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ABSTRACT

Fungal infections present an increasing global health challenge, with a substantial
annual mortality rate of 1.6 million deaths each year in certain situations. The
emergence of antifungal resistance has further complicated treatment strategies, under-
scoring the urgent need for novel therapeutic approaches. This review explores recent
advances in nanoparticle-based therapies targeting fungal infections, emphasizing their
unique potential to enhance drug solubility, bioavailability, and targeted delivery.
Nanoparticles offer the ability to penetrate biological barriers, improve drug stability,
and act as direct antifungal agents by disrupting fungal cell walls and generating reactive
oxygen species. Despite their promising applications, challenges such as potential
toxicity, scalability of production, and the need for controlled drug release remain.
Future research should focus on optimizing nanoparticle properties, evaluating long-
term safety profiles, developing environmentally sustainable synthesis methods, and
exploring synergistic approaches with existing antifungal drugs. Nanotechnology offers
a transformative opportunity in the management of fungal diseases, paving the way for
more effective and targeted treatments.

Subjects Biochemistry, Biotechnology, Mycology, Drugs and Devices
Keywords Nanotechnology, Fungal infections, Drug resistance, Clinical challenges

INTRODUCTION

The field of nanoparticle-based antifungal medicines provides novel answers to the
rising issue of fungal infections and drug resistance. Fungal infections are an increasing
public health concern, resulting in substantial mortality worldwide. The World Health
Organization estimates that fungal illnesses cause 1.6 million deaths each year, with invasive
infections playing a significant role. Emerging antifungal resistance complicates therapy,
emphasizing the need for novel methods (Fisher et al., 2022). Traditional antifungal drugs
are frequently associated with concerns such as limited effectiveness, poor absorption,
toxicity, and resistance. The extensive use of azoles has resulted in substantial resistance in
Candida species, necessitating the search for other treatments (Whaley et al., 2016).
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Nanotechnology offers a number of benefits, including enhanced medicine distribution,
solubility, and targeted action, as well as direct antifungal effects such fungal cell destruction
and the formation of reactive oxygen species (ROS) (Halbandge et al., 2019). Despite these
potential applications, there are several barriers to the clinical translation of nanoparticle-
based therapies. These include concerns with safety, toxicity, manufacturing scalability, and
controlled drug release (Metselaar ¢» Lammers, 2020). This review is useful for researchers
working in antifungal treatment and related topics such as medication delivery and
infectious disorders. It reviews recent accomplishments, identifies obstacles, and offers
future research areas that may help produce more effective and long-lasting antifungal
treatments (Dordevic et al., 2022).

SURVEY METHODOLOGY

Search engines and databases: We utilized reputable scientific databases, including
PubMed, Web of Science, Scopus, and Google Scholar. These platforms provide extensive
access to peer-reviewed articles, ensuring coverage of a wide range of studies across
disciplines. Search Terms: We employed specific and comprehensive search terms to
capture all relevant publications. These included: “Nanoparticles AND antifungal therapy”,
“Drug resistance AND fungal infections”, “Nanotechnology AND fungal pathogens”,
“Metallic nanoparticles AND antifungal mechanisms”, “Targeted drug delivery AND
fungal infections”, “Reactive oxygen species AND fungal cell walls”, etc. Boolean operators
and combinations of keywords ensured that we included all pertinent studies while
avoiding irrelevant ones. Inclusion Criteria: Articles were selected based on the following:
Focus on antifungal therapies, particularly those involving nanoparticles. Studies detailing
the mechanisms of nanoparticle action, drug delivery systems, or resistance in fungal
pathogens. Peer-reviewed journal articles, reviews, and meta-analyses published mainly in
the last decade to ensure relevance. Publications presenting original research, significant
findings, or novel approaches to antifungal therapies. Exclusion Criteria: Studies lacking
robust methodologies or clear conclusions. Publications focusing solely on bacterial or viral
pathogens, without relevance to fungal infections. Screening Process: Titles and abstracts
were reviewed to ensure relevance, followed by a detailed examination of the full text.

Reference lists of key articles were also screened to identify additional sources.

GLOBAL CHALLENGES OF FUNGAL INFECTIONS

Overview of the epidemiological landscape of global fungal infections
Fungi are widespread across a vast array of environments, including the stratosphere, arid
deserts, oceanic sediments, Antarctic glaciers, and even the human gastrointestinal tract
(Naranjo-Ortiz & Gabaldon, 2019). Although fungi account for less than 1% of the gut
microbiota, recent studies emphasize their pivotal role in promoting immune responses,
forming not only symbiotic but also mutualistic relationships with the host (Arumugam
et al., 2011). Virulence determinants in human-pathogenic fungi can emerge through
environmental and commensal interactions, further evolving during host colonization and
infection (Siscar-Lewin, Hube ¢~ Brunke, 2022).

Wu et al. (2025), PeerdJ, DOI 10.7717/peerj.19199 2/26


https://peerj.com
http://dx.doi.org/10.7717/peerj.19199

Peer

Each year, invasive aspergillosis is diagnosed in over 2.1 million individuals with
conditions such as chronic obstructive pulmonary disease, cancer, or hematological
malignancies, leading to around 1.8 million deaths (85.2% mortality). The annual incidence
of chronic pulmonary aspergillosis reaches 1,837,272 cases, causing 340,000 deaths (18.5%).
Candida bloodstream infections, or invasive candidiasis, affect approximately 1.56 million
people annually, with a death toll of 995,000 (63.6%). Pneumocystis pneumonia strikes
505,000 individuals, resulting in 214,000 deaths (42.4%), while cryptococcal meningitis
impacts 194,000 people, with 147,000 fatalities (75.8%). Other significant life-threatening
fungal infections affect an additional 300,000 people, contributing to 161,000 deaths
(53.7%). Fungal asthma is estimated to impact 11.5 million individuals, leading to 46,000
asthma-related deaths each year. Altogether, the global burden amounts to 6.5 million
invasive fungal infections annually, with 3.8 million resulting in death, of which roughly
2.5 million (68%) are directly attributed to fungal infections (Ikuta, Mestrovic ¢» Naghavi,
2024).

According to the Global Action Fund for Fungal Infections, approximately one billion
individuals worldwide are affected by fungal pathogens, leading to 1.6 million deaths each
year. In Germany, more than 10% of the population suffers from fungal infections, with
superficial cutaneous and onychomycoses being the most prevalent forms (Ruhnke et al.,
2015). In France, the annual incidence of invasive fungal infections is around 5.9 per
100,000 cases, with a 27.6% mortality rate based on hospital discharge diagnoses (Bitar
et al., 2014). In the United States, the Centers for Disease Control and Prevention (CDC)
report over 2.8 million cases of antibiotic-resistant bacterial and fungal infections annually,
leading to approximately 36,000 deaths (Centers for Disease Control and Prevention (US),
2019).

Types of fungal infections and primary pathogens

Fungal infections are classified based on the site of invasion into four categories: superficial
mycoses, cutaneous mycoses, subcutaneous mycoses, and systemic mycoses. Systemic
mycoses not only affect the skin and subcutaneous tissues but also involve internal organs
and tissues, potentially leading to disseminated infections, commonly referred to as
invasive fungal infections. Each type of fungal infection exhibits unique characteristics
depending on the site of infection and the mode of fungal entry into the host. For
instance, mucormycosis can present in six distinct forms based on the anatomical
location: rhinocerebral, pulmonary, cutaneous, gastrointestinal, disseminated, and atypical
presentations (Petrikkos et al., 2012).

Predisposing factors play a significant role in determining the clinical manifestation
and prognosis of fungal infections. The prevalence of systemic mycoses caused by
opportunistic fungi has increased due to the widespread use of broad-spectrum antibiotics,
immunosuppressive therapies, antineoplastic agents, and advancements in organ
transplantation, catheter technology, and other invasive surgical interventions—especially
since the emergence of AIDS. Despite shifts in the global burden of fungal diseases,
six pathogens—Aspergillus, Candida, Cryptococcus, Pneumocystis jirovecii, Histoplasma
capsulatum, and Mucormycetes—persist as the leading culprits of severe infections,
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collectively accounting for the majority of morbidity and mortality (Bongomin et al.,
2017). Of these, Candida, Aspergillus, and Cryptococcus account for approximately 90% of
fatalities related to fungal infections (Qadri et al., 2021).

Pathophysiological mechanisms underlying major fungal infection
pathogenesis

The primary virulence factor of Candida albicans is its ability to undergo filamentation,
transitioning into a hyphal form that enables it to invade host tissues, cause cellular damage,
and breach epithelial barriers. This process is mediated by candidalysin, a peptide toxin
associated with the hyphal structure, representing one of the few classical virulence factors
identified in human pathogenic fungi (Allert et al., 2018; Moyes et al., 2016; Naglik, Gaffen
¢ Hube, 2019).

Aspergillus fumigatus, a major cause of both respiratory and systemic fungal infections
(Sugui et al., 2014), exhibits significant thermotolerance, crucial for its survival in compost
environments. This thermotolerance makes it resilient to human fever and adaptable
to a wide range of stressors, including osmotic and oxidative stress, desiccation, and
starvation, which are typical of its soil habitat (Paulussen et al., 2017). A key virulence
factor in Aspergillus fumigatus is the melanin found in its spores, which aids in concealing
antigens, inhibiting phagosome maturation, and defending against oxidative stress (Gornez
¢ Nosanchuk, 2003; Schmidt et al., 2020).

The capsule of Cryptococcus neoforman s is another critical virulence factor, consisting
primarily of glucuronoxylomannan (GXM), galactoxylomannan (GalXM), and smaller
amounts of mannoprotein (MP), with GXM accounting for over 90% of the polysaccharide
content. These virulence factors not only provide structural and enzymatic benefits for
pathogen survival but also interfere with the host’s immune defenses by actively modulating
host-specific signal transduction pathways (O’Meara & Alspaugh, 2012).

Given the wide variety of clinical presentations, incidence rates, and mortality associated
with fungal infections, a thorough understanding of these pathogenic mechanisms is
crucial. Effective antifungal therapies are essential to reducing the morbidity and mortality
caused by these infections.

MECHANISMS OF ANTIFUNGAL THERAPY AND
RESISTANCE

Introduction of traditional antifungal medications

Presently, various antifungal medications are available for treatment. They are categorized
into four classes and can be used alone or in combination to treat a wide range of fungal
diseases. Combination therapy and hybrid medications are common and effective. Some
common frontline antifungals include: Polyenes, like amphotericin B (AmB), disrupt
cell structure by rupturing fungal cell membranes. 5-fluorouracil (5-FC), when used in
combination, inhibits nucleic acid synthesis. Cryptococcus species are resistant. Micafungin
and other echinocandins inhibit fungal cell wall synthesis. Candida species are resistant.
Fluconazole and other azoles hinder metabolism by blocking ergosterol synthesis. Candida
species are resistant.
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Mechanism of action

Triazole antifungals, like fluconazole, block the cytochrome P450 enzyme 14« -demethylase,
halting the conversion of lanosterol to ergosterol and thereby disrupting fungal cell
membranes. Ergosterol is a critical component of the fungal cell membrane, and its
inhibition leads to increased cellular permeability, disrupting membrane integrity. Other
antifungal agents act through various mechanisms, such as hindering lanosterol synthesis,
inhibiting protein synthesis, or obstructing the production of ergosterol. Additionally,
drugs like AmB create pores in the fungal cell membranes, leading to the leakage of ions
and small organic molecules, which ultimately results in cell death (Joshi et al., 2024).

Mechanisms of resistance in antifungal therapy

Antifungal resistance is multifactorial, arising from various factors: (1) Target
overexpression; (2) Limited antifungal discovery; (3) Non-compliance with prescriptions;
(4) Overuse of antifungal agents; (5) Genetic mutations; (6) Poor waste disposal practices;
(7) Alterations in metabolic pathways; (8) Airborne spore dispersal; (9) Repeated use of
the same fungicide; and (10) Increased vulnerability in immunocompromised individuals
and cancer patients (Aperis ¢» Mylonakis, 2006).

Three primary mechanisms contribute to resistance in triazoles: unregulated expression
of 14¢-demethylase, alterations in the triazole binding site, and the upregulation of
multidrug efflux transporters. Multiple resistance mechanisms can coexist within a single
strain (Whaley et al., 2016). Fluconazole, a commonly used triazole derivative, is considered
exceptionally safe for fungal infections and has been administered to over 16 million
patients, including 300,000 individuals with AIDS. This widespread use has contributed
to the significant development of drug resistance in microorganisms (Ghannoum ¢ Rice,
1999). Triazoles work by inhibiting 14-demethylase, an enzyme that converts lanosterol
to ergosterol, thereby impairing endogenous respiration and inhibiting yeast growth
(Spampinato & Leonardi, 2013).

Echinocandin resistance is typically associated with mutations in the hotspot region of
the FKS catalytic subunit of 8-1,3-D-glucan synthase, as well as alterations in the lipid
composition around the FKS gene. These are the primary contributors to echinocandin
resistance (Arastehfar et al., 2021b).

Resistance to polyenes is less common, and its mechanisms remain unclear. These
drugs primarily target ergosterol, with their action involving ergosterol sequestration and
reductions in membrane ergosterol levels. Mutations in the ERG gene contribute to both
intrinsic and acquired resistance, especially in species such as Candida auris and Aspergillus
terreus (Arastehfar et al., 2021a).

Over recent decades, the excessive use, prolonged treatment regimens, and
environmental exposure to azoles, polyenes, and echinocandins have accelerated the
development of resistance. The World Health Organization predicts that antimicrobial
resistance (AMR) could become the leading cause of mortality by 2050 (Antimicrobial
Resistance Collaborators, 2022). AMR presents a major threat, highlighting the urgent need
for new antifungal agents. It is estimated that around two million people die each year from
fungal infections. Despite the continued use of traditional antifungal therapies, resistance
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has not been adequately addressed (Fisher et al., 2022). Thus, it is critical for each class of
antifungals to innovate and develop new medications to combat this growing resistance.
Ideally, antifungal agents should have the following characteristics: (1) Minimal
or manageable toxicity and side effects, ensuring a wide therapeutic window; (2)
Pharmacological properties suitable for various administration routes; (3) Fungus-specific
action mechanisms; (4) Preferably fungicidal effects; and (5) Broad-spectrum efficacy
against different fungal species. Promising areas for future antifungal development include
natural compounds, semisynthetic and synthetic compounds, nanoparticles, peptides, and
therapies that leverage novel mechanisms (Cui ef al., 2022). Nanotechnology, in particular,
offers the ability to synthesize nanoparticles with inherent antimicrobial properties (Zuniga-
Miranda et al., 2023).

NANOPARTICLES ARE CRUCIAL IN ANTIFUNGAL
TREATMENT

Introduction to nanoparticles

Nanoparticles are widely used in the medical field for anti-infection, biomarker detection,
cancer treatment, genetic engineering, and more. Figure 1 illustrates some of the main
medical applications. Nanoparticles, the cornerstone of nanotechnology, typically range in
size from 10 to 100 nm. The two main approaches to nanoparticle synthesis are “Bottom-
Up” methods, which begin with atoms or molecules and progress to nanostructures
through chemical reactions, and “Top-Down” methods, which use physical techniques
to break down bulk materials into nanoparticles (Fig. 2). They can exist as solid
particles or dispersions and are capable of transporting a variety of molecules, including
pharmaceuticals, aptamers, peptides, antibodies, and cationic entities (Mohanraj ¢ Chen,
2006). In the rapidly evolving field of research, the application of nanoparticles in antifungal
therapy has garnered significant attention. Their role can be broadly categorized into two
key areas: as carriers for antifungal drugs, improving drug delivery and bioavailability, and
as direct antifungal agents with intrinsic antifungal properties.

Nanoparticles as carriers for antifungal agents

The poor solubility of antifungal medications has long posed a challenge to their clinical
efficacy. Several techniques, including solid lipid nanoparticles (SLNs), nanostructured
lipid carriers (NLCs), liposomes, cubosomes, and herbosomes, have been developed to
enhance drug solubility and bioavailability, thereby improving therapeutic outcomes.
Key fungal targets include dihydrofolate reductase (DHFR), acetohydroxy-acid synthase
(AHAS), farnesyltransferase, and endoglucanase. Network pharmacology has identified
that voriconazole (VCZ) interacts with essential genes involved in ergosterol biosynthesis,
such as lanosterol 14 «-demethylase inhibitors (ERG11), ergosterol biosynthesis protein 5
(ERG5), and several others (Tiwari et al., 2023).

Nanocarrier systems are especially effective for antifungal medications that suffer from
poor solubility, delivery, and absorption (Tiwari et al., 2022), such as VCZ. NLCs have
been shown to improve VCZ’s solubility and stability. Research on ocular fungal infections
demonstrates that an antifungal in situ gel with VCZ-loaded NLCs significantly enhances
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Figure 1 Diverse applications of nanoparticles in various fields. Nanoparticle application is surrounded
by six key application areas.
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Figure 2 Schematic representation of the top—down and bottom—up synthesis methods of nanoparti-
cles. There are two main approaches: the top—-down method, which starts with bulk materials and breaks
them down into smaller particles such as powder and finally nanoparticles through physical processes like
milling, vapour—phase, and laser ablation; and the bottom—up method, which constructs nanoparticles
from atoms or clusters using biological (fungi, bacteria, plants) and chemical (sol-gel, chemical reduc-
tion) processes. The diagram illustrates the different pathways and the intermediate states in the synthesis
of nanoparticles.

Full-size Gl DOI: 10.7717/peer;j.19199/fig-2

solubility and bioavailability, while effectively prolonging drug release, offering a novel
therapeutic approach (Tiwari et al., 2023). Similarly, studies on itraconazole (ITZ)-loaded
polymeric nanoparticles (ITZ-NPs) have shown enhanced sustained drug release and
superior antifungal efficacy. These nanoparticles exhibit minimal hemolysis and negligible
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Table 1 Comparison of traditional vs nanoparticle-based antifungal therapies.

Criteria Traditional therapies Nanoparticle-based therapies
Solubility Low Improved with carriers
(e.g., liposomes)

Bioavailability Poor Enhanced
Toxicity Higher toxicity Reduced with controlled release
Targeted delivery Non-specific Targeted, site-specific delivery
Resistance mechanisms Limited by genetic More effective at

mutations and efflux pumps overcoming resistance

venous irritation, indicating greater biocompatibility compared to commercially available
cyclodextrin-based formulations (Ling et al., 2016).

AmB, a potent antifungal agent, presents several clinical challenges, including low
solubility, poor bioavailability, sensitivity to acidic environments, limited gastrointestinal
absorption, and varying toxicity depending on its aggregation state. It also requires
parenteral delivery and careful storage (Sharifi et al., 2024). These complexities limit its oral
efficacy, as AmB demonstrates poor intestinal permeability and absorption at physiological
pH. Recently, SLNs have emerged as a promising platform for oral AmB delivery, with
temperature-stable lipid cores stabilized by surfactants or emulsifiers. These nanoparticles
minimize renal distribution of AmB, reduce toxicity, and modulate drug release effectively
(Fairuz, Nair ¢ Billa, 2022). SLNs can maintain AmB solubility in gastrointestinal fluids
by inducing the secretion of bile salts and phospholipids, forming mixed micelles to
enhance lymphatic absorption in the small intestine (Zaioncz, Khalil &~ Mainardes, 2017).
Additionally, gliadin/casein nanoparticles(AmB-GliCas NPs) have been developed to
mitigate cytotoxicity of AmB. These nanoparticles provide sustained release over 96 h and
exhibit stability in simulated gastrointestinal fluids, significantly reducing hemolysis and
cytotoxicity compared to free AmB (Marcano et al., 2024). AmB nanoparticles have also
demonstrated increased efficacy against leishmaniasis (Firouzeh, Asadi & Tavakoli Kareshk,
2021).

In a study investigating the delivery of itraconazole to skin lesions via NLCs, oral
administration led to a 23-36% reduction in transepidermal water loss and a twofold
reduction in transdermal delivery, highlighting the effectiveness of targeted delivery to the
skin without compromising antifungal efficacy (Passos et al., 2020).

Further expanding the possibilities of nanoparticle-mediated delivery, cell-mediated
nanoparticle delivery systems (CMNDDs) leverage the natural properties of various cell
types, such as the homing capabilities of stem cells, the chemotaxis of neutrophils, the
prolonged circulation of erythrocytes, and the internalization capacity of macrophages.
CMNDDs can extend nanoparticle circulation, traverse biological barriers such as the
blood-brain and bone marrow—blood barriers, and rapidly reach target areas, making
them highly promising for precision antifungal therapy (Cheng ¢» Wang, 2024). Table 1
summarizes the comparison between traditional and nanoparticle-based antifungal
therapies.

Wu et al. (2025), PeerdJ, DOI 10.7717/peerj.19199 8/26


https://peerj.com
http://dx.doi.org/10.7717/peerj.19199

Peer

Nanoparticles as direct antifungal agents

The cytotoxic effects of nanomaterials, particularly concerning ROS, are primarily due to

the disruption of the respiratory chain or direct induction by the nanomaterials. A surge

in ROS, caused by acute oxidative stress, can damage various cell types, inhibiting lipid
peroxidation, altering proteins and enzymes, and causing RNA and DNA damage. While
high concentrations of ROS can lead to cell death, lower concentrations may cause severe

DNA damage and mutations (Gupta, 2021).

Biogenic silver nanoparticles (AgNPs) inhibit S-glucan synthesis, compromising
the structural integrity of Candida albicans cell wall and reducing its resilience. AgNPs
generate ROS, leading to mitochondrial dysfunction, apoptosis, DNA fragmentation, and
activation of metacaspases. They also modulate the Ras-mediated signaling cascade in
Candida albicans by downregulating key genes such as ECE1, TECI, TUPI, and RFGI,
which are essential for the yeast-to-hyphae transition (Halbandge et al., 2019). AgNPs
further exert fungistatic effects by disrupting B-glucan synthase, compromising cell wall
architecture and diminishing mechanical resistance. ROS produced by AgNPs induce
mitochondrial dysfunction, triggering apoptosis, phosphatidylserine externalization,
nuclear DNA fragmentation, and metacaspase activation (Mba ¢ Nweze, 2020).

The antifungal mechanisms of metal nanoparticles extend beyond AgNPs and can be
categorized as follows. The antifungal mechanisms of nanoparticles are depicted in Fig. 3.
These mechanisms mainly involve the generation of ROS that can damage fungal cell walls
and membranes, leading to cell lysis and the leakage of intracellular contents
(1) Size effect: nanoparticles can physically disrupt fungal cell walls and membranes,

causing leakage of cellular contents and cell death. For example, gold nanoclusters (Au
NCs) smaller than 2 nm exhibit unique antimicrobial properties. Research has shown
that shrinking Au nanoparticles below this size imparts them with broad-spectrum
antimicrobial activity, killing both Gram-positive and Gram-negative bacteria by
increasing ROS production and disrupting bacterial metabolism (Zheng et al., 2017).

(2) Surface characteristics: nanoparticles with rough or sharp surfaces are more effective
at penetrating and rupturing fungal cell walls and membranes. Wang et al. (2018)
developed mesoporous silica nanospheres with rough surfaces that enhanced adhesion
to bacterial surfaces through multivalent interactions. Similarly, spiky TiO, particles
can penetrate cell membranes, allowing for the direct release of biomolecules into the
cytosol (Wang et al., 2017).

(3) Charge effect: positively or negatively charged nanoparticles interact with the charged
components of fungal cell walls and membranes, causing membrane disruption
via electrostatic interactions. Nanostructures with dense positive charges have
demonstrated more efficient cellular uptake, significantly enhancing their ability
to penetrate three-dimensional multicellular spheroids (Shi et al., 2022).

(4) Shape effect: the shape of metal nanoparticles, such as spherical, rod-like, or star-
shaped, influences their interaction with cell walls. Elbourne et al. (2020) developed
gallium-based liquid metal nanoparticles (GLM-Fe) using an iron-gallium-indium-tin
alloy. Under a magnetic field, these nanoparticles change shape and penetrate bacterial
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Figure 3 Antifungal mechanisms of nanoparticles: a cellular-level perspective. Nanoparticles first in-
teract with the cell wall and cell membrane of fungal cells. (A) Reactive oxygen species (ROS) generated
by nanoparticles damage the cell wall, and the nanoparticles adhere to and dissolve the membrane, facili-
tating their entry into the cell. (B) Once inside, nanoparticles can trigger the generation of more ROS. (C)
These ROS then cause oxidation of cellular components, such as those in mitochondria. (D) Nanoparticles
can also directly damage the DNA within the cell nucleus. Eventually, (E) cell lysis occurs, destroying the
cell and inducing the leakage of cytoplasmic contents and genetic materials, which ultimately leads to the
death of the fungal cell.

Full-size & DOI: 10.7717/peerj.19199/fig-3

biofilms, killing over 95% of Pseudomonas aeruginosa and Staphylococcus aureus within
90 min (Elbourne et al., 2020).

(5) Aggregation phenomenon: metal nanoparticles can aggregate on cell surfaces,
increasing physical pressure on cell walls and membranes. Janus nanoparticles
(asymmetric particles with dual surface properties) with optimized protrusion sizes
have been shown to rapidly anchor to and penetrate cell membranes, improving
uptake efficiency (Xia et al., 2024). Linklater et al. (2020) demonstrated that increased
membrane tension caused by nanoparticle interaction is a universal phenomenon
across bacterial strains.

(6) Mechanical stress: nanoparticles can exert mechanical stress on fungal cell walls
and membranes, leading to deformation or rupture. Liu ef al. (2023) developed a
biophysical model showing that nanoparticle adsorption induces stretching and
compression of membranes, causing mechanical stress.

(7) Cell wall remodeling: metal nanoparticles may disrupt fungal cell wall biosynthesis,
leading to structural defects and instability.

(8) Alterations in membrane fluidity: Paul, Pandey ¢ Neogi (2023) demonstrated how
NiO and CuO-NiO mixed metal oxide nanoparticles alter bacterial cell membranes,
increasing permeability and inducing oxidative stress, which destabilizes the membrane.
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(9) Cellular endocytosis: metal nanoparticles can be internalized by fungal cells through
endocytosis, increasing intracellular pressure and causing organelle damage.

(10) Biological membrane penetration: studies on AgNPs using staining and imaging
techniques have shown that AgNPs can disrupt fungal hyphal structures and cause
organelle degradation, further confirming their toxic effects on fungal cells (Jian et al.,
2022).

Advantages of nanoparticle-based drug delivery

Nanoparticle-based drug delivery offers several key advantages: (1) improved delivery
of poorly water-soluble drugs; (2) targeted drug delivery to specific cells or tissues;

(3) transcytosis across tight epithelial and endothelial barriers; (4) delivery of large
macromolecular drugs to intracellular targets; (5) simultaneous delivery of multiple drugs
or therapeutic modalities for combination therapies; (6) visualization of drug delivery sites
via imaging modalities; and (7) real-time assessment of a therapeutic agent’s in vivo efficacy
(Farokhzad & Langer, 2009).

One innovative approach to enhancing the bioactivity of small-molecule antifungal
agents involves metal nanozyme engineering. For example, AmB-conjugated gold
nanoparticles (AmB@AuNPs), synthesized through a simple one-step process, exhibit
remarkable peroxidase-like enzymatic activity in HO,-mediated reactions. Their maximal
catalytic rate (V_max) is 3.4 times greater than that of unmodified AuNPs. This enzyme-
mimetic activity significantly enhances the fungicidal efficacy of AmB. Consequently, the
minimum inhibitory concentrations (MICs) of AmB@AuNPs against Candida albicans and
Saccharomyces cerevisiae W303 are reduced by 1.6-fold and 50-fold, respectively, compared
to AmB alone (Jiang et al., 2024).

Nanoparticle-based drugs also present a novel strategy for tackling drug-resistant fungi.
Antibiotics typically act through mechanisms such as enzyme inhibition, membrane
structure modification, and interference with transcription and translation (Wahab et al.,
2021). Lotfali et al. (2021) demonstrated that nanoparticles can alter the cell wall structure
of resistant strains by forming pores, potentially increasing the susceptibility of resistant
strains. They synthesized Ag-NPs, which exhibited superior antifungal efficacy against
resistant C. glabrata strains when compared to selenium (Se-NPs) and AuNPs.

In another example, Tran et al. (2017) employed a simple and eco-friendly method to
synthesize biocompatible hybrids containing copper oxide nanoparticles (CuONPs) from
cellulose (CEL) and chitosan (CS) or CEL and keratin (KER). These composites showed
significant antibacterial activity against a broad range of bacteria and fungi. Importantly,
the antimicrobial performance of the composite was positively correlated with CuONP
concentration, and it remained compatible with human fibroblast cells at concentrations of
35 nmol/mg or lower (Tran et al., 2017). Additionally, pomegranate peel aqueous extract
facilitated the synthesis of highly antibacterial iron oxide nanoparticles, showcasing the
antimicrobial potential of plant-derived nanoparticles (Sharma et al., 2022).

Furthermore, a study evaluating curcumin-coated silver nanoparticles (Cur-Ag NPs)
synthesized through environmentally friendly methods demonstrated significant antifungal
efficacy against a panel of Candida and Aspergillus species. Cur-Ag NPs exhibited strong
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Table2 Comparison of advantages and disadvantages of various types of nanoparticles.

Nanoparticle type

Advantages

Disadvantages

Reference

Silica nanoparticles
Metal and metal

oxide nanoparticles

Polymeric nanoparticles

Lipid nanoparticles

Smart nanoparticles

Phage nanoparticles

Excellent chemical and thermal sta-
bility, good biocompatibility
High-efficiency antibacterial activity,
multi-target mechanism of action

The ability to enhance drug stability,
the ability of adjustability and tar-
geted delivery

The ability to enhance drug solubil-
ity and bioavailability, significant ad-
vantages of local antifungal treat-
ment and skin permeability
Precision medicine and prolonged
drug release

Low environmental impact, fewer
side-effects, narrow antimicrobial
spectrum, effective agains biofilms

The agglomeration of nanoparticles
affect antibacterial activity

The limitations of size and morphol-
ogy affect antibacterial activity

Toxic degradation, toxic monomers
aggregation, residual material

Polymorphic transformation may
occur during storage, leading to drug
payload loss

The complex manufacturing process
and the high costs

Adaptive anti-phage immunity may
develop through multiple dosing,
lack of standardized guidelines for
dosage and administration, limited
experience in the application for fun-
gal infections.

Singh et al. (2017)

Massoudi et al. (2022),
Aderibigbe (2017)

Sivadasan et al. (2021),
Lakshminarayanan et al. (2018)

Singulani et al. (2018),

Ramu, Spandana & Preethi (2021)
Meng et al. (2023)

Ling et al. (2022),

Zhang et al. (2022b),
Manohar et al. (2024)

antifungal properties, particularly against azole-resistant strains of Aspergillus and Candida,
underscoring their potential to combat drug-resistant fungal infections (Amini et al., 2023).

Advances in nanoparticle-based antifungal therapy

Significant progress has been made in various research directions of nanoparticle antifungal
therapy, demonstrating reliable efficacy in both local and systemic infections. Recent studies
have demonstrated that the AgCu20 nanoparticles (AgCuE NPs) gel, a nanoparticle
formulation, showed good biosafety and no obvious ophthalmic and systemic side effects
(Yeetal., 2022). High efficacy in treating deep cutaneous and onychomycosis fungal
infection has also been demonstrated (Wang et al., 2023a). Nanoparticles have emerged
as effective drug carriers for treating invasive fungal infections in immunocompromised
patients, significantly enhancing drug bioavailability and reducing side effects (Botero
Aguirre ¢ Restrepo Hamid, 2015). Comparison of advantages and disadvantages of various
types of nanoparticles was presented in Table 2. Various types of nanoparticles and their
newly applications were summarized below.

(1) Silica Nanoparticles: Recent progress has been made in nanoparticle drug co-delivery
and precision targeting. pH-sensitive gated mesoporous silica nanoparticles enhanced
antifungal efficacy of tebuconazole and amine-functionalized silica nanoparticles enhanced
topical econazole antifungal efficacy (Mas et al., 2014). In 2022, a study optimized
mesoporous silica particles (MSNs) co-loaded with ketoconazole and betamethasone
(EN-TA-MSNs) using a central composite rotatable design (CCRD), which significantly
enhancing drug release efficiency (ketoconazole 68%, betamethasone 70%). This system
also reduced skin irritation (erythema grade was reduced fourfold) and promoted wound
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healing. Animal experiments demonstrated superior in vivo antifungal efficacy compared
to pure drugs, with cell viability increased to 90% (Maheen et al., 2022).

(2) Metal and Metal Oxide Nanoparticles: The broad spectrum of target fungi for metal
nanoparticles has suggested a significant demand and market potential. AgNPs exerted
broad-spectrum antifungal effects against Candida, Aspergillus, and other fungi by
disrupting fungal cell membranes by releasing silver ions or ROS (Halbandge et al., 2019).
Iron oxide nanoparticles (FeNPs) suppress a number of fungal infections, including
Fusarium solani, Aspergillus niger, and Candida albicans (Nehra et al., 2018). Recent
advances in the research of metal nanoparticles synthesized by fungi have demonstrated
their advantages of high yield and environmental friendliness, making them one of the
hotspots in current research (Cruz et al., 2024).

(3) Polymeric Nanoparticles: Multiple studies have developed Chitosan-PNs for disrupting
biofilms and loading anti-drug agents. Chitosan-PNs significantly inhibited Candida
biofilm formation and decreased the number of colony forming unit (CFU) of Candida
spp (Gondim et al., 2018). Chitosan-PNs loaded with P10 peptide significantly reduced
fungal burden in the lungs of mice via intranasal delivery (51 days post-infection), with an
effective dose of 1 pg to decrease CFU (Rodrigues Dos Santos Junior et al., 2020).

(4) Lipid Nanoparticles: Lipid-based nanoparticles and lipid-structured material
nanoparticles have shown significant potential in the treatment of skin fungal infections.
The in vitro results showed that NEA exhibited better antifungal activity than free AmB in
both planktonic and sessile cells, with >31% inhibition of mature biofilm (Marena et al.,
2023). Moreover, compared to traditional SLNs, NLCs significantly reduce drug leakage
through the design of a disordered crystalline matrix, achieving an encapsulation efficiency
of over 80% and enhancing the controllability of drug release (Dudhipala ¢ Ay, 2020).

(5) Smart Nanoparticles: With the development of precision medicine and the increasing
demand for controllable drug release, the research on intelligent and smart nanoparticles
has been put on the agenda. Responsive nanoparticles (such as pH-sensitive or enzyme-
sensitive types) can precisely release drugs in the infected microenvironment, thereby
intelligently controlling and slowing the release of antimicrobial agents (Meng et al., 2023).
(6) Phage Nanoparticles: Phages displaying specific peptides can conjugate with
nanoparticles, combining the benefits of peptides and nanomaterials for precise fungal
detection. Additionally, phage nanomaterials as carriers can reduce drug toxicity, prolong
drug circulation, stimulate immune responses, and possess inherent antifungal effects (Xu
etal., 2022).

Challenges and difficulties in nanoparticle-based antifungal therapy
Nanoparticles have shown great potential in the treatment of fungal infections, but still
face multiple difficulties and challenges, mainly involving the following aspects.

(1) Safety and Toxicity Issues: Concerns about the toxicity of nanomaterials were raised
many years ago, as reported, inhalation of nanoparticles can trigger inflammation and
fibrosis, especially carbon nanotubes, which may deposit and cause long-term lung damage
(Oberdorster, Oberdorster & Oberdorster, 2005). In recent years, research has focused on
the reproductive toxicity of nanoparticles. In vivo and in vitro studies show that polylactic

Wu et al. (2025), PeerdJ, DOI 10.7717/peerj.19199 13/26


https://peerj.com
http://dx.doi.org/10.7717/peerj.19199

Peer

acid microplastic (PLA-MPs) derived nanoparticles can penetrate the blood-testis barrier
(BTB) and localize in the spermatogenic microenvironment. Long-term exposure to
PLA-MPs causes significant reproductive toxicity in mice, characterized by reduced sperm
concentration and motility, increased sperm deformity rates, and disrupted sex hormone
levels (Zhao et al., 2025). The toxicity of nanomaterials in the reproductive system may
affect the placental barrier, leading to fetal abnormalities (Ahmad, 2022). To address this
issue, further mining and analysis of existing literature data are extremely important. For
instance, Huang et al. (2025) used machine learning and SHAP analysis to identify IL-18
in THP-1 cells as an in vitro biomarker for nanoparticle-induced pulmonary toxicity .
Futhermore, the cytotoxicity of nanomaterials can be significantly reduced through surface
chemical modification, a method that has been validated in multiple studies (Attarilar et
al., 2020; Rivas et al., 2022).

(2) Scalability of Synthesis: The most challenging steps in the development of
nanomedicine products come from the transition from laboratory-scale batches to large-
scale industrial batches, as well as the selection of excipients required for the production
of high-quality drugs. Traditional methods such as phase separation were only suitable for
small-scale production, relying on organic solvents, and were limited in particle size (50—
500 nm). Milling is cost-effective and suitable for large-scale production, but it has issues
such as poor control over the shape of nanoparticles and the need for cooling due to heat
generation (DeFrates et al., 2018). Microbial synthesis of nanoparticles faces challenges such
as polydispersity, low yield, and aggregation, and requires extreme conditions (e.g., specific
temperature, pH) that increase process complexity (Khan et al., 2023). Recent studies
have shown optimizations in batch production and quality control of nanomaterials.
Breakthroughs in microfluidic technology process optimization and enables the efficient
and uniform preparation of nanoparticles through precise control of mixing conditions.
For example, the microfluidic synthesis of lipid nanoparticles (LNPs) for COVID-19
mRNA vaccines supports high-throughput production at a rate of 25 kg/h (Li et al., 2023).
Continuous nanoprecipitation of SLNs via static mixers, achieves a production rate of
150 g per hour (Gautam, Kim ¢ Yong, 2021). Achieving a batch-to-batch variation control
of 16% in the production of HIV antigen peptide chitosan nanoparticles using process
analytical technology (PAT) and quality by design (QbD) (Klein et al., 2020).

(3) Shortcomings in Clinical Translation and Pharmacodynamics Research: Most
current studies remain at the in vitro or animal experimental stage, lacking systematic

in vivo pharmacokinetic data (such as biodistribution and metabolic pathways (Dordevic et
al., 2022; Metselaar ¢ Lammers, 2020). The dynamic relationship between the drug release
behavior of nanoparticles (such as extended release and burst release) and antifungal
activity lacks quantitative research. For example, although the release of miconazole
nitrate polymer nanoparticles conforms to the Korsmeyer-Peppas release model, the
correlation between its in vivo antifungal efficacy and release rate still needs to be verified
(Bresinskya ¢ Goepfericha, 2025). Establishing a database of “structure—activity—toxicity”
for nanoparticles and using artificial intelligence to predict their biodistribution and
efficacy may be helpful to solve this problem.
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(4) Biofilm Resistance and Biocompatibility Challenges: The three-dimensional structure
of fungal biofilms is complex, and the extracellular polysaccharide matrix they secrete can
hinder drug penetration, significantly reducing therapeutic efficacy (Kowalski et al., 2020).
Although AgNPs can disrupt the cell membrane and induce ROS accumulation to kill fungi,
more research needs to focus on nanomaterials designed to cross different physiological
barriers, effectively addressing challenges posed by skin, corneal, and blood—brain barriers
(Liu et al., 2024). As a typical example, Wang’s team invented a CuFeSe,-PVP nano-blade,
which has achieved encouraging in vivo antifungal therapeutic effects and exhibited
excellent biocompatibility (Wang, Zhou & Wang, 2023b).

(5) Resistance challenges: Strikingly, a study showed that rather than eradicating persister
cells, a wide range of nanoparticles promote the formation of bacterial persistence (Zhang
et al., 2022a). Although this mechanism primarily targets bacteria, fungi may also exhibit
similar phenotypic heterogeneity, which requires further investigation. The design of
nanomaterials needs to be dynamically optimized to address these challenges (Liu et al.,
2024).

CONCLUSION AND FUTURE PERSPECTIVES

This review comprehensively explores the current status and research progress of
nanoparticle-based therapies for fungal infections. Fungal infections pose a serious threat
to human health, resulting in a significant number of fatalities each year. The growing issue
of antifungal resistance further complicates treatment, highlighting the need for novel
therapeutic strategies. Nanoparticles, with their unique properties, have demonstrated
great potential as both carriers for antifungal drugs and as direct antifungal agents. The
innovative application of nanoparticles to enhance the efficacy of traditional antifungals
and combat drug-resistant strains is a particularly promising research avenue.

First, the diversity of fungal pathogens and the complexity of their interactions with the
host demand a multifaceted approach to treatment. Nanoparticles, owing to their high
surface area-to-volume ratio, tunable size, and modifiable surfaces, provide a versatile
platform for drug delivery systems. They can improve the solubility and bioavailability
of poorly water-soluble antifungal drugs, enable targeted delivery to infection sites, and
facilitate the crossing of biological barriers.

Second, nanoparticles exhibit diverse mechanisms of action as antifungal agents. These
include the generation of ROS disruption of cell walls, and interference with fungal cell
membranes integrity. Physical properties such as nanoparticle size, shape, and surface
characteristics play a crucial role in determining their antifungal activity.

However, several challenges remain. The potential toxicity of nanoparticles to
mammalian cells, the need for controlled and sustained drug release systems, and the
scalability of nanoparticle synthesis for clinical applications all require further investigation.
Additionally, the interactions between nanoparticles and the immune system, as well as
their long-term effects in the body, are not yet fully understood. Major challenges and
solutions in nanoparticle-based therapies are summarized in Table 3.

For future perspectives, as Artificial Intelligence (AI) technologies have already gained
considerable research and development in the medical field. In the face of the challenges
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Table 3 Challenges and solutions in nanoparticle-based therapies.

Challenges Research solutions

Potential toxicity to mammalian cells Surface modifications to reduce toxicity
Scalability of synthesis Eco-friendly, large-scale synthesis methods
Controlled and sustained drug release Development of new nanocarrier systems
Biocompatibility Biocompatible coatings

Overcoming multi-drug resistance Synergistic approaches with existing antifungals

mentioned above in nanotechnology, Al algorithms can analyze the physicochemical
properties of nanoparticles (such as size, shape, and surface modification) and predict
their potential cytotoxicity and immunogenicity. For instance, metal oxide nanoparticle
(MONP) biocompatibility has been accurately predicted by Al models, serving as a
benchmark for evaluating other nanoparticles (Soltani et al., 2021). Specifically, Al can
optimize drug and dose parameters in combinatorial nanomedicine to fully realize its
potential (Ho, Wang ¢ Kee, 2019). These developments may improve the safety and
clinical translation of nanomedicines, hastening the development of nanotechnology.

Looking forward, it is imperative to continue investigating the full potential and
limitations of nanoparticle-based antifungal therapies. Future research should focus on the
following key areas:

(1) Elucidating the mechanisms behind the antifungal efficacy of various nanoparticles to
develop more effective therapeutic agents.

(2) Assessing the safety and biocompatibility profiles of nanoparticles in both preclinical
and clinical settings.

(3) Developing environmentally sustainable methods for nanoparticle synthesis.

(4) Establishing methodologies for large-scale synthesis of nanoparticles with uniform
quality and characteristics.

(5) Exploring synergistic approaches that combine nanoparticles with existing antifungal
drugs to address resistance and optimize therapeutic outcomes.

(6) Integrating Al technologies provides more breakthroughs and enhances the efficiency
of nanomedicine development.

The incorporation of nanotechnology into antifungal treatments represents a promising
frontier in the fight against fungal infections. With sustained research and technological
advances, nanoparticle-based interventions are expected to play an increasingly pivotal
role in the clinical management of these challenging diseases.
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