sowing (DOS	5)						
S1–1 st July	78.2ª	103.3a	134.8a	143.1a	56.5 ^d	39.8ab	
S2–15 th July	70.5^{b}	94.2 ^b	127.3 ^b	135.6 ^b	56.6^{d}	41.4a	
S3–1 st August	62.7°	85.1°	117.4°	125.9 ^d	54.6 ^{de}	40.8^{ab}	
S4–15 th August	54.8 ^d	72.6e	106.3e	114.4e	51.4 ^{e-g}	41.8a	
S5–1 st September	45.2 ^g	70.8^{e}	98.3^{f}	105.9 ^f	51.3 ^{e-g}	35.1 ^{de}	
S6–15 th September	39.4^{i}	62.0^{f}	89.9^{g}	98.8^{g}	50.5 ^{f-h}	36.7^{cd}	
S7–1st October	35.0^{j}	62.7^{f}	83.8 ^h	95.0^{h}	48.7^{g-i}	32.3^{ef}	
S8–15 th October	35.2^{j}	62.5^{f}	81.3 ⁱ	93.7^{h}	46.0^{i}	$31.1^{\rm f}$	
S9–1st November	35.2^{j}	64.0^{f}	83.0 ^h	94.3 ^h	47.0^{hi}	$30.3^{\rm f}$	
S10–15 th November	38.9^{i}	64.5 ^f	86.0^{h}	95.3 ^h	47.0^{hi}	$30.8^{\rm f}$	
S11–1st December	41.0^{h}	78.5 ^d	94.9 ^f	$105.3^{\rm f}$	43.9 ^{d-f}	26.7^{g}	
S12–15 th December	44.8 ^g	79.7^{d}	97.4^{f}	114.6 ^e	52.5 ^{ef}	34.9^{de}	
S13–1st January	48.6^{f}	86.7°	112.3 ^d	125.0 ^d	63.6°	38.3bc	
S14–15 th January	52.5 ^e	94.2 ^b	121.3°	132.1c	68.8 ^b	37.9^{b-d}	
S15–1st February	54.8 ^d	102.1a	132.3a	142.3a	77.5 ^a	40.1^{ab}	
P value	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Interaction Effect							
$Y \times S$	NS	NS	NS	NS	NS	NS	
$Y \times DOS$	< 0.001	< 0.001	< 0.001	< 0.001	0.930	< 0.001	
$S \times DOS$	NS	NS	NS	NS	NS	NS	
$Y \times S \times DOS$	NS	NS	NS	NS	NS	NS	

[†]Means followed by the same letter (s) within the column are not significantly differed (p < 0.05).

7

Table 2(on next page)

Yield attributes and heat use efficiency (HUE) of chia morphotypes in response to sowing dates.

†Means followed by the same letter (s) within the column are not significantly differed (p < 0.05).

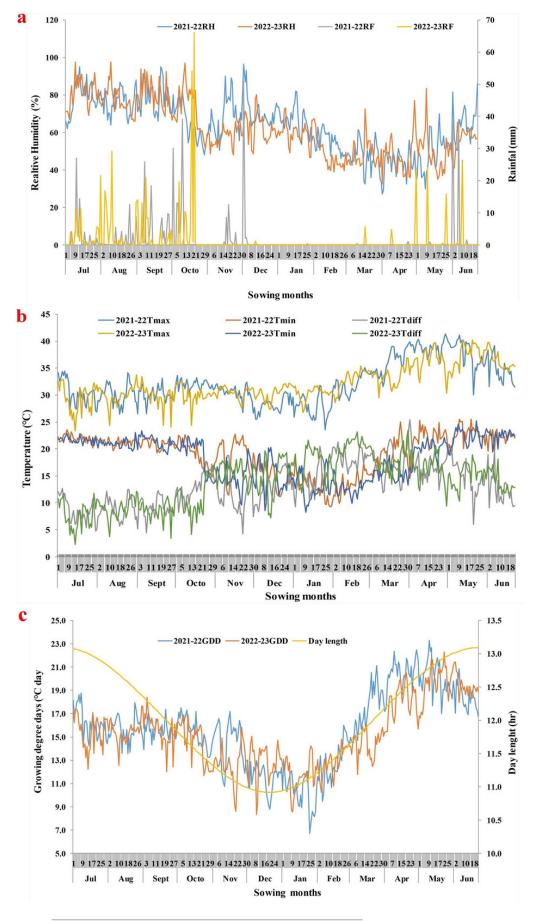
PeerJ

Table 2
 Yield attributes and heat use efficiency (HUE) of chia morphotypes in response to sowing dates.

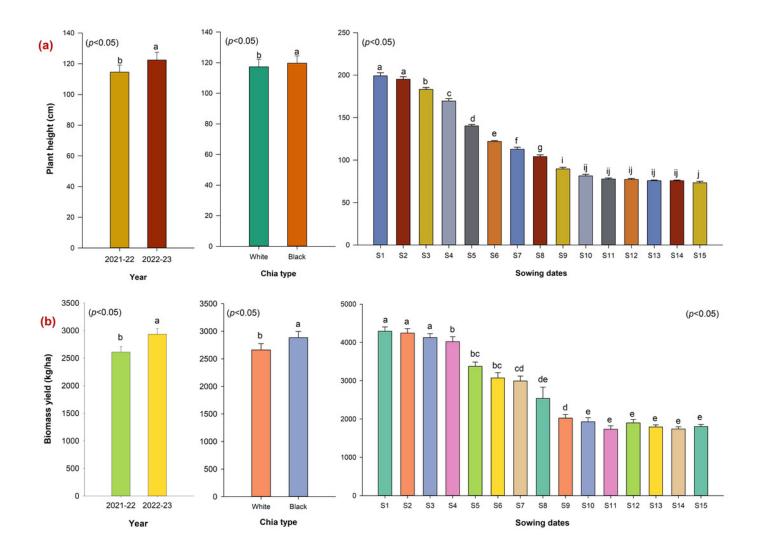
Treatments	Num	Spike	1000	Seed	Harvest	HUE	Grain	Seed
1104411101110	ber of	length	seed	weight	Index	(kg ha ⁻¹	filling	yield
	spike	(cm)	weight	per spike	(%)	°C day ⁻¹)	Rate	(kg/ha)
	s per	()	(g)	(g)	(, ,)	- Jj)	(kg ha ⁻¹	(8,)
	plant		(0)	(0)			day^{-1}	
Year (Y)	-							
2021-22	31.5a†	17.06^{b}	1.145a	0.461^{b}	23.86^{a}	0.38^{a}	17.8^{a}	579.2a
2022-23	27.0^{b}	18.24^{a}	1.143^{a}	0.474^{a}	17.72^{b}	0.32^{b}	13.4 ^b	494.6^{b}
P value	< 0.001	< 0.001	NS	0.004	< 0.001	< 0.001	< 0.001	< 0.001
Chia type (S)								
White	28.3^{b}	17.31 ^b	1.137 ^b	0.418^{b}	21.32a	0.33^{b}	14.8 ^b	509.2 ^b
Black	30.3^{a}	17.99a	1.150a	0.518^{a}	20.26^{b}	0.37^{a}	16.4a	564.6a
P value	< 0.001	0.003	< 0.001	< 0.001	0.0532	< 0.001	0.003	< 0.001
Date of sowing (DO	S)							
S1–1st July	35.4°	21.08a	1.166a	0.635^{ab}	17.54 ^{de}	0.32^{g}	17.5 ^{cd}	698.5°
S2-15th July	36.2 ^b	21.33^{a}	1.166a	0.652^{a}	19.24 ^d	$0.36^{\rm f}$	18.3 ^{b-d}	755.5 ^b
S3–1st August	40.6^{a}	21.71a	1.164ab	0.654^{a}	21.22^{cd}	0.43^{e}	20.0^{bc}	811.0a
S4–15th August	40.4^{a}	21.29a	1.162^{ab}	0.651a	21.92 ^{b-d}	0.48^{d}	19.5bc	810.7a
S5–1st September	38.7^{ab}	20.97^{a}	1.158ab	0.611 ^{bc}	25.58a-c	0.51 ^{bc}	23.9^{a}	793.1a
S6–15 th September	35.5°	20.10^{ab}	1.155a-c	0.578^{c}	26.47^{ab}	0.53^{a}	21.0^{ab}	741.0^{b}
S7–1 st October	33.8^{c}	18.91 ^{bc}	1.154 ^{a-d}	0.543 ^d	26.38ab	0.52^{ab}	21.1 ^{ab}	682.1°
S8–15 th October	30.4 ^d	18.19 ^{cd}	1.146 ^{a-e}	0.512 ^d	30.04a	0.51°	19.8 ^{bc}	613.6 ^d
S9–1 st November	24.8e	17.25 ^{cd}	1.145a-e	0.465e	28.72a	0.48 ^d	18.4 ^{bc}	564.4 ^e
S10–15th November	24.0e 20.6 ^f	16.49 ^{de} 14.87 ^{ef}	1.143 ^{b-e}	0.436 ^e 0.390 ^f	27.55 ^a 24.97 ^{a-c}	0.42 ^e 0.29 ^h	15.4 ^d 20.8 ^b	477.6 ^f
S11–1 st December S12–15 th December	20.6 ¹ 19.5 ^f	14.87 ^{cr} 14.69 ^f	1.135 ^{c-e} 1.133 ^{de}	0.354 ^g	19.80 ^d	0.29 ⁱⁱ 0.22 ⁱ	20.8° 9.8°	393.7 ^g 341.0 ^h
	19.5° 20.6 ^f	14.09 ^t 14.26 ^f	1.135 ^{ee}	0.334s 0.236h	19.80° 13.08°	0.22^{5} 0.11^{j}	9.8° 5.6 ^f	218.7 ⁱ
S13–1st January	20.6 ⁴ 19.9 ^f	14.26 ^r 13.45 ^f	1.120 st 1.107 ^{fg}	0.236° 0.153°	6.55 ^f	0.11^{5} 0.04^{k}	2.8^{fg}	
S14–15 th January								105.3 ^j
S15–1 st February	18.7 ^f	10.25 ^f	1.097g	0.145 ⁱ	2.82 ^f	0.02^{1}	1.1g	47.6 ^k
P value	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Interaction Effect	0.01	NG	NG	NG	NG	-0.001	NG	0.004
$Y \times S$	0.01	NS	NS NG	NS	NS	< 0.001	NS	0.004
$Y \times DOS$	<0.001	<0.001	NS 0.001	< 0.001	<.0001	< 0.001	<0.001	< 0.001
$S \times DOS$	NS NC	NS NS	0.001	<0.001	NS NS	< 0.001	NS NS	<0.001
$Y \times S \times DOS$	NS	NS	0.9912	< 0.001	NS	< 0.001	NS	< 0.001

[†]Means followed by the same letter (s) within the column are not significantly differed (p < 0.05).

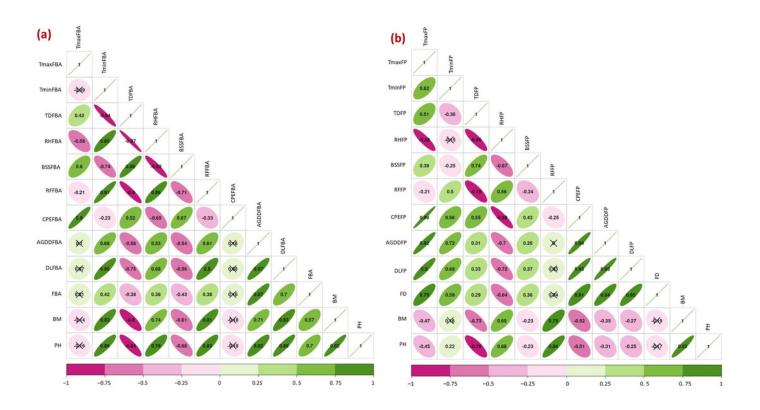
6


7

Prevailing weather parameters during chia cropping period (sowing to maturity) in both the years.

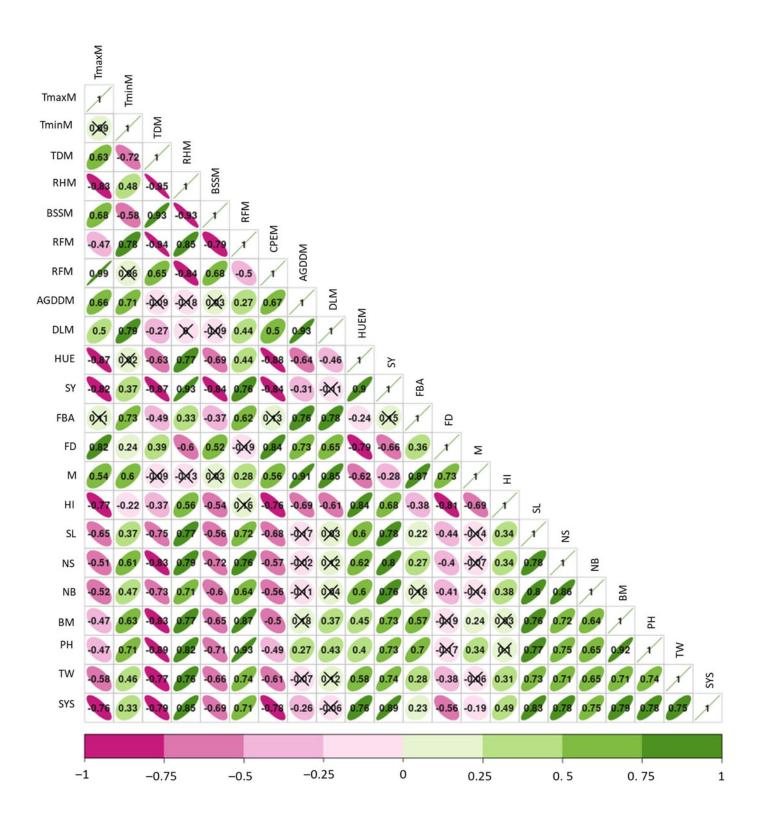


Plant height and biomass accumulation in chia morphotypes as influenced by sowing dates (2021-22 and 2022-23).


W, White seed chia; B, Black Seed chia; S1, 1st July; S2, 15th July; S3, 1st August; S4, 15th August; S5, 1st September; S6, 15th September; S7, 1st October; S8, 15th October; S9, 1st November; S10, 15th November; S11, 1st December; S12, 15th December; S13, 1st January; S14, 15th January; S15, 1st February.

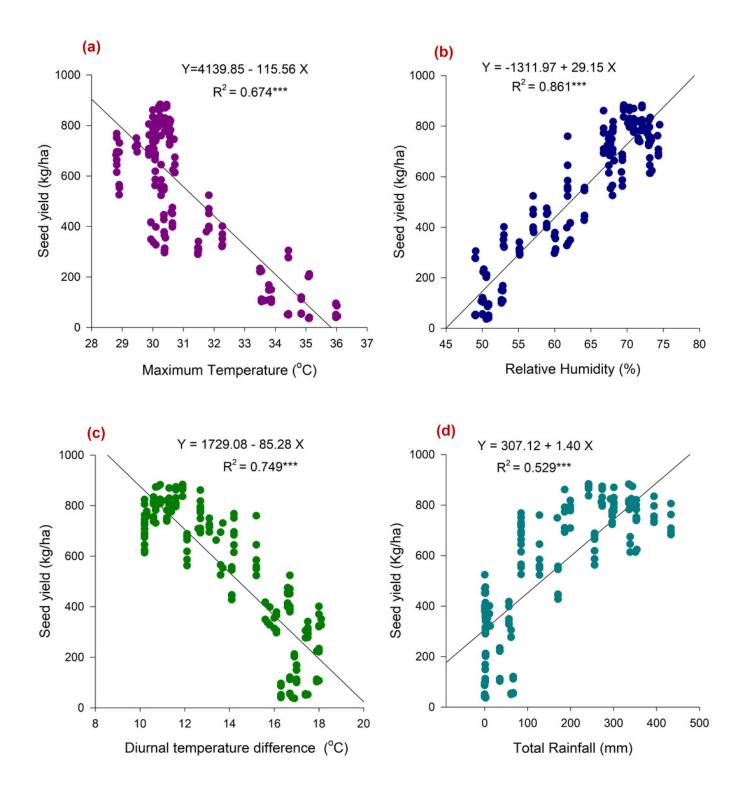
Relation between weather parameters and flowering phenology of chia a) during flower bud appearance (FBA), b) during flowering phase (FP).

Tmin, minimum temperature; Tmax, maximum temperature; TD, diurnal temperature difference; RH, relative humidity; BSS, bright sun shine hours; RF, total rainfall; AGDD, accumulated growing degree days; DL, day length; FBA, days to flower bud appearance; PH, plant height; BM, biomass; FD, flowering duration; FP, flowering phase. *Cells marked with x are non-significant at p=0.01.



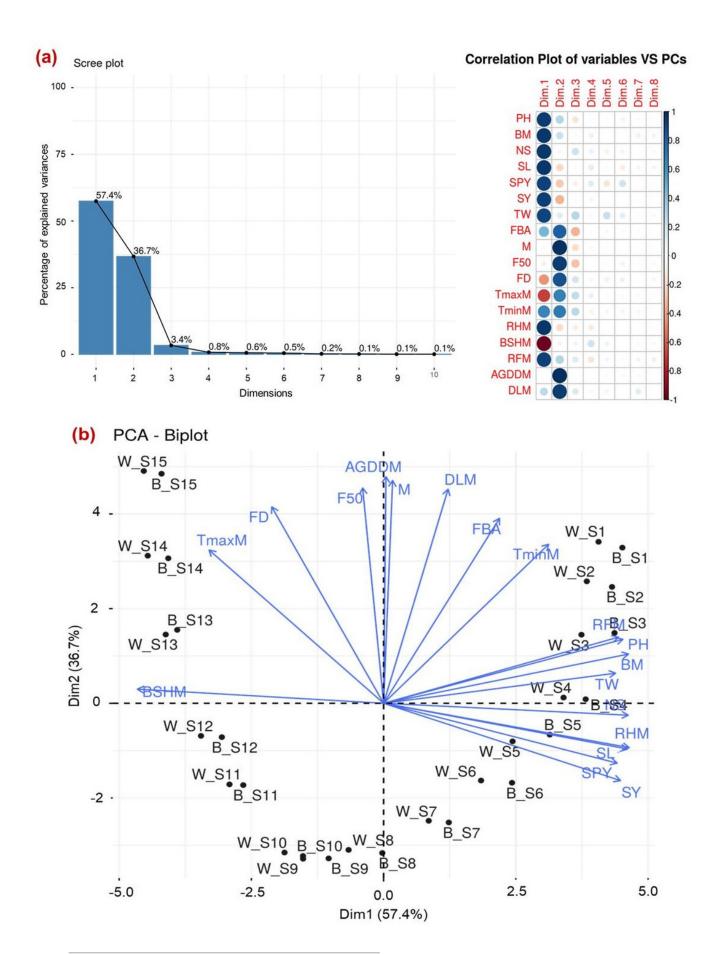
Relation between seed yield, yield traits, weather parameters and flowering phenology of chia.

SY, seed yield; NS; number of spikes, TW; 1000 seed weight, SL; spike length, BM; biomass accumulation, PH; plant height, TminM; minimum temperature, TmaxM; maximum temperature, TDM; temperature difference, RHM; relative humidity, BSSM; bright sun shine hours, RFM; rainfall, FBA; days to flower bud appearance; F50; days to 50% flowering, FD; flowering duration, M; days to maturity, AGDDM; accumulated growing degree days, DLM; day length.



Association between weather parameters prevailed during the cropping period and seed yield of chia

(a) maximum temperature during cropping period vs seed yield; (b) Relative humidity during cropping period vs seed yield; (c) diurnal temperature difference during cropping period vs Seed yield; (d) total rainfall during cropping period vs seed yield



Inter-relation between seed yield and yield attributing traits across various sowing dates (a) PCA explaining the variance observed and contributing factors; (b) PCA-Biplot showing the interrelation between traits across the sowing dates.

W, white seed type; B, black seed type; S1-15, various sowing dates; SY, seed yield; SPY, seed per spike; NS, number of spikes; TW, test weight; SL, spike length, BM; biomass accumulation, PH; plant height, TminM; Minimum temperature, TmaxM; Maximum temperature, RHM; relative humidity, BSHM; bright sun shine hours, RFM; rainfall, FBAM; days to flower bud appearance; F50; days to 50% flowering, FD; flowering duration, M; days to maturity, AGDDM; accumulated growing degree days, DLM; day length.

