Optimization of Cultural Conditions for Pectinase Production by *Diaporthe* Isolate Z1-1N and Its Pathogenicity on Kiwifruit (#112035)

First submission

Guidance from your Editor

Please submit by 24 Feb 2025 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 3 Figure file(s)
- 4 Table file(s)
- 1 Raw data file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Optimization of Cultural Conditions for Pectinase Production by *Diaporthe* Isolate Z1-1N and Its Pathogenicity on Kiwifruit

Shu-Dong Zhang 1 , Ling-Ling Chen 1 , Chao-Yue Li 1 , Xiao-Qing Long 1 , Xue Yang 1 , Xiao-Duo He 1 , Li-Wen Du 1 , Heng-Feng Yang 1 , Li-Zhen Ling $^{\text{Corresp. 1}}$

Corresponding Author: Li-Zhen Ling Email address: 121302168@qq.com

Diaporthe Z1-1N, the primary causal agent of soft rot disease in kiwifruit, exhibited higher pectinase activity compared to cellulase activity in both in vitro and in vivo incubation models. To gain deeper insights into the role of pectinases in the pathogenicity of this fungus, we evaluated the effects of incubation temperature (ranging from 18 to 38°C), duration (1 to 7 days), and medium pH (4.0 to 9.0) on the activities of two crucial pectinases: polygalacturonase (PG) and polymethylgalacturonase (PMG). Our single-factor experiments revealed that the optimal conditions for maximizing PMG yield were a pH of 7.5 and a temperature of 28°C, with peak activity occurring after three days of incubation. Notably, PG activity peaked on the fourth day under the same pH and temperature conditions. Under the optimal conditions identified through an orthogonal experimental design, PMG exhibited higher activity than PG. Further analysis showed that temperature was the most influential factor on PMG activity, followed by incubation duration and pH. The purified pectinase extracts exhibited an impact of up to 50% on the lesion size of the fungal mycelium of Diaporthe Z1-1N . These findings underscore the significance of PG and PMG as key virulence factors in the pathogenicity of Diaporthe Z1-1N, providing a solid scientific basis for future research into the functions of these enzymes.

¹ Key Laboratory for Specialty Agricultural Germplasm Resources Development and Utilization of Guizhou Province, Liupanshui Normal University, Liupanshui, Guizhou, China

1 Optimization of Cultural Conditions for Pectinase

2 Production by *Diaporthe* Isolate Z1-1N and Its Pathogenicity

- 3 on Kiwifruit
- 4 Shu-Dong Zhang ¹, Ling-Ling Chen ¹, Chao-Yue Li ¹, Xiao-Qing Long ¹, Xue Yang ¹, Xiao-Duo He ¹, Li-Wen
- 5 Du ¹, Heng-Feng Yang ¹ and Li-Zhen Ling ^{1,*}
- 6 ¹ Key Laboratory for Specialty Agricultural Germplasm Resources Development and Utilization of Guizhou Province, Liupanshui Normal University, Liupanshui 553004, China.
 - * Correspondence: primula ling@foxmail.com
- 9 **Abstract:** Diaporthe Z1-1N, the primary causal agent of soft rot disease in kiwifruit, exhibited higher pectinase activity compared to cellulase activity in both in vitro and in vivo incubation 10 models. To gain deeper insights into the role of pectinases in the pathogenicity of this fungus, we 11 evaluated the effects of incubation temperature (ranging from 18 to 38° C), duration (1 to 7 12 days), and medium pH (4.0 to 9.0) on the activities of two crucial pectinases: polygalacturonase 13 (PG) and polymethylgalacturonase (PMG). Our single-factor experiments revealed that the 14 optimal conditions for maximizing PMG yield were a pH of 7.5 and a temperature of 28° C. 15 with peak activity occurring after three days of incubation. Notably, PG activity peaked on the 16 fourth day under the same pH and temperature conditions. Under the optimal conditions 17 identified through an orthogonal experimental design, PMG exhibited higher activity than PG. 18 Further analysis showed that temperature was the most influential factor on PMG activity, 19 followed by incubation duration and pH. The purified pectinase extracts exhibited an impact of 20 up to 50% on the lesion size of the fungal mycelium of Diaporthe Z1-1N. These findings 21 underscore the significance of PG and PMG as key virulence factors in the pathogenicity of 22 Diaporthe Z1-1N, providing a solid scientific basis for future research into the functions of these 23 enzymes. 24
- 25 **Keywords:** Kiwifruit; Soft rot disease; *Diaporthe*; Pectinases; Optimization; Orthogonal design

Introduction

26

Kiwifruit (*Actinidia* spp.), commonly referred to as "mihoutao" (monkey peach) in China, represents a significant genus within the family Actinidiaceae. The most recent taxonomic revision identifies 55 species and 20 varieties within this genus (Li et al. 2007). Among these, *A. chinensis* and *A. deliciosa* are the predominant species cultivated, collectively accounting for

nearly all kiwifruit in international trade (Nishiyama 2007). Currently, A. arguta is cultivated on 31 a smaller scale in Europe, New Zealand, and the United States, both commercially and by 32 enthusiastic amateurs (Ferguson 2013). Kiwifruit is renowned for its excellent flavor and is rich 33 in vitamin C, minerals, dietary fiber, phenols, carotenoids, and other essential nutrients (Liu et al. 34 2019; Ma et al. 2017; Nishiyama et al. 2004; Sivakumaran et al. 2018). However, soft rot disease 35 poses a significant threat to the quality and yield of kiwifruit. Research indicates that fungi from 36 the *Diaporthe* spp. are among the primary agents responsible for this soft rot disease (Díaz et al. 37 2014; Jiqing et al. 2019; Zhou et al. 2015), resulting in considerable annual economic losses. 38 The genus *Diaporthe* comprises over 1,300 taxa, with *Phomopsis*, its asexual states, also 39 encompassing more than 1,000 species listed in MycoBank (www.mycobank.org, accessed in 40 December 2024), which exhibit broad host ranges and a global distribution. According to the 41 42 International Code of Nomenclature for algae, fungi, and plants (Kirk et al. 2015), Diaporthe takes precedence for recommendations regarding generic names due to the existence of two or 43 44 more genera typified by either a sexual or asexual morph (Rossman et al. 2015). Research has shown that species within the *Diaporthe* genus represent some of the most harmful fungal 45 46 pathogens, capable of causing various diseases, including stem canker, leaf spot blight, and fruit decay (Bai et al. 2016; Chen et al. 2017; Díaz et al. 2017; Wan et al. 2022). Currently, more than 47 48 10 Diaporthe species have been reported to cause soft rot disease during both the growing season and post-harvest storage of kiwifruit (Ling et al. 2024b). These pathogens can secrete cell wall 49 50 degrading enzymes (CWDEs) that interact with host cell wall constituents, thereby facilitating pathogen penetration through the loosened host cell walls and middle lamella matrices. The 51 CWDEs synthesized during plant infection by *Diaporthe* spp. include cellulases, xylanases, and 52 pectinases (Chen et al. 2018; Zhang 2010). 53 Pectinases are pivotal in plant pathogenesis, marking the initial enzymes synthesized by 54 55 specific fungal and bacterial pathogens that colonize isolated plant cell walls, priming these cell wall components for subsequent degradation by other enzymes (Abbott & Boraston 2008). 56 Typically, pectin degradation is orchestrated by a suite of pectinases, which include pectate 57 lyases (families 1, 2, 3, and 9), polygalacturonases and rhamnogalacturonases (glycoside 58 hydrolase family 28), pectin methylesterases (carbohydrate esterase family 8), and pectin 59 acetylesterases (carbohydrate family 12) [CAZY Database 60 esterase (http://www.cazy.org/index.html)). These enzymes are hypothesized to contribute to soft rot 61

72

73

74

75

76

78

79

80

81

82

83

84

90

infections by dismantling cell wall polysaccharides, leading to fruit softening and a decrease in 62 disease resistance. Polygalacturonase (PG), pectinesterase (PE), and polymethylgalacturonase 63 (PMG) are particularly noted for their roles in facilitating pectin disassembly in postharvest fresh 64 fruits (Lin et al. 2018). Our recent research has shown that kiwifruit inoculated with Diaporthe 65 Z1-1N displayed a higher disease index compared to non-inoculated harvested kiwifruit, with 66 two pectinases (PG and PMG) showing increased activities in both in vitro and in vivo 67 incubation models (Chen et al. 2024; Ling et al. 2024a). This highlights the significant role of 68 these enzymes in the pathogenic process and their potential as targets for disease management 69 strategies. 70

Previous studies have indicated that pectinase activity levels are influenced by factors such as Ca²⁺, pH, and the culture medium (Pagel & Heitefuss 1990; Qi et al. 2010). To investigate the regulation of these activities in phytopathogenic microorganisms and their potential role as virulence factors under various environmental conditions in the fungi-host plant interaction, it is essential to examine the presence of pectinase activity levels. Therefore, this study aims to utilize the activities of two pectinases, PG and PMG, as indicators to optimize the culture conditions for their production. Specifically, we will investigate the effects of incubation temperature, incubation time, and the initial pH of the culture medium through single-factor and orthogonal optimization experiments. Additionally, the ammonium sulfate fractionation precipitation method will be employed to purify the enzyme solution. This research will also explore the pathogenicity of pectinase in the soft rot of 'Hongyang' kiwifruit, thereby providing valuable insights into the pathogenic mechanisms underlying these conditions.

Materials and Methods

Plant material and pathogenic fungi

Kiwifruit (*A. chinensis* cv. Hongyang) of similar size was purchased from the local market in Liupanshui, Guizhou Province, China. The pathogenic fungi *Diaporthe* spp. Z1-1N were isolated in our laboratory from rotten 'Hongyang' kiwifruit. This isolate was cultured on potato dextrose agar (PDA) medium at 25 °C in the dark for 6 days. Subsequently, it was used to obtain inoculum for the enzyme assays and pathogenicity trials conducted in this study.

Optimization of pectinase production in liquid culture

In this study, we employed a modified Marcus liquid medium, as described in our previous

research, to investigate the production of two pectinases: PG and PMG (Ling et al. 2024a). Five millimeter mycelial discs from a 6-day-old PDA culture were inoculated into 100 ml of liquid medium contained in 250 ml flasks, which were then incubated on an orbital shaker. Optimization of pectinase production was conducted through a series of single factor experiments, assessing variables such as incubation periods (1, 2, 3, 4, 5, 6, and 7 days), temperature (18, 23, 28, 33, and 38 °C), and the initial pH of the medium, which ranged from 4 to 9 in 0.5 intervals. Cultures were harvested on the third day, and the contents were filtered using a vacuum to remove the fungal mycelia. The filtrates were subsequently centrifuged at 10,000 g for 15 minutes at 4 °C, and the supernatant was utilized to assess enzyme activity. Finally, the optimal conditions for PMG and PG production were determined from each single factor experiment.

Based on the results of the single-factor experiment, a 3-factor, 3-level standard orthogonal table, L₉ (3³), was selected to optimize the production conditions for two pectinases (PG and PMG) as shown in Table 1. The inoculation temperature (A) was set at 25, 28, and 31 °C; the initial pH of the medium (B) was set at 6.5, 7.0, and 7.5; and the inoculation time was set at 2, 3, and 4 days. These factors and their corresponding levels were incorporated into the L₉ (3³) orthogonal table, resulting in a total of nine experimental groups with various combinations of the three parameters in this study.

Measurement of pectinase activity

The activities of PMG and PG were determined using the 3,5-dinitrosalicylic acid (DNS) colorimetric method, following the procedures outlined by our previous study (Ling et al. 2024a).

Purification of crude enzyme extracts and inoculation on kiwifruit fruit

Pectinase was induced for production from the liquid culture of the *Diaporthe* isolate Z1-1N using orange pectin as the carbon source. The purification process adhered to the method described by us (Ling et al. 2024a). The pathogenicity of various treatments, including pectinase extract and mycelial plugs from the *Diaporthe* isolate Z1-1N, was assessed. Sterile water and sterile plugs served as controls, respectively. Ten kiwifruit fruits were used in each treatment. The disease is classified based on the diameter of the lesion (Li et al. 2019): grade 0 (0 cm); grade 1 (0 cm-1.5 cm); grade 3 (1.5-3 cm); grade 5 (3-4.5 cm); grade 7 (4.5-6 cm); grade 9 (more than 6 cm). The Disease Index (DI) is calculated as follows:

123 Disease Index (DI)= $\frac{\sum \text{ (The rotten fruits of each grade } \times \text{ the corresponding grade)}}{\text{Total number of tested fruits } \times \text{ the topmost grade}} \times 100\%$

Data and statistical analysis

All experiments were performed in triplicate and data collection was carried out in accordance with this replicate setup. From the gathered data, we calculated the mean and standard error to provide a comprehensive analysis. To discern significant differences among the means, we employed one-way analysis of variance (ANOVA) using SPSS version 19.0 for Windows. Following the ANOVA, we applied Duncan's multiple range test to separate the means, establishing statistical significance at the P < 0.05 threshold. Additionally, we leveraged the Orthogonal Designing Assistant II V3.1 software for the rigorous evaluation of our statistical experimental design, ensuring the precision of our experimental outcomes.

Results

Effect of initial pH of medium on two pectinase production

The initial pH of the medium is a crucial factor in the production of pectinases, as it influences both the type and quantity of enzymes produced by fungi. In this study, the *Diaporthe* Z1-1N was found to produce pectin methylgalacturonase (PMG) and polygalacturonase (PG), with their activities showing no significant differences from pH 4.0-7.0. When the pH increased from 7.5 to 9.0, PG activity significantly decreased relative to that of PMG. As illustrated in Figure 1, PMG activity remained relatively stable across different pH levels, with a significant peak observed at pH 7.5 (10.14 U/ml). In contrast, PG activity exhibited a notable decline when the pH increased from 4.5 to 5.0, followed by a gradual increase that reached its highest level at pH 7.5 (9.70 U/ml), before dramatically declining from pH 8.0 to 9.0. Therefore, these results indicate that the optimal production of both PMG and PG by *Diaporthe* Z1-1N occurs at pH 7.5.

Effect of incubation temperature on two pectinase production

Temperature is directly related to the metabolic activities of microorganisms and significantly influences both growth and product formation. Figure 2 illustrates the effects of various temperatures on the production of two types of pectinase. The activity of PMG was consistently higher than that of PG across different temperatures, with the exception of 33 °C, where PG exhibited greater activity than PMG. Additionally, both PMG and PG displayed a similar trend, characterized by an initial increase in activity followed by a decline. Our results indicate that maximum pectinase production occurred at 28 °C, yielding 10.14 U/ml for PMG

and 9.70 U/ml for PG. Subsequently, the second most favorable temperature for PMG production was 23 °C (8.87 U/ml), while for PG, it was 33 °C (8.92 U/ml). Conversely, the lowest production levels for both pectinases were observed at 38 °C, with values of 7.32 U/ml for PMG and 6.39 U/ml for PG. Therefore, these findings suggest that the optimal temperature for the growth and production of PMG and PG by *Diaporthe* Z1-1N is 28 °C.

Effect of incubation periods on two pectinase production

The incubation period is crucial for maximizing enzyme yield. Over the course of 1 to 7 days, we monitored the activities of PMG and PG, as illustrated in Figure 3. Throughout this period, PMG generally exhibited higher activity than PG, with the exception of the second and fifth days. Our data further indicated that both pectinases displayed significant fluctuations in activity, albeit with distinct patterns. For PG, activity gradually increased from the start, peaking on the third day at a concentration of 10.52 U/ml, before gradually declining by the seventh day. PMG followed a similar trend with a slight variation; its activity began to rise on the second day, dipped slightly on the third day, and then reached its maximum on the fourth day at 10.43 U/ml. Subsequently, PMG activity decreased, reaching its lowest point at the 7-day mark with a yield of 7.42 U/ml, as depicted in Figure 3. These findings suggest that the optimal times for PMG and PG production are the fourth and third days of incubation, respectively.

Optimization of cultural conditions for pectinase productivity

Culture conditions, such as pH levels, incubation temperatures, incubation duration, and the sources of carbon, nitrogen, and mineral salts, are pivotal in dictating the synthesis and secretion of extracellular enzymes by microorganisms (Jia et al. 2010; Koirala et al. 2014; Patidar et al. 2018). Hence, meticulous adjustment of these parameters is essential when investigating the pathogenicity associated with extracellular enzymes secreted by pathogenic fungi. An orthogonal experiment demonstrated that the highest activity of PMG, at 11.228 U/mL, was attained at a temperature of 28°C, an initial pH of 7.5, and an incubation period of 2 days (Table 2). Under these same conditions, PG achieved its peak activity of 10.056 U/mL (Table 2). This finding highlights that PMG exhibited superior activity compared to PG under identical culture conditions, necessitating a more detailed analysis of PMG activity.

In this study, we examined the impact of three key factors—incubation temperature (A), initial medium pH (B), and incubation duration (C)—on PMG production by *Diaporthe* Z1-1N. By analyzing the magnitude of the extreme R values, we ranked the influence of these factors on

PMG production activity as follows: A > C > B (Table 3). This ranking indicates that incubation temperature had the greatest impact, followed by incubation duration, and then initial pH value. As previously mentioned, the optimal conditions were determined to be an incubation time of 2 days, an incubation temperature of 28°C, and an initial pH of 7.0. To confirm the effectiveness of the optimization approach based on the orthogonal experiment's results, we conducted a verification experiment using the refined parameter combination. The findings revealed that PMG activity increased significantly to 11.50 U/mL (Table 3), surpassing the activity observed in all previous orthogonal experiments. This outcome validates the efficacy of the optimization strategy employed.

Pathogenicity of the pectinase extract on kiwifruit

In this study, we investigated the effects of a purified pectinase extract on kiwifruit. The pectinase was prepared from a three-day shaken lipid culture using orange pectin as the sole carbon source, based on the optimal conditions for PMG production. Our results indicated that the pectinase extract induced significant necrotic lesions, with the disease index (DI) value reaching 47.62% after seven days of treatment (Table 4). Additionally, we observed that the symptoms caused by the pectinase extract were similar to those resulting from infection with *Diaporthe Z1-1N* mycelium. However, the necrotic lesions induced by the pectinase extract were considerably less severe than those caused by the mycelium plug, which exhibited a DI of 94.81%. In contrast, the control fruits inoculated with sterile water or PDA plugs showed no lesions. Therefore, these results suggest that pectinase plays a role in lesion development associated with *Diaporthe Z1-1N*.

Discussion

One of the primary barriers against phytopathogenic fungi is the plant cell wall, which is rich in polysaccharides. Most fungi must breach this barrier to access plant cells, necessitating the secretion of various enzymes capable of degrading cell wall polymers. Pectinases, a group of enzymes that decompose pectic substances, are classified into several categories: polygalacturonase (PG), polymethylgalacturonase (PMG), pectin lyase (PL), pectate lyase (PAL), and pectin methylesterase (PME) (Xue et al. 2018). Our recent study reported that *Diaporthe Z1-1N* exhibited the increased activities of two pectinases (PG and PMG) when cultivated in a kiwifruit infection model (Ling et al. 2024a). Furthermore, the production of these enzymes

secreted by this fungus was biochemically assayed in an *in vitro* system (Ling et al. 2024a). To 214 determine the optimal external conditions for enzyme production, this study aims to investigate 215 the production of these two pectinases by Diaporthe Z1-1N under varying incubation 216 temperatures (25-55 °C), incubation durations (1-7 days), and pH levels of the medium (3.6-5.2). 217 Our findings indicated that during the single-factor experiment, both PMG and PG achieved 218 their maximum activities at the same incubation temperature of 28°C and medium pH of 7.5. 219 However, there was a slight variation in the timing of these peak activities over the incubation 220 period. Specifically, PMG reached its peak on the third day, whereas PG attained its maximum 221 on the fourth day. Previous research has established a sequence for the appearance of cell wall-222 degrading enzymes in phytopathogenic fungi (Lisker et al. 1975a; Lisker et al. 1975b). 223 Polygalacturonase, recognized as a virulence factor, is known to be induced in the early stages of 224 225 infection (Lisker et al. 1975a; Vyas et al. 2025). I In a related context, PMG enzyme accumulation was observed early in the infection process of Diaporthe Z1-1N, which is 226 227 associated with the development of kiwifruit soft rot. Furthermore, the levels of cell walldegrading enzyme (CWDE) activity have been correlated with the severity of pathogenesis 228 229 (Gawade et al. 2017; Zhang et al. 2014; Zhou et al. 2016). PG activity is essential for full virulence across a range of host plants (Kubicek et al. 2014; Vyas et al. 2025). In this study, 230 231 under the same incubation temperature and medium pH, PMG exhibited higher activities compared to PG. However, during the same incubation periods, PG demonstrated more robust 232 233 production than PMG. The optimal conditions for PMG production by Diaporthe Z1-1N, as determined through an orthogonal experimental design, significantly enhanced its activity in an 234 in vitro cultivated model. Additionally, the purified pectinase extracts resulted in a 50% lesion 235 size of fungal mycelium. These findings emphasize that both PG and PMG are crucial virulence 236 237 determinants in the pathogenicity of *Diaporthe Z1-1N*, aligning with observations made in in 238 Rhizoctonia solani Kühn (Chen et al. 2006). However, other pectinases, such as PME, PL, and βgalactosidase (β-gal), are also involved in disease development caused by phytopathogenic fungi 239 (Gawade et al. 2017). Consequently, further investigation into the roles of these additional 240 enzymes is planned. 241 Moreover, varying cultural conditions have led to differences in the activities and types of 242 cell wall-degrading enzymes produced. For instance, PMG exhibited a higher activity when 243 soluble starch was used as a carbon source, while PG demonstrated a greater activity when 244

utilizing pectin as a substrate during *in vitro* cultivation of *Phomopsis longanae* Chi (Chen et al. 245 2018). According to the results of our orthogonal experiments, the incubation temperature was 246 identified as the most influential factor for the production of PMG by Diaporthe Z1-1N. A 247 previous research has indicated that temperature affects the mycelial growth of Sclerotium rolfsii 248 and the severity of rot on potato tubers (Daami-Remadi et al. 2010). Notably, Diaporthe Z1-1N 249 was isolated from rotten kiwifruit during cold storage. Therefore, it is essential to investigate the 250 effects of low temperature on the activities of PG and PMG, as well as conduct pathogenesis 251 tests. Additionally, other cultivation factors, such as metal ion concentrations (Ca²⁺, Fe²⁺) and 252 shaking conditions, also influence the production of pectinases (Chen et al. 2006; Pagel & 253 Heitefuss 1990). Consequently, the relationship between the cultivation conditions of specific 254 cell wall-degrading enzymes and their virulence requires further investigation. 255

Conclusions

- In this study, we optimized the production of two pectinase enzymes, PG and PMG, from 257 Diaporthe Z1-1N, the microorganism responsible for soft rot disease in kiwifruit. This was 258 achieved by evaluating three key factors—pH, temperature, and incubation duration—using an 259 orthogonal experimental design. Our findings revealed that the highest production of PMG 260 occurred at pH 7.0 and 28°C on the third day, whereas maximum PG production was observed at 261 262 the same pH and temperature but on the fourth day. Notably, PMG demonstrated superior activity compared to PG when each factor was optimized individually. A more detailed analysis 263 of PMG activity, based on the orthogonal design, indicated that incubation temperature was the 264 most influential factor, followed by inoculation time and pH. The purified pectinase extracts, 265 obtained under these optimized conditions, exhibited significant pathogenicity, as demonstrated 266 by a 50% lesion size of the fungal mycelium of *Diaporthe Z1-1N*. These results provide a solid 267 foundation for future research into the functions of PMG and PG. 268
- 269 Author Contributions: Conceptualization, S.D. Zhang; methodology, L.L. Chen, C.Y. Li, X.Q.
- 270 Long, X. Yang, X.D. He, L.W. Du, H.F. Yang; formal analysis,L.Z. Ling; data curation, L.Z.
- 271 Ling; writing—L.Z. Ling; writing—review and editing, S.D. Zhang. All authors have read and
- agreed to the published version of the manuscript.
- 273 Funding: This research was funded by Guizhou Science and Technology Department, grant
- 274 number QianKeHeJiChu-ZK[2022]530, the Scientific Research (Cultivation) Project of

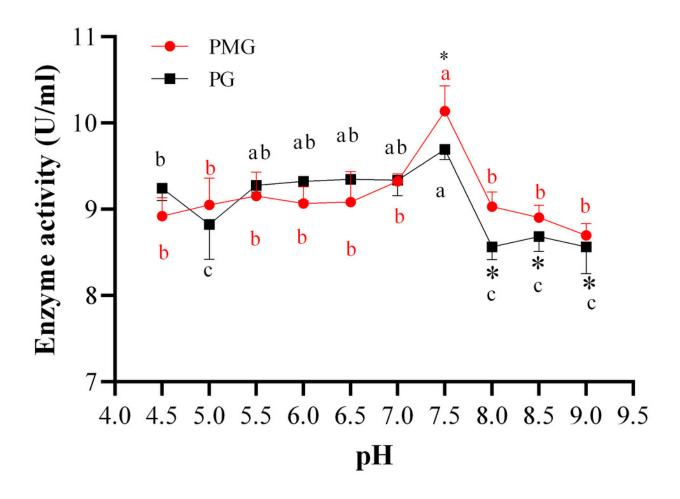
- 275 Liupanshui Normal University, grant number LPSSY2023KJZDPY06 and College Student
- 276 Innovation and Entrepreneurship Project (2024109770677, 2024109770686, 2024109770692,
- 277 S202310977123, S202310977124 and S2024109771629)
- 278 **Conflicts of Interest:** The authors declare no conflicts of interest.

279 References

- Abbott DW, and Boraston AB. 2008. Structural biology of pectin degradation by Enterobacteriaceae.

 Microbiol Mol Biol Rev 72:301-316. 10.1128/mmbr.00038-07
- Bai Q, Wang GP, Hong N, Guo YS, and Fu M. 2016. First Report of *Diaporthe tulliensis* and *Diaporthe actinidiae* Causing Kiwifruit Stem Canker in Hubei and Anhui Provinces, China. *Plant Disease* 101:508, 10.1094/PDIS-10-16-1445-PDN
- 285 Chen, M., Y., Pan, H., Zhong, C., H., Li, and L. 2017. First Report of *Diaporthe actinidiae* Causing Stem-End 286 Rot of Kiwifruit During Post-Harvest in China. *Plant Disease*.
- 287 Chen L, Zhang S, Liu W, Han X, and Ling L. 2024. Inhibitory Effects of *Syzygium aromaticum* Ethanol Extract on Three Pathogenic Fungi Causing Soft Rot of Hongyang' Kiwifruit. *Northern Horticulture* 289 22:15-23.
- 290 Chen X, Zhang H, Xu J, Tong W, and Ji Z. 2006. Cell Wall Degrading Enzymes Produced by *Rhizoctonia* 291 *solani* and Their Pathogenicity to Rice Plants. *Jiangsu Journal of Agricultural Sciences* 22:24-28.
- 292 Chen Y, Zhang S, Lin H, Sun J, Lin Y, Wang H, Lin M, and Shi J. 2018. *Phomopsis longanae* Chi-Induced 293 Changes in Activities of Cell Wall-Degrading Enzymes and Contents of Cell Wall Components in 294 Pericarp of Harvested Longan Fruit and Its Relation to Disease Development. *Front Microbiol* 9:1051. 295 10.3389/fmicb.2018.01051
- Daami-Remadi M, Jabnoun-Khiareddine H, Sdiri A, and Mahjoub ME. 2010. Effect of Temperature on Sclerotium rolfsii Mycelial Growth and Rot Severity on Potato Tubers. The American Journal of Plant Science and Biotechology 4:54-58.
- Díaz GA, Latorre BA, Jara S, Ferrada E, and Zoffoli JP. 2014. First Report of *Diaporthe novem* Causing Postharvest Rot of Kiwifruit During Controlled Atmosphere Storage in Chile. *Plant Disease* 98:1274.
- Díaz GA, Latorre BA, Lolas M, Ferrada E, Naranjo P, and Zoffoli JP. 2017. Identification and Characterization of *Diaporthe ambigua*, *D. australafricana*, *D. novem*, and *D. rudis* Causing a Postharvest Fruit Rot in Kiwifruit. *Plant Disease* 101:1402-1410. 10.1094/PDIS-10-16-1535-RE
- 304 Ferguson AR. 2013. Kiwifruit: the wild and the cultivated plants. *Adv Food Nutr Res* 68:15-32. 10.1016/b978-305 0-12-394294-4.00002-x
- Gawade DB, Perane RR, Suryawanshi AP, and Deokar CD. 2017. Extracellular enzymes activity determining the virulence of *Rhizoctonia bataticola*, causing root rot in soybean. *Physiological and Molecular Plant Pathology* 100:49-56.
- Jia YJ, Feng BZ, Sun WX, and Zhang XG. 2010. Polygalacturonase, Pectate Lyase and Pectin Methylesterase
 Activity in Pathogenic Strains of *Phytophthora capsici* Incubated under Different Conditions. *Journal* of *Phytopathology* 157:585-591.

- 312 Jiqing L, Wenneng W, Ying L, Xiuqin L, Weijie L, and Rui W. 2019. Identification of Pathogen Isolation and
- Pathogenicity Difference of 'HongYang' Kiwifruit Ripe Rot in Liupanshui City, GuiZhou Province.
- 314 *Northern Horticulture* 4:31-38.
- Kirk PM, Stalpers JA, Braun U, Crous PW, Hansen K, Hawksworth DL, Hyde KD, Lücking R, Lumbsch TH, and Rossman AY. 2015. International Code of Nomenclature for algae, fungi, and plants.
- Koirala N, Pandey RP, Parajuli P, Jung HJ, and Sohng JK. 2014. Methylation and subsequent glycosylation of 7,8-dihydroxyflavone. *J Biotechnol* 184:128-137. 10.1016/j.jbiotec.2014.05.005
- Kubicek CP, Starr TL, and Glass NL. 2014. Plant cell wall-degrading enzymes and their secretion in plantpathogenic fungi. *Annu Rev Phytopathol* 52:427-451. 10.1146/annurev-phyto-102313-045831
- Li JQ, Li XW, Soejarto DD, and eds Wu Z. Y. RPH, Hong D. Y. 2007. Actinidiaceae. In Flora of China.


 Science Press; Missouri Plant Garden Press 12:334–362.
- Li X, Long Y, Yin X, Wu X, Zhao Z, Fan R, Mo F, Jiang Y, Huang Y, and Tang J. 2019. Mechanism of Action of Methyl Jasmonate against Kiwifruit Soft Rot and Its Effect on Fruit Quality. *Food Science* 40:239-248.
- Lin Y, Lin Y, Lin H, Lin M, Li H, Yuan F, Chen Y, and Xiao J. 2018. Effects of paper containing 1-MCP postharvest treatment on the disassembly of cell wall polysaccharides and softening in Younai plum fruit during storage. *Food Chem* 264:1-8. 10.1016/j.foodchem.2018.05.031
- Ling L-Z, Chen L-L, Ma J-Y, Li C-Y, Zhang D-R, Hu X-D, and Zhang S-D. 2024a. Characterization of Major Cell-Wall-Degrading Enzymes Secreted by *Diaporthe* spp. Isolate Z1-1N Causing Postharvest Fruit Rot in Kiwifruit in China. *Biology* 13:1006.
- Ling LZ, Chen LL, Liu ZZ, Luo LY, Tai SH, and Zhang SD. 2024b. Genome sequencing and CAZymes repertoire analysis of *Diaporthe eres* P3-1W causing postharvest fruit rot of 'Hongyang' kiwifruit in China. *PeerJ* 12:e17715. 10.7717/peerj.17715
- Lisker N, Katan J, Chet I, and Henis Y. 1975a. Release of cell-bound polygalacturonase and cellulase from mycelium of *Rhizoctonia solani*. *Can J Microbiol* 21:521-526. 10.1139/m75-074
- Lisker N, Katan J, and Henis Y. 1975b. Sequential production of polygalacturonase, cellulase, and pectin lyase by *Rhizoctonia solani*. *Can J Microbiol* 21:1298. 10.1139/m75-196
- Liu Y, Qi Y, Chen X, He H, Liu Z, Zhang Z, Ren Y, and Ren X. 2019. Phenolic compounds and antioxidant activity in red- and in green-fleshed kiwifruits. *Food Res Int* 116:291-301. 10.1016/j.foodres.2018.08.038
- 342 Ma T, Sun X, Zhao J, You Y, Lei Y, Gao G, and Zhan J. 2017. Nutrient compositions and antioxidant capacity 343 of kiwifruit (*Actinidia*) and their relationship with flesh color and commercial value. *Food Chem* 344 218:294-304. 10.1016/j.foodchem.2016.09.081
- 345 Nishiyama I. 2007. Fruits of the *actinidia* genus. *Adv Food Nutr Res* 52:293-324. 10.1016/s1043-346 4526(06)52006-6
- Nishiyama I, Yamashita Y, Yamanaka M, Shimohashi A, Fukuda T, and Oota T. 2004. Varietal Difference in Vitamin C Content in the Fruit of Kiwifruit and Other Actinidia Species. *Journal of Agricultural & Food Chemistry* 52:5472-5475.
- Pagel W, and Heitefuss R. 1990. Enzyme activities in soft rot pathogenesis of potato tubers: Effects of calcium, pH, and degree of pectin esterification on the activities of polygalacturonase and pectate lyase.
- 352 Physiological & Molecular Plant Pathology 37:9-25.

- Patidar MK, Nighojkar S, Kumar A, and Nighojkar A. 2018. Pectinolytic enzymes-solid state fermentation, assay methods and applications in fruit juice industries: a review. *3 Biotech* 8:199. 10.1007/s13205-
- 355 018-1220-4
- Qi F, Kang L, Xu X, and Li J. 2010. The kinds and activity of cell wall degrading enzymes produced from tomato *Helminthosporium carposaprum* pathogens. *Plant Protection* 36:47-51.
- Rossman AY, Adams GC, Cannon PF, Castlebury LA, Crous PW, Gryzenhout M, Jaklitsch WM, Mejia LC, 358 Stoykov D, Udayanga D, Voglmayr H, and Walker DM. 2015. Recommendations of generic names in 359 protection IMA360 *Diaporthales* competing for or use. Fungus 6:145-154. 10.5598/imafungus.2015.06.01.09 361
- Sivakumaran S, Huffman L, Sivakumaran S, and Drummond L. 2018. The nutritional composition of Zespri® SunGold Kiwifruit and Zespri® Sweet Green Kiwifruit. *Food Chemistry* 238:195.
- Vyas P, Shah D, and Jayawant M. 2025. Unveiling fungal invasions: Integrative approaches to cell wall degrading enzymes and nanotechnology applications. *Physiological and Molecular Plant Pathology* 135:102479. https://doi.org/10.1016/j.pmpp.2024.102479
- Wan Y, Li D-W, Si Y-Z, Li M, Huang L, and Zhu L-H. 2022. Three New Species of *Diaporthe* Causing Leaf Blight on *Acer palmatum* in China. *Plant Disease* 107:849-860. 10.1094/PDIS-06-22-1475-RE
- 369 Xue CY, Zhou RJ, Li YJ, Xiao D, and Fu JF. 2018. Cell-wall-degrading enzymes produced in vitro and in vivo 370 by *Rhizoctonia solani*, the causative fungus of peanut sheath blight. *PeerJ* 6:e5580. 371 10.7717/peerj.5580
- Zhang H. 2010. Cell wall-degrading enzymes produced by *Phomopsis longanae* Chi and its pathogenicity for
 longan fruit. *Master for Dissertation, Fujian Agriculture and Forestry University*.
- Zhang J, Bruton BD, and Biles CL. 2014. Cell wall-degrading enzymes of *Didymella bryoniae* in relation to
 fungal growth and virulence in cantaloupe fruit. *Eur J Plant Pathol* 139:749-761. 10.1007/s10658 014-0429-2
- 377 Zhou S, Liu Y, Zhang M, Li B, Chen X, and Liang W. 2016. Comparison of the virulence and cognate virulence factors of multinucleate, binucleate and uninucleate *Rhizoctonia* isolates, causing sheath blight on maize plants. *Eur J Plant Pathol* 145:501-506.
- Zhou Y, Gong G, Cui Y, Zhang D, Chang X, Hu R, Liu N, and Sun X. 2015. Identification of
 Botryosphaeriaceae species causing kiwifruit rot in Sichuan Province, China. Plant Disease
 99:150204092345006.

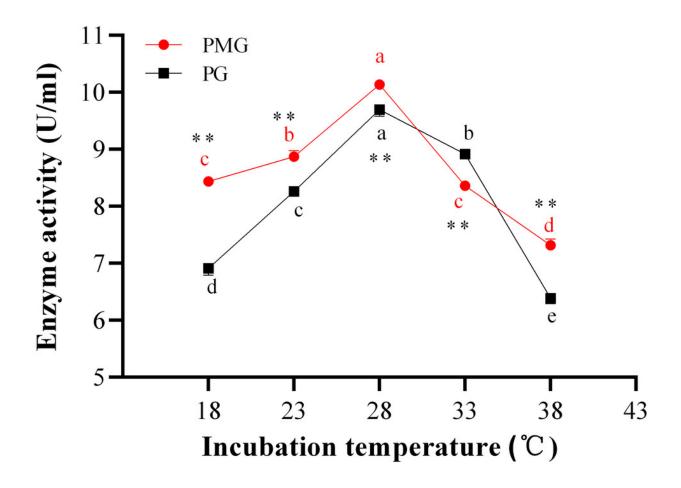

Figure 1

Figure 1. Effect of pH on PMG and PG production

Figure 2

Figure 2. Effect of incubation temperature on PMG and PG production

Figure 3

Figure 3. Effect of incubation time on PMG and PG production

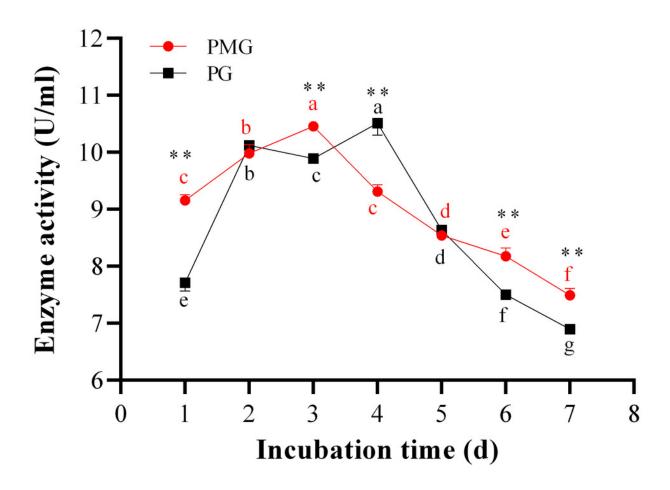


Table 1(on next page)

Table 1. Factors and levels of pectinase production

Table 1. Factors and levels of pectinase production

2

	Factors		
Levels	Inoculation temperature (°C)	Initial pH the medium	of Inoculation time (d)
	A	В	C
1	25	6.5	2
2	28	7.0	3
3	31	7.5	4

Table 2(on next page)

Table 2. Results of the orthogonal experimental design

Table 2. Results of the orthogonal experimental design

Tested No.	Factors		Enzymatic (U/mL)	activity	
	A	В	С	PMG	PG
1	25	6.5	2	9.702	9.027
2	25	7.0	3	9.755	9.213
3	25	7.5	4	9.306	7.864
4	28	6.5	3	10.949	9.999
5	28	7.0	4	10.002	9.415
6	28	7.5	2	11.228	10.056
7	31	6.5	4	8.730	6.141
8	31	7.0	2	10.661	8.536
9	31	7.5	3	9.467	8.384

Note: Factor A: Inoculation temperature (°C); Factor B: Initial pH of the medium; factor C:

³ Inoculation time (d).

Table 3(on next page)

Table 3. Analysis of orthogonal experiment of PMG activity

Table 3. Analysis of orthogonal experiment of PMG activity

	PMG activity (U/mL)		
_	A	В	С
K1	9.59	9.79	10.53
K2	10.73	10.14	10.06
K3	9.62	10.00	9.35
Range (R)	1.14	0.35	0.58
The factor importance	A>C>B		
Optimal	$A_2B_2C_1$ (11.50 U/mL)		
combination			

Note: Factor A: Inoculation temperature (°C); Factor B: Initial pH of the medium; factor C:

³ Inoculation time (d).

Table 4(on next page)

Table 4. Disease degree of 'Hongyang' kiwifruit under different treatments

Table 4. Disease degree of 'Hongyang' kiwifruit under different treatments.

Treatments	DI (%)	
Sterile water	0.00	
Pectinase extract	47.62	
Sterile plug	0.00	
Mycelial plug	94.81	

Note: the data was obtained after seven days of the different treatment.