Research manuscript

2 Untangling taxonomic knots: the intricate case of

3 Croton anomalus (Euphorbiaceae), a seasonally dry

tropical forest specialist

Yuri Rossine¹, Ricarda Riina², Otávio L. M. Silva ^{3,4}, Rafael B. Louzada¹

6 7 8

9

4

5

- ¹ Programa de Pós-Graduação em Biologia Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, 50670-901, Recife, Pernambuco, Brazil
- ² Real Jardín Botánico (RJB), Consejo Superior de Investigaciones Científicas, Plaza de Murillo 2,
 28014, Madrid, Spain
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão,
 Cidade Universitária, 05508-900, São Paulo, Brazil
- ⁴ Programa de Pós Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Pesquisa
 Ambientais, 04301-902, São Paulo, Brazil

1617 Corresponding author:

18 Ricarda Riina

19 Email: rriina@rjb.csic.es

20 Real Jardín Botánico (RJB), Consejo Superior de Investigaciones Científicas, Plaza de Murillo 2,

21 28014, Madrid, Spain

22 23

Abstract

242526

27

28

29

30

31

32

33

34

35

36

37

38

39

Croton anomalus was described by Henri Pittier in 1930 from a collection made in Estado Lara, Venezuela, and its use has so far been restricted to several states in Venezuela. A reevaluation of the species here has led here to its recircumscription and recognition in several other countries, including Suriname, Brazil, Bolivia, and Mexico. Previously, it was confused with several species referred to here as the "Croton anomalus group", namely C. acapulcensis, C. blanchetianus, C. chiapensis, C. jacobinensis (=C. sonderianus), and C. stahelianus. We integrated morphological, phylogenetic, and ecological evidence to understand species limits and relationships within the Croton anomalus group. We first studied ca. 650 herbarium specimens covering the geographic range of the group, and we inferred species phylogenetic relationships using DNA sequences from the nuclear and plastid regions (ITS and trnL-F). We also used ecological niche modeling to infer potential suitable areas for the occurrence of the studied species and to determine the variables that most contribute to their distribution model. Both morphological and phylogenetic data provide evidence for the synonymization of C. acapulcensis, C. chiapensis, and C. stahelianus under C. anomalus. On the other hand, our results support the recognition of C. blanchetianus and C.

Commented [BP1]: Consider changing the title to something like "Untangling the taxonomic knot of Croton anomalus (Euphorbiaceae), a Neotropical seasonally dry tropical forest shrub" My reason is that it the paper focuses on one main 'knot', namely Croton anomalus, not a whole series of knots. And also, I don't see why it characterized as a "specialist" of SDTFs – it's almost more of a generalist in SDTFs, so hence my suggestion of just calling it a shrub instead of a specialist. Also, it seems kind of important to specify it is a Neotropical species.

Commented [BP2]: The original version caused me several hesitations, such as: I'm not sure that Croton anomalus was ever truly "forgotten and ignored", and if so, that was not the cause of a "series of taxonomic confusions". There are quite a few other collections that have been identified as C. anomlaus in Venezuela, as exemplified by the species entry in Hokche et al. (2008: Nuevo Catalogo de la Flora Vascular de Venezuela), which lists the species as occurring in six different administrative entities there, namely Carabobo, Distrito Federal, Lara, Nueva Esparta, Yaracuy, and Zulia.

Deleted: has been forgotten and ignored for almost a century, causing a series of taxonomic confusions. Previously known only from Venezuela, this species is here rediscovered in other countries. When it has been

Formatted: Font: Italic

Deleted: Based on morphological observations, we propose two hypotheses: I) *Croton blanchetianus* and *C. jacobinensis* are independent lineages, different from *C. anomalus*; and II) *C. anomalus* has a broader distribution range and includes *C. acapulcensis*, *C. chiapensis*, and *C. stahelianus*.

Deleted: analyzed

Formatted: Font: Italic

Deleted: . W

Moved (insertion) [1]

Deleted: O

Deleted: hypothesis

Deleted: that

jacobinensis are two independent lineages, both distinct from C. anomalus. An amended description of C. anomalus is provided, as well as the designation of a lectotype, illustrations, updates of distribution data, and morphological comparisons with closely related species. Regarding niche modeling, annual precipitation was the most important variable explaining species distributions. Croton anomalus showed suitable areas in most Seasonally Dry Tropical Forests in the Neotropics, while C. blanchetianus and C. jacobinensis had their suitable areas restricted to the Caatinga Dry Forest (Brazil), and Caatinga + northern South America, respectively. Our study shows the importance of taxonomic revisions using integrative approaches to disentangling species boundaries and to <u>elucidate</u> their biogeography and conservation.

Keywords - *Croton blanchetianus*; *Croton sonderianus*; marmeleiros; Neotropics, integrative taxonomy.

Introduction

The delimitation of cryptic or morphologically very similar species is a long-standing challenge in taxonomy, and it is a common problem in megadiverse lineages. Properly recognizing such cryptic species is crucial for understanding species distributions, assessing biological conservation, and more accurately estimating biodiversity (Bickford et al., 2007; Padial et al., 2010). Since occurrence data are one of the most important pieces of evidence when designating new species, delimitation is more difficult when the putative taxa present disjunct distributions (Padial et al., 2010; Medina et al. 2012; Salvador-Montoya et al., 2015; Guimarães et al., 2021; Sassone et al., 2021), which in some cases may be artifactual due to poorly explored areas or collection gaps (Feeley, 2015; Riina et al., 2018; Ondo et al., 2024). Thus, the use of integrative approaches becomes an efficient alternative to achieve more assertive taxonomic decisions (Padial et al., 2010; Frajman et al., 2019).

Croton L. is the most species-rich genus occurring in the Caatinga Dry Forest (Fernandes et al., 2020) with ca. 70 species (Carneiro-Torres, 2009; Caruzo et al., 2020). It is also an important genus in many of the Seasonally Dry Tropical Forests (SDTF) areas of the Americas (DRYFLOR, 2016; Quintana et al. 2017). The SDTF biome has long been under-appreciated by the scientific community when compared to other biomes such as Savannas and Tropical Rainforests (Moonlight et al., 2020). Although recent studies have increased our understanding of SDTFs (DRYFLOR, 2016; Escribano-Avila et al. 2017; Quintana et al. 2017; BFG, 2021; Carrión et al., 2022; Wurdack, 2023), the diversity of the Caatinga, the largest and the most species-rich area of SDTF, is still understudied (Queiroz et al., 2017; Fernandes et al., 2020).

The taxonomic knowledge of *Croton*, a genus with over 1,200 species (Moonlight et al., 2024), is still incomplete and problematic for many species groups within it (Berry et al., 2005; van Ee et al., 2011). For example, *C. sonderianus* Müll.Arg. is a frequent name in studies spanning taxonomy, phytochemistry, pharmacology, and ecology (*e.g.* Craveiro et al., 1981; Craveiro & Silveira, 1982; Lucena & Sales, 2006; Lôbo et al., 2011; Souza et al., 2017). However, the

Commented [BP3]: amended or emended?

Moved up [1]: Both morphological and phylogenetic data provide evidence for the synonymization of *C. acapulcensis*, *C. chiapensis*, and *C. stahelianus* under *C. anomalus*.

Deleted: different

Deleted: shed light on

Commented [BP4]: Why include these two names here and not any others (e.g., Croton anomalus), especially when Croton sonderianus is considered a synonym?

Commented [BP5]: "On the other hand" suggests there is a contradictory idea, but this one is more of a justification why proper recognition of cryptic species is important.

Deleted: On the other hand,

Deleted: delimitation

Commented [BP6]: Not just in designation *new* species, but existing ones also.

Commented [BP7]: I don't follow at all this conclusion from the preceeding sentences, and I don't really understand what an "efficient" alternative or a "more assertive taxonomic assertion" is supposed to mean. I think you need to be more specific here in specifying both the problem and the approach to remeding it.

Commented [BP8]: I was left quite confused by this paragraph, mainly because it begins talking about Croton in the Caatinga Dry Forest, and in the next sentence states "It is also an important genus in many of the SDTFs areas of the Americas...", which immediately leads me to think that these are mutually exclusive areas, but then at the end of the paragraph it becomes clear that the Caatinga is actually a subset of SDTFs. I also think that this same confusion continues into the body of the paper, where one can see that Croton anomalus occurs in part of the same Caatinga where C. blanchetianus and C. jacobinensis also occur.

application of this name in northeastern Brazil to various Croton species, particularly those locally known as 'marmeleiros' (Carneiro-Torres, 2009), poses a taxonomic challenge. Despite the proposal of Gomes et al. (2010) that C. sonderianus should be synonymized under C. jacobinensis Baill., the use of the former persists in the scientific literature, including Flora & Funga do Brasil (2020). In addition, in numerous cases the name C. sonderianus has also been misapplied to specimens of C. blanchetianus Baill. as if they were synonyms

After an extensive revision of specimens identified as C. sonderianus, we realized that a third species (C. anomalus Pittier) was involved, which had never been cited for Brazil. Croton anomalus was published nearly a century ago (Pittier, 1930) and it was known only from Venezuela (Hockche et al. 2008). Additionally, three other species, very similar to C. anomalus, were noted during our ongoing revision of C. sect. Lasiogyne (Klotzsch) Baill. and were also considered for this study. These species are C. acapulcensis Mart.Gord. & J.Jiménez Ram. and C. chiapensis Lundell, both from Mexico, and C. stahelianus Lanj., known from Suriname, (Lanjouw, 1931; Lundell, 1942; Gordillo & Ramírez, 1990). Based on these morphological observations, we proposed the following hypotheses: i) Croton blanchetianus and C. jacobinensis are separate lineages independent of C. anomalus; and ii) C. anomalus includes C. acapulcensis, C. chiapensis, and *C. stahelianus* as synonyms, and has a broad geographic range.

The taxonomic riddle concerning C. anomalus and other names/species in the Croton anomalus group is discussed and disentangled here. We use morphological, ecological, geographic, and phylogenetic data co elucidate the taxonomy of this group. We also employ ecological niche modeling to uncover potential suitable areas for the occurrence of the studied species. An amended description and designation of a lectotype for C. anomalus, distribution maps, illustrations, preliminary conservation assessments, and a historical discussion about this taxonomic complex are provided.

Material and Methods

Sampling

101

102 103

104

105

106

107

108

109

110

111

112

113

114

115

116 117

118

119

120

121

122

123

124

125

126 127 128

129

130

131

132

133 134

135

136

137

138

139

140

141

We analyzed ca. 650 herbarium specimens identified as Croton anomalus, C. acapulcensis, C. chiapensis, C. blanchetianus (see Appendix 1 in Rossine et al., 2023), C. jacobinensis (see Appendix 1 in Rossine et al., 2023), C. sonderianus, and C. stahelianus. The specimens deposited in A, CA, CEPEC, EAC, HESBRA (not indexed), HUEFS, HUESB, HST, K, MA, MICH, MO, MOSS, NY, PEUFR, UFP, US, VEN, W (acronyms follow Thiers, continuously updated) were analyzed, and complemented by virtual specimens from other herbaria available at SpeciesLink (https://specieslink.net/search/), Southeast Regional Network of Expertise and Collections -SERNEC (https://sernecportal.org/portal/) or directly from herbarium online data portals.

For the phylogenetic analyses, we included a total 37 specimens, representing 29 putative species (28 of Croton, and Brasiliocroton muricatus Riina & Cordeiro as the outgroup), of which 16 samples were part of the Croton anomalus group (Table 1). Unfortunately, we were not able to sample C. chiapensis for phylogenetic analyses due to the lack of material (the species is only known from the type).

Formatted: Strikethrough

Formatted: Strikethrough

Deleted: s

Commented [BP10]: Add to references cited...

Deleted:

Deleted: to be endemic to Mexico (the first two) and

Deleted: , respectively

Deleted: er

Formatted: Font: Italic

Deleted: to shed light on

Deleted: complex

Deleted: knot

Formatted: Font: Italic

Commented [BP11]: Not technically true: see images.calacademy.org/static/botany/originals/81/73/8 1737182-0b7d-4e58-89d7-4cc1861ebb2b.ipc Breedlove 50502 (CAS), which was identified by Berry

and Riina in 2008 as C. chiapensis.

DNA extraction, amplification, sequencing, and alignment

Total genomic DNA was extracted according to the CTAB protocol (Doyle, 1991). The nuclear ribosomal internal transcribed spacer (ITS) region, and the plastid intergenic spacer *trnL-trnF* (hereafter called *trnL-F*) were amplified using the PCR settings of Masa-Iranzo et al. (2021) and sent to Macrogen (Macrogen, Madrid) for sequencing. Primers and references are given in Table 2. The aforementioned regions have been widely used and proven to be informative in previous studies of *Croton* (*e.g.* van Ee et al., 2011; Masa-Iranzo et al., 2021; Riina et al., 2021). Sequences were assembled and aligned with MAFFT (default parameters), followed by a manual edition in Unipro UGENE (Okonechnikov et al., 2012). Summary statistics of each data matrix were estimated in PAUP v.4.0a169 (Swofford, 2002).

Phylogenetic analyses

Bayesian Inference (BI) was used to reconstruct phylogenetic relationships of the nuclear and plastid regions individually. Since no incongruences were found after visual examination of the two topologies, a concatenated dataset was generated using SequenceMatrix (Vaidya et al., 2011). Incongruences between topologies were considered as such if the clades in question were supported with > 0.95 posterior probability (PP), following Alfaro et al. (2003). The BI was performed in MrBayes v.3.2.7a (Ronquist et al., 2012). The best substitution models were determined in JModelTest2 v.2.1.10 using the Akaike Information Criterion (AIC) and were SYM+I+G for ITS, TIM1+G for *trnL-F*. These were substituted for the most similar and compatible models implemented in MrBayes: GRT+I+G for ITS and GTR+G for *trnL-F*. The aforementioned analyses were all run on the XSEDE-CIPRES platform (Miller et al., 2010). Bayesian PP were generated from two runs each of four chains. The parameters set were the following: 30 million generations with sampling in every 1,000th generation; default priors, and discarding the first 25% sampled trees and parameters for burn-in. Estimated sample size (ESS) values (> 200) were checked in

Tracer v.1.6 (Rambaut & Drummond, 2007). The phylogenetic trees were visualized and edited in FigTree (Rambaut, 2010) followed by a vector edition for publishing. The support values for Bayesian Posterior Probability (PP) were considered moderate when ≥ 0.75 to < 0.95 PP and strong when ≥ 0.95 PP.

179 con

Taxonomic treatment

Protologues, type specimens, historical and general collections were examined and compared for all names/species treated here. The nomenclatural decisions were made under the recommendations of the International Code of Nomenclature for algae, fungi, and plants (Turland et al., 2018). The general terminology used in the taxon descriptions follows Simpson (2006). Specific terminology for section *Lasiogyne* follows previous works on the group (Rossine et al., 2023) with additions from Pinto-Silva et al. (2023) for trichomes.

Distribution maps, conservation status, and ecological niche modeling

Commented [BP12]: I'm a bit confused here. The previous sentence states ".. no incongruences were found after visual examination of the two topologies..", so why then is this followed by "Incongruences between topologies were considered..."?

Geographic coordinates were obtained from the labels of herbarium specimens. When only locality was available, without coordinates, the approximate coordinates were estimated using Google Earth (https://earth.google.com/web/). Distribution maps were produced in the Quantum Geographic Information System (QGIS) version 3.4.13 (QGIS Development Team, 2020), using cartographic data from OpenDataSoft (https://public.opendatasoft.com) for World administrative boundaries, and the DryFlor network (http://www.dryflor.info/) for SDTFs areas. The preliminary assessments of the species conservation status were based on the guidelines from the IUCN Red List Categories and Criteria v.15.1 (IUCN, 2022) under B criteria, applying the estimated values of Extent of Occurrence (EOO) and Area of Occupancy (AOO), obtained from GeoCAT (http://geocat.kew.org/), following Bachman et al. (2011).

Using the same set of georeferenced records cited above, we modeled the ecological niche of each putative species using MaxEnt v.3.4.3 (Phillips et al., 2017). Default parameters were used with 10,000 background points (pseudoabsence). Replicates were performed 3 times. The variables used (Table 3) had 30 arc-sec resolution and were: bioclimatic from WorldClim (Fick & Hijmans 2017), elevation from the Shuttle Radar Topographic Mission (NASA – SRTM), and soil quality (Fischer et al., 2008). The area under the curve (AUC) was used to evaluate the projections.

RESULTS

Phylogenetic relationships within the Croton anomalus group

The data matrix included 74 sequences, of which 30 were newly generated in this study (15 of ITS and 15 of *trnL-F*). Voucher information and GenBank numbers for all the sequences used in the analyses are included in Table 1. The data alignment needed few manual adjustments after the automatic alignment. The aligned matrices of ITS and *trnL-F* are provided in Supplementary File 1 and Supplementary File 2. The ITS region had more variable characters and parsimony informative sites than *trnL-F* (Table 4). Summary statistics for each data matrix are shown in Table 4. Both nuclear ITS and plastid *trnL-F* analyses recovered similar topologies on the resulting trees, and no incongruences were found between the two datasets regarding the lineages formed by *C. anomalus*, *C. blanchetianus*, and *C. jacobinensis* (phylogenetic trees not shown, see Supplementary material, Figs. S1, S2).

We conducted the most representative phylogenetic analysis of *C.* sect. *Lasiogyne* to date, even if it only includes 10 of the more than 40 species currently assigned to the section (Fig. 1), The phylogenetic reconstruction of the concatenated dataset recovers section *Lasiogyne* as a monophyletic lineage, with strong support (PP = 1; Fig. 1). Similarly, the topology of the backbone of the genus, including 10 other sections (Fig. 1), is in agreement with previous phylogenetic analysis at the genus level (Berry et al., 2005; van Ee et al., 2011). Section *Julocroton* was recovered as the sister clade of section *Lasiogyne*, and section *Heptallon* as sister of the former two with high support (PP = 1; Fig. 1).

The phylogenetic position of *C. anomalus* and *C. blanchetianus* as members of section *Lasiogyne* was demonstrated here for the first time (Fig. 1). The concatenated (ITS + trnLF)

Deleted: g

Deleted: b

Formatted: Highlight

Deleted: ITS

Deleted: thus

Deleted: of

Formatted: Highlight

Commented [BP13]: It seems the same trees are cited here twice, in two different ways...

Formatted: Strikethrough, Highlight

Commented [BP14]: This is more Discussion than Results.

Formatted: Highlight

Deleted: this

Formatted: Highlight

Formatted: Strikethrough

Commented [BP15]: Again, this is more Discussion than Results

Formatted: Strikethrough

phylogenetic analysis recovered the specimens of *C. blanchetianus* and *C. jacobinensis* as separate, monophyletic lineages with high support (PP = 1), both independent of *C. anomalus* (Fig. 1).

Croton acapulcensis and *C. stahelianus* were recovered in a highly supported clade along with all the *C. anomalus* specimens (1 PP; Fig. 1).

Taxonomic treatment

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

Croton anomalus Pittier, J. Wash. Acad. Sci. 20: 4. 1930. – TYPE: VENEZUELA. Lara: Los Rastrojos, between Sarare and Barquisimeto, in bushes, 10°04′29′′′ N, 69°15′31′′′W, Apr. 9, 1925, H. Pittier 11757 (lectotype, designated here: A barcode A00047223!; isolectotypes: US barcode US00109497!, VEN barcode VEN6465!). Figures 2-3.

=Croton acapulcensis Mart. Gord. & J. Jiménez Ram., Anales Inst. Biol. Univ. Nac. Autón. México, Bot. 60: 40. 1990. – TYPE: MEXICO. Guerrero: Acapulco, Parque Nacional "El Veladero", El Mirador, 16°45'00" N, 99°43'55" W, alt. 350 m, Jul. 6, 1985, *N. Noriega Acosta 599* (holotype: FCME [not seen]; isotype: MEXU barcode MEXU00511553!), *syn. nov.*

=Croton chiapensis Lundell, Contr. Univ. Michigan Herb. 7: 18. 1942. TYPE: MEXICO. Chiapas: Escuintla, 160 m, Jul. 1938, E. Matuda 2614 (holotype: MICH barcode MICH1191498!; isotypes: LL barcodes LL00371633! and LL00208230!, F barcode F0056020F!, A barcode A00047090!, MEXU barcode MEXU00078286!, EAP barcode EAP112178!), syn nov.

=Croton stahelianus Lanj., Euphorb. Surinam, 17. 1931. –Type: SURINAME. Upper Koetarie R., 16 Oct. 1926, B.W. n. 7002 = Stahel n. 611 (lectotype: U [not seen]; isolectotypes: IAN barcode IAN049296!, K barcodes K000254419! And K000254420!, RB barcode RB00538444!, US barcode US00109761!), syn nov.

Monoecious shrubs, 0.7–2 m, latex not reported, monopodial ramification, branches brown, glabrescent, young ones greenish to yellowish with stellate trichomes. Leaves alternate; stipules linear to narrowly lanceolate, $5-8.8 \times 1-1.4$ mm, persistent, trichomes stellate; petiole 0.5-2 cm, trichomes stellate to multiradiate; leaf blade oval to elliptic, membranous, $2.5-9.5 \times 1-4$ cm, base rounded to cordate, margins entire, irregularly sinuate to slightly serrate, apex acuminate, discolorous, adaxial surface dark green with stellate-porrect trichomes, abaxial surface light green to yellowish with stellate trichomes, venation eucamptodromous to brochidodromous, 4–7 secondary veins, curved, ascendant. Inflorescences terminal or axillary, unisexual staminate or bisexual, 1–5 cm long, trichomes stellate to multiradiate, peduncle 3–5 mm, congested, 3–7 pistillate flowers per inflorescence; bracts linear or 3-lobed, 5-6 mm long, margins entire, apex acuminate, trichomes stellate-porrect, 1 bract per cymule, persistent. Staminate flowers with pedicels 3-4 mm, sepals yellowish, oval, 2×1 mm, margins entire, apex acute, united only near the base, trichomes stellate, indument dense externally and absent to sparse internally; petals white to yellowish, oblong, 3 × 1 mm, margins entire, apex rounded, trichomes simple; stamens (11-)14-17(-18), filaments ca. 2 mm, anthers elliptic, 1 × 0.5 mm; nectary disk rounded, unlobed, trichomes simple. Pistillate flowers with pedicels 2-5 mm (up to 10 mm in fruit), sepals 5-6 (7), equal to slightly unequal in size (when having 7 sepals), light green to whitish externally, dark green internally, oval to widely oval, $2.5-5 \times 1.5-2.9$, margins entire, apex acute, reduplicate lateral and vertically, ½ united at the base, trichomes stellate and stellate-porrect, indument dense externally

Deleted: d Deleted: and Deleted: 4 Jan. Commented [BP16]: "in bushes" (not brushes) Commented [BP17]: These coordiates do not appear on the labels nor in the protologue. I assume these were added by the authors, and if so, they should appear in brackets [...] Deleted: r Formatted: Highlight Deleted: altitude Deleted: Deleted: A Commented [BP18]: You can find the specimens from https://data.biodiversity.nl/naturalis/specimen/U.12 [1] Deleted: holo Formatted: Font: Italic Formatted: Highlight Formatted: Highlight Formatted: Highlight Commented [BP20]: Protologue of C. stahelianu [... [2]] Formatted: Highlight Deleted: d Commented [BP21]: 6-8 in protologue of C. Formatted: Highlight Commented [BP22]: ? a peduncle of the inflores Formatted: Highlight Commented [BP23]: How many males approxima Commented [BP24]: 3-4 mm in protologue of C. Formatted: Highlight Deleted: ca. 3 mm Deleted: 0. Deleted: 0. Deleted: c Deleted: c Deleted: when

Deleted: ing

Deleted: seven

Deleted: e

Deleted: presenting

Deleted:

Deleted: ca.

Deleted: ate

Deleted: se

Deleted: surface

Deleted: trichomes

Formatted: Strikethrough

Commented [BP25]: 4-fid is already multifid

Deleted: with cream to greyish macules,

Commented [BP26]: Any dimensions for the caruncle?

Commented [BP27]: what does "reas" mean, same as

and sparse internally; petals absent or rarely with vestigial petals, yellowish, linear to narrowly lanceolate, ca. 2–2.3 × 0.2–0.4 mm, margins entire, apex acuminate, trichomes simple; ovary globose, 2.1–2.8 mm diam., trichomes stellate-porrect; styles 3. ascendant, 4-fid-to multifid, free, with a total of 12–32(–48) stigmatic tips, trichomes stellate-porrect; nectary disk 5-lobed, lobes rounded, glabrescent. Capsules light green to yellowish, yellow when dry, globose, 3.5–8 mm diam., unlobed, surface hispid, with stellate-porrect trichomes, slightly 3-lobed to unlobed; columella ca. 4 mm, flattened, without prominent lobes; seeds brown to blackish, widely ovoid to slightly globoid, 3.6–4 × 3.2–3.6 mm, smooth to slightly papillate, with cream to greyish blotches, caruncle reniform.

Additional Specimens Examined

296

297 298

299

300

301

302

303

304

305

306

307 308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332 333

334

335

336

BOLIVIA. Santa Cruz: Cordillera, al sur de Bañados del Izozog, Estancia Toborochi y Cerro Toborochi, 18°49'52"S, 62°00'55"W, 520 m, 09.I.1993, fr., G. Navarro 1728 (USZ); reas, Cerro Toborochi, 10-12 km por brecha abandonada al SE de Estancia Toborochi, fr., 5-15.I.1993, I.C. Vargas et al. 1915 (WIS, USZ). BRAZIL. Bahia: Côcos, estrada Côcos - Feira da Mata, 14°15'12"S, 44°22'14"W, 484 m, fl., 09.I.2008, R.F. Souza-Silva et al. 283 (HUEFS). Feira de Santana, Distrito de Ipuaçu, 12º13'58"S, 39º04'35"W, 230 m, 05.V.2005, fr., A.P.L. Couto et al. 58 (HUEFS, HUESB). Morpará, estrada para Morpará, Beira do Rio Paramirim., 11º43'50"S, 43°13'39"W, 396 m, fl., 15.XII.2007, A.A. Conceição 2642 (HUEFS). Ceará: Apuiarés, Triângulo marmelheiro rasteiro, 03°94'88.89"S, 39°43'17.01"W, 09.III.2008, fr., Otilio & Chaguinha s.n. (EAC42392, HUEFS138379). Paramoti, Fazenda São João, fl., fr., 17.X.1986, E. Nunes s.n. (EAC0014856, HUEFS111097). Pentecoste, Fazenda Experimental Vale do Curu, fl., 29.I.2015, J.C. Alves s.n. (EAC57488). Espírito Santo: Santa Teresa, São João de Petrópolis, Escola Agrotécnica Federal, 19°43'20"S, 40°38'48"W, 180 m. 11.XII.1985, fr., H.Q. Boudete Fernandes 1720 (SP). Colatina, Rio Doce, 19°31'48"S, 40°42'02"W, 40 m, 13.II.2019, fr., F. Marinero (MBM). Minas Gerais: Jaíba, 47 km da cidade, estrada de chão sentido cidade, 15°14'13"S, 43°20'10"W, 577 m. 22.IV.2006, D.S. Carneiro-Torres 731 (HUEFS, HUESB, SP). Mato Verde, margens da rodovia Mato Verde – Monte Azul (BR 122), 8 km ao norte da cidade, 15°20'07"S, 42°53'25"W, 520 m, 31.III.2004, fr., J.R. Pirani et al. 5372 (HUEFS, SP, SPF). Piauí: Caracol,

área de entorno de lagoa, 09°12'48"S, 43°29'50"W, 533 m, 22.XI.2010, fl., E. Melo et al. 8775

(HUEFS). Castelo do Piauí, cerrado entre Castelo do Piauí e São João da Serra, 05°38'29"S,

41°72'09"W, 414 m, 26.XI.1980, fr., A. Fernandes et al. S.n. (EAC9077). São Jõao do Piauí,

descida da Serra da Capivara, próximo a São Raimundo Nonato (10-11 km de Várzea Grande),

08°47'26"S, 42°28'41"W, 562 m, 05.XII.1971, fl., D. Andrade-Lima et al. 1187 (HUEFS, IPA,

MAC). MEXICO. Jalisco: La Huerta, Rancho Cuixmala and environs. Teopa, a ranch along the

Arroyo Cajones near the Puerto Vallarta – Barra de Navida Hwy, 19°25'45"N, 104°59'30"W, 30 m, 11.IX.1991, fl., *E.J. Lott et al.* 3726 (WIS); reas, Chamela, Dry deciduous forest, 17.VIII.1991,

fr., A. Gentry & L. Woodruff 74399 (DAV); reas, Estación de Investigación, Expirmentación y

Breedlove 50502 (CAS). VENEZUELA. Carabobo: Road from San Diego to Valencia,

Difusión Chamela, 02.IX.1981, J.A.S. Magallanes 3098 (DAV, MEXU). Chiapas: Cintalapa, thorn

forest near and northwest of Cintalapa along road to colonia Francisco I. Madero, 29.III.1981, D.E.

ibid. in Latin? Deleted: a.s.l Formatted: Highlight Deleted: a.s.l. Deleted: a.s.l. Deleted: a.s.l. Deleted: a.s.l. Deleted: .a.s.l Deleted: a.s.l. Deleted: a.s.l. Deleted: a.s.l. Deleted: a.s.l. Deleted: a.s.l. Deleted: a.s.l. Formatted: Highlight Deleted: Deleted: i" Formatted: Highlight

358 XIII.1941, J. Saer 816 (US). Guárico: El Valle and Laguna de Espino, 18.VI.1891, Eggers 13143 359 (US). Maracay: Aragua, Puerto Escondido, on dry slopes, 10°21'48"N, 67°34'25"W, 1505 m. 360 18.IV.1930, H.F. Pittier 13421 (F). Mérida: Entre Estanques y Puente de la Victoria, 700 m, 361 7.V.1953, Bernardi 498 (P). Miranda: Caracas, reforested hills of the Caracas Botanical Gardens, 362 980 m. 10.XI.1974, P.E. Berry 99 (VEN); reas, bosque decidio secundario y perturbado entre las 363 quebradas afluentes al Río Guarita, al sur del Cementerio Monumental del Este Miranda, 1000 m. 364 17.VIII.1975, fr., J.A. Steyermark & P.E. Berry 112078 (F, NY, VEN); reas, J.A. Steyermark & 365 P.E. Berry 112082 (NY); Guaicaipuro, Sector Begonia-Caobal, Parcela Loma Brisa. Bosque seco 366 en laderas que dan al NE, 10°16'36.57" N, 66°56'30.27" W, 785 m, 23.VII.2009, R. Riina & C. 367 Reyes 1843 (MA). Monagas: Roadside between Caicara and San Felix, 7.VI.1967, fl., R.A. Purcell 368 9220 (NY). SURINAME. Sipaliwini: lower slopes of Voltzberg, 04°58'19.64"N, 56°16'54.8"W, 369 150-175 m, 02.VIII.1979, fl., fr., G.L. Webster 24136 (DAV, TEX, WIS); ibid, Central Suriname 370 Nature Reserve, Voltzberg top I, 13.IV.2002, fr., A. Gröger et al. 1300 (U); ibid, op helling van 371 Voltzberg, op humus re op rease rots, Boven-Coppename, 22.IX.1954, fl., A.M.W. Mennega 62 372 (U).

DISCUSSION

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

Distribution, phenology, conservation status, and ecological niche modeling

Croton anomalus was found here to be a widely distributed species in the Neotropics, occurring in Brazil, Bolivia, Mexico, Venezuela, and Suriname (Fig. 4, Table 6). This broader geographic range is the result of the synonymization of C. acapulcensis, C. chiapensis and C. stahelianus, as well as by the numerous new records recently discovered in Bolivia and throughout Brazil. Records of C. anomalus were found primarily in SDTFs, and secondarily in transition areas of STDF with Savanna (Cerrado phytogeographic domain) or Tropical Rainforest (Fig. 4). The species altitudinal range varied from 30 to 1100 m. Herbarium labels reported the species growing in sandy and clayey soils, and rocky outcrops. Croton anomalus was most frequently found inside forest vegetation, growing in shadow and glade zones. Although largely restricted to the Caatinga, C. blanchetianus and C. jacobinensis were widely distributed, occurring in open areas (C. blanchetianus) or transition zones to montane and Atlantic forests (C. jacobinensis) (Fig. 5, Table 6). Croton anomalus has been recorded flowering and fruiting in January (Bolivia), April (Venezuela), June to August (Mexico, Venezuela, Suriname), and from October to May (Brazil).

Based on its EOO of 13,865,766.407 km² and AOO of 124,000 km², we tentatively classify. *C. anomalus* as Least Concern (LC). The species is found in protected areas, including national parks, in Venezuela, Bolivia, and Brazil.

The distribution modeling for all species demonstrated **good performance** in our analysis (Table 5). Annual precipitation (bio12) was an important bioclimatic variable for the distribution of the three species (Table 5). The suitability of areas of occurrence (Fig. 6) followed the distribution pattern of the SDTFs for *C. anomalus* and overlapped with the majority of the areas where the three species have been recorded (only Caatinga Dry Forest for *C. blanchetianus* and *C. jacobinensis*). Nonetheless, the Caribbean region and the coastal region of Ecuador and Peru were indicated as

Deleted:

Formatted: Strikethrough, Highlight

Formatted: Highlight

Formatted: Strikethrough, Highlight

Deleted: a.s.l

Formatted: Highlight

Commented [BP28]: See https://m-digital-assets.fieldmuseum.org/681/066/V0191858F.jpg; This specimen is from Distrito Federal (now probably Estado Vargas), and both the elevation and coordinates given here are wrong – neither appears on the label, so be careful assigning these after the fact!

Formatted: Highlight

Deleted: a.s.l.

Formatted: Highlight

Deleted: B

Deleted: a.s.l.

Formatted: Highlight

Deleted: a.s.l

Commented [BP29]: Out of order alphabetically, shouldn't this come before Venezuela?

Commented [BP30]: Why "ibid" here, "reas" elsewhere?

Deleted: a.s.l.

Formatted: Highlight

Commented [BP31]: You need to be specific in using "disjunctively" – which of the different possible disjunctions are you referring to here? And shouldn't something more be said to the effect that the spec

Deleted: found

Deleted: n

Deleted: disjunctively

Deleted: rarely

Deleted: of elevation

Commented [BP32]: Not very informative... and

Commented [BP33]: You mean shade? And what

Commented [BF33]. Too mean shade: And wha

Deleted: ied

Formatted: Highlight

Commented [BP34]: This sounds pretty vague - ... [10]

Formatted: Highlight

Commented [BP35]: I have no idea how you co ... [11]

Formatted: Highlight

moderately suitable areas for *C. anomalus* (Fig. 6), as was northern South America for *C. jacobinensis*, even if there are no records of these species in those areas, respectively (Figs. 4, 5).

Discussion

Typification and new synonyms

Croton anomalus was described based on a collection of Henri Pittier, from Venezuela, with Pittier 11757 indicated as the type material. The author (Pittier, 1930) did not mention where the type material was deposited nor if there was only one specimen (automatically to be considered the holotype [Art. 9.1 of the ICN, Turland et al., 2018]). Three specimens of Pittier 11757 are found in A, US, and VEN, containing matching information with the protologue (locality and date), and are considered syntypes (Art. 9.6 of the ICN, Turland et al., 2018). Since the name C. anomalus was published based on syntypes, one of them must be designated as lectotype (Art. 9.11 and 9.12 of the ICN, Turland et al., 2018). The specimen in best conditions is A00047223 and it is designated here as the lectotype of C. anomalus.

Croton stahelianus was described by Lanjouw (1931) based on specimens from Suriname collected by Gerold Stahel n. 611. According to the Euphorbiaceae of Suriname index (Lanjouw, 1931), when 'B.W.' is indicated in the protologue it means that the material was collected by the 'Boschwesen' (Forestry Department), with which Stahel was involved at the time (Stafleu & Cowan, 1985). So, B.W. n. 7002 represents the collection Stahel n. 611, as indicated in the labels of the type material. Lanjouw (1931) did not assign C. stahelianus to any infrageneric group, but described the species as related to C. doctoris S.Moore and C. flavens var. flavens Müll.Arg., both representatives of C. section Adenophylli Griseb. (van Ee et al., 2011). Both aforementioned species can be distinguished from C. stahelianus for their acropetiolar glands, bifid styles and columella with prominent apex (all absent in C. stahelianus). The morphological characteristics included in the protologue of C. stahelianus that are discordant with those of C. anomalus are: axillary or terminal inflorescences (vs. only terminal on C. anomalus), 11 stamens (vs. 16 on C. anomalus), pistillate flowers with 5 sepals of glabrous inner surface (vs. 6–7 sepals of villous inner surface on C. anomalus).

The original description of *Croton chiapensis* is somewhat controversial because some character states described by Lundell (1942) are not seen in the type collection, namely staminate flower of 6 sepals and 6 petals, and pistillate flowers with bifid styles. The staminate flowers are pentamerous and the styles are 4-fid in the few open pistillate flowers (the inflorescences mostly have pistillate flower buds). Also, other authors have indicated 5 sepals and petals for the staminate flowers (Pittier, 1930; Gordillo & Ramírez, 1990). Based on this, we believe that Lundell (1942) confused the number of sepals in staminate flowers with those in the pistillate ones (5–6) when describing *C. chiapensis*. The only character in *C. chiapensis* differing from *C. anomalus*, based on the protologue, is the presence of 18 stamens (vs. 14–17 in *C. anomalus*).

Gordillo & Ramírez (1990), in their description of *C. acapulcensis*, mentioned only *C. alamosanus* Rose as <u>its</u> closest relative. These authors used traits of leaves, stipules, and flowers to

Deleted: F.

Commented [BP36]: No, not really true – the information given in the protologue does not appear in the labels – date yes, but specifics on the locality do not show up on the labels (between Sarare and Barquisimeto...)

Formatted: Highlight

Deleted: d

Deleted: a little

Formatted: Highlight

Deleted: currently

Deleted: present

Deleted: and

Commented [BP37]: Not really true – based on the protologue, chiapensis has bifid styles, and that differs from C. anomalus as well.

Deleted: the

differentiate the two species. However, our revision of the protologues and type specimens of species in *Croton* sect. *Lasiogyne* shows a strong morphological resemblance between *C. acapulcensis* and *C. anomalus* from Venezuela, prompting us to further study and compare these two taxa. According to the protologues, *C. anomalus* differs from *C. acapulcensis* by the ovate to ovate-lanceolate leaf blades (*vs.* oblong-lanceolate in *C. acapulcensis*), irregularly sinuate or dentate to serrate leaf margins (*vs.* entire), linear to lanceolate stipules (*vs.* subulate), inflorescences of 5–7 cm long (*vs.* 2.5–5 cm long), 16 stamens (*vs.* 14–15), and the pistillate flowers with 6 to sometimes 7 sepals (*vs.* 5 or sometimes 6 in *C. acapulcensis*) (Table 6).

After examining numerous specimens from Brazil, Bolivia, Mexico, Suriname and Venezuela (including the type collections), we determine that the characteristics listed above overlap within and among populations. Character states such as entire or serrate leaf blade margins are found on the same individual (even on the same branch). The presence of pistillate flowers with 7 sepals (probably responsible for the epithet "anomalus") is a rare state for this species, although not so abnormal in the genus, where even 10 sepals have been observed in *C. sincorensis* Mart. ex Müll. Arg. (Sodré et al., 2019). Thus, we find weak morphological evidence to sustain *C. acapulcensis*, *C. anomalus*, *C. chiapensis* and *C. stahelianus* as four distinct taxonomic entities. As shown by the morphological data, *C. acapulcensis* and *C. stahelianus* are better positioned as synonyms of *C. anomalus*. Additionally, the phylogenetic reconstruction also agrees with the morphological evidence where the two specimens of *C. acapulcensis* and *C. stahelianus* are intermingled in a highly supported clade along with *C. anomalus* specimens representing most of the geographic range of the species (Fig. 1).

Systematics of the Croton anomalus group

The phylogenetic position of all the sampled species is congruent with previous phylogenetic analyses of *Croton* (Berry et al., 2005; van Ee et al., 2011; Arevalo et al., 2017). In contrast with van Ee et al. (2011), section *Lasiogyne* is strongly supported as monophyletic (PP = 0.95; Fig. 1), being more closely related to section *Julocroton* rather than to section *Heptallon* as in van Ee et al. (2011). The latter section is in turn sister to the clade formed by sections *Lasiogyne* and *Julocroton* (Fig. 1). However, the monophyletic status of section *Lasiogyne* remains to be confirmed by the inclusion of a more comprehensive taxon sampling in future phylogenetic analyses (Y. Rossine et al., unpublished results), Our results are in accordance with previous taxonomic classifications based on morphology, which placed *C. anomalus* and *C. blanchetianu* as members of *C.* sect. *Lasiogyne* (e.g. van Ee et al., 2011; Rossine et al., 2023).

Based on our taxon sampling and emended morphological description (capsules and seeds were not described in the protologues of *C. anomalus* and *C. acapulcensis* [Pittier, 1930; Gordillo & Ramírez, 1990]), *C. anomalus* is definitely a member of section *Lasiogyne*, as indicated by van Ee et al. (2011) based on morphology alone. This species is characterized by a stellate indumentum, lack of nectaries in leaves, bracts and sepals, reduplicate-valvate pistillate sepals, and multifid styles, all character states that are widely present in section *Lasiogyne* (van Ee et al. 2011; Rossine et al., 2023).

Deleted: several

Deleted: determined

Deleted: The phylogenetic position and relationships of *C. anomalus* and *C. blanchetianus* are reported here for the first time....

Deleted: these two species

Commented [BP38]: Check other instances in paper - emended or amended?

Deleted: extensive

Formatted: Highlight

Deleted:

Deleted: All these

Deleted: in all species of

Morphologically, *C. anomalus* is most similar to *C. blanchetianus* (Fig. 6; Table 6). The two species share the monopodial branching, lanceolate stipules, general aspects of the leaves, such as the stellate indumentum (making the leaf blade light green on the abaxial surface), ovate leaf blades, entire leaf margins, eucamptodromous venation, multifid styles, and smooth seeds. Both species are morphologically variable and plastic, showing some overlap in character states among species. For example, the shared lanceolate stipules can also be reniform or auriculate and the ovate leaf blade can also be cordiform in *C. blanchetianus* (Rossine et al., 2023). On the other hand, the entire leaf margin can be irregularly sinuate to slightly serrate, and the venation can be brochidodromous instead of eucamptodromous (the most frequent state) in *C. anomalus*.

The comparison between *C. anomalus* and *C. jacobinensis* (Fig. 6, Table 6) shows that they share the lanceolate stipules, coloration of leaf blades, eucamptodromous venation, linear to 3-lobate bracts, 14–17 stamens, and free styles (Rossine et al., 2023). Again, some character states can be polymorphic in *C. anomalus* (brochidodromous venation). The main differences between *C. anomalus*, *C. blanchetianus*, and *C. jacobinensis* are indicated in Table 6.

Species distributions and ecological niche modeling

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Croton anomalus is rediscovered here after more than 90 years of its publication.

Conversely, *C. blanchetianus* and *C. jacobinensis* are well-documented species, particularly in terms of their geographic distribution, as described in studies dealing with *Croton* of the Brazilian Caatinga dry forest region (*e.g.* Silva et al., 2010; Oliveira et al., 2023; Rossine et al., 2023).

Our results show that C. anomalus represents a new species record for the Brazilian Caatinga dry forest and other dry areas of Brazil in the transition zones with the Tropical Rainforest biome (state of Espírito Santo), or with the Savanna biome (state of Piauí). We also report the first records of C. anomalus for Bolivia, where it occurs in the Gran Chaco region, in fragments of the Chiquitano dry forest. Populations of C. anomalus from Mexico, Suriname, and Venezuela, are also found in SDTFs. According to DRYFLOR (2016), the Caatinga shares less than a hundred species with Mexico's SDTFs, and about 241-409 species with northern South American nuclei of SDTFs. Croton anomalus can now be added to that group of species shared between distant dry forest areas across the Neotropics. Recent biogeographic studies feature dry forest plant groups, but with species restricted to one or two dry forest areas across the Neotropics (e.g., Lavor et al., 2019; Silva et al., 2020; Hurbath et al., 2021; Pezzini et al., 2021). When including species present in more than two distinct fragments, they often present corridors connecting those regions (Colli-Silva et al., 2021). Conducting studies including taxa that are widespread across most or all the Neotropical dry forests would be interesting to complete our knowledge regarding the floristic assembly and configuration of the SDTF biome in evolutionary time. However, as our study shows, insufficient taxonomic knowledge is probably hiding widely distributed dry forest species, such as

The only dry forest nuclei where *C. anomalus* has not yet been found is the coastal regions of Ecuador and Peru, which are indicated as potential areas of occurrence in our analyses (Fig. 7-A). The Andean Mountains can act as a geographic barrier for the dispersal of species from the surrounding areas (Hazzi et al., 2018). However, given the presence of *C. anomalus* in Bolivia and

Deleted: re

Deleted: the Brazilian

Commented [BP39]: But you show in the figures that this varies, not always entire..

Formatted: Highlight

Formatted: Highlight

Commented [BP40]: This statement makes little sense to me - how can "shared lanceolate stipules" also be reniform or auriculate, and the ovate leaf blade can also be cordiform at the same time? Please, rephrase more clearly and logically.

Formatted: Highlight

Commented [BP41]: These are all very generalized traits that are shared by many other species of Croton, so they do not strike me as being that useful in aligning the two species as closely related.

Formatted: Highlight

Commented [BP42]: I think that you absolutely should include a key here to distinguish members of the "Croton anomalus" group. Even though you have Table 6, a key would help even more to understand how to differentiate the three species.

Commented [BP43]: Absolutely not so! It was widely recognized in Venezuela, for instance, in Hokche et al. 2008, as being pretty widespread in the country. So there is certainly no "rediscovery" here after 90 years. Instead, what you have done is to recircumscribe the species to recognize it more broadly in other areas.

Formatted: Highlight

Commented [BP44]: That sounds like a very broad range of species numbers, especially the part of "about 241-409 species". Please investigate further...

Formatted: Highlight

Deleted: n

Formatted: Highlight

Formatted: Highlight

Commented [BP46]: But what about other areas such as southeastern Peru (not coastal areas), which (... [13]

Formatted: Highlight

Deleted: Range

Formatted: Highlight

Commented [BP47]: You need to be more specific than that. The Andes run north-south, so in most ... [14]

Brazil, it is possible that its absence in Ecuador and Peru is just a matter of lack of botanical information, once both areas are both plant biodiversity hotspots and darkspots (places predicted to contain undescribed and not yet recorded species) (Ondo et al., 2024). There could also be specimens of *C. anomalus* from Ecuador and Peru waiting in herbaria backlogs to be processed and identified. Interestingly, the Caribbean region also shows favorable climatic conditions for the occurrence of *C. anomalus* but so far collections records are absent from all Caribbean islands (Fig. 7-A). One possible explanation for this pattern is that *C. anomalus* has not yet been able to disperse overseas.

As in the *C. anomalus* case, the niche analysis of *C. jacobinensis* shows suitable areas in northern South America (coastal areas of Venezuela and Ecuador) where that species is not present (Fig. 7-C). The Amazon rainforest could represent a strong geographic and climatic barrier for the south-to-north direction of dispersal of *C. jacobinensis*, since populations of this species are found in all other suitable areas south of the Amazon region.

Niche modeling of past periods, biogeographic and phylogeographic studies are necessary to understand the age of colonization events and dispersal trajectories, as well as ecological and climatic processes leading to the nowadays distribution of *C. anomalus* and other plant lineages occurring in fragments of SDTFs across the Americas.

Impacts of misidentification in herbaria

The case of *Croton anomalus* highlights the importance of updating taxonomic revisions in the Neotropics, especially in plant groups specialized in fragmented biomes as the SDTF. It also highlights the effect of specimen misidentifications on biogeographic knowledge and consequently on species conservation assessments. Many specimens of *Croton anomalus* were found in Brazil misidentified as *C. sonderianus* (a synonym of *C. jacobinensis*) or as *C. blanchetianus*. In fact, these species are very similar morphologically, but we have demonstrated that there are morphological characters distinguishing them. These can be used to correctly identify species, even those with populations overlapping in the same biogeographic region such as the Brazilian Caatinga. *Croton anomalus* was also found in Bolivia and Suriname identified only at the genus level (as *Croton* sp.), whereas in Mexico it has been identified as *C. acapulcensis* and *C. chiapensis* (proposed here as new synonyms) and as *C. stahelianus* in Suriname (also a new synonym proposed here).

Brazil is the country where most of the taxonomic problems related to *C. anomalus* have arisen. The use of the name *C. sonderianus* to treat specimens of *C. anomalus*, *C. blanchetianus* and *C. jacobinensis* seems to have been popularized since the 1980s due to misidentifications by Euphorbiaceae experts, which were followed subsequently by local taxonomists. Also, it seemed that the specimens were not identified by comparing them with the protologue and type collection of *C. sonderianus*. Specimens of either *C. blanchetianus* or *C. jacobinensis* have been routinely identified as *C. sonderianus* in herbaria over the decades. The lack of knowledge of the presence of *Croton anomalus* in Brazil has caused divergence even among *Croton* experts due to the close morphological affinities among these species in question. The synonymization of *C. sonderianus* under *C. jacobinensis* (Gomes *et al.* (2010) is reinforced here, and we recommend avoiding the use

Commented [BP48]: But you are kind of contradicting yourself here, playing off the idea of the Andes as a biogeographic barrier vs. the idea of the species being undersampled. I think based on our knowledge of Croton specimens, that it really does not occur in coastal Ecuador/Peru.

Formatted: Highlight

Commented [BP49]: I think this is a very weak argument – then how did anomalus get to Mexico if not by either some long-distance dispersal, or some other island-hopping mechanism.

Deleted: C

Deleted: C. jacobinensis

Commented [BP50]: This paragraph not very informative – just remove?

Commented [BP51]: I don't think that particular plant groups "specialize in fragmented biomes...". They occur there, or may be restricted there, just as others occur in rain forest or cerrado vegetation.

Formatted: Highlight

Deleted: '

Deleted: some

Deleted: made

Deleted: consecutively

Deleted: to

of *C. sonderianus* other than as a synonym of *C. jacobinensis*. The various sources of evidence shown here support the recognition of three species in the *Croton anomalus* group: *C. anomalus*, *C. blanchetianus*, and *C. jacobinensis*.

Acknowledgements

We appreciate all the permissions, loans, and information shared by the curators and staff of all the cited herbaria. We thank Regina Carvalho for the line drawings; Daniela Carneiro-Torres and Wesley Sá for reviewing a previous version of this manuscript. We thank the Real Jardín Botánico systematics laboratory for the infrastructure, Mónica García-Gallo Pinto for her help with DNA extractions and Yolanda Turégano Carrasco for helping with the phylogenetic analyses and lab issues. Photographs were kindly allowed by their authors (cited in figure captions). A special thanks to Hermann Redies (in memoriam) for sharing information and pictures of Croton anomalus in its natural habitat, leading us to the development of this research paper.

Financial support

The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES (processes PROEX 88887.637810/2021-00 and PrInt 88887.837805/2023-00), and International Association for Plant Taxonomy (IAPT) granted YR. Fundação de Apoio à Pesquisa do Estado de São Paulo – FAPESP (process numbers 2021/08545-2 and 2022/12597-0), and Universidade de São Paulo through Programa de Apoio a Novos Docentes (process 22.1.09345.01.2) granted to OLMS. RR. was supported by grant PID2019-108109GB-I00 from MCIN/AEI/10.13039/501100011033/ and FEDER "A way to make Europe".

References

Arévalo, R., van Ee, B.W., Riina, R., Berry, P.E., & Wiedenhoeft, A. C. 2017. Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using *Croton* (Euphorbiaceae) as a model system. *Annals of Botany* 119(4): 563-579.

Bachman, S.J., Moat, A.W., Hil, J.T. & Scott, B. 2011. Supporting red list threat assessments with GeoCAT: Geospatial conservation assessment tool. *ZooKeys* 150: 117–126. DOI 10.3897/zookeys.150.2109.

Berry, P.E., Hipp, A.L., Wurdack, K.J., van Ee, B. & Riina, R. 2005. Molecular phylogenetics of the giant genus *Croton* and tribe Crotoneae (Euphorbiaceae sensu stricto) using ITS and *trnL-trnF* DNA sequence data. *American Journal of Botany* 92: 1520–1534. DOI 10.3732/ajb.92.9.1520.

BFG - The Brazil Flora Group. 2021. Brazilian Flora 2020: Leveraging the power of a collaborative scientific network. *Taxon* **71**: 178-198. DOI 10.1002/tax.12640.

Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K.L., Meier, R., Winker, K., Ingram, K.K. & Das, I. 2007. Cryptic species as a window on diversity and conservation. *Trends in Ecology & Evolution* 22: 148–155. DOI 10.1016/j.tree.2006.11.004.

Deleted:

Formatted: Font: Italic

Formatted: Font: Italic

Deleted: mentioned

Commented [BP52]: Explain – what infrastructure are you talking about? Laboratory facilities? Library?...

Formatted: Highlight

645 Carneiro-Torres, D.S. 2009. Diversidade de Croton L. (Euphorbiaceae) no bioma Caatinga. Ph.D. 646 thesis. Universidade Estadual de Feira de Santana. Feira de Santana, Bahia, Brasil.

647

648

649

650

651

652

653

654

657 658

659

660 661

662

663 664

665

666

667

668

669 670

671

- Caruzo, M.B.R., Secco, R.S., Medeiros, D., Riina, R., Torres, D.S.C., Santos, R.F.D., Pereira, A.P.N., Rossine, Y., Lima, L.R., Muniz Filho, E. & Valduga, E. 2020. Croton in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Available at https://floradobrasil.jbrj.gov.br/FB17497.
- Carrión, J.F., Santos, F.A., Cordeiro, I. & Amorim, A.M. 2022. Bahiana, a new Euphorbiaceae (Acalyphoideae) genus from seasonally dry forest in northeastern Brazil, corroborated by molecular and morphological evidence. Taxon 71(6): 1196-1213.
- Colli-Silva, M., Pirani, J.R., & Zizka, A. 2021. Disjunct plant species in South American 655 seasonally dry tropical forests responded differently to past climatic fluctuations. Frontiers 656 of Biogeography 13(1): e49882.
 - Craveiro, A.A., Silveira, E.R., Braz Filho, R. & Mascarenhas, I.P. 1981. Sonderianin, a furanoid diterpene from Croton sonderianus. Phytochemistry 20: 852-854. DOI 10.1016/0031-9422(81)85198-9.
 - Craveiro, A.A. & Silveira, E.R. 1982. Two cleistanthane type diterpenes from Croton sonderianus. Phytochemistry 21(10): 2571–2574. DOI 10.1016/0031-9422(82)85259-X.
 - Dayrat, B. 2005. Towards integrative taxonomy. Biological Journal of the Linnean Society, 85(3): 407-417. DOI 10.1111/j.1095-8312.2005.00503.x.
 - Doyle, J. 1991. DNA protocols for plants. In Molecular techniques in taxonomy (pp. 283-293). Berlin, Heidelberg: Springer Berlin Heidelberg.
 - DryFlor. 2016. Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353(6306): 1383-1387. DOI 10.1126/science.aaf5080.
 - Escribano-Avila, G., Cervera, L., Ordóñez-Delgado, L., Jara-Guerrero, A., Amador, L., Paladines, B., Briceño, J., Parés-Jiménez, V., Lizcano, D.J., Duncan, D., & Iván Espinosa, C. (2017). Biodiversity patterns and ecological processes in Neotropical dry forest: the need to connect research and management for long-term conservation. Neotropical Biodiversity **3(1)**: 107-116. DOI 10.1080/23766808.2017.1298495.
- Feeley, K. 2015. Are we filling the data void? An assessment of the amount and extent of plant 673 674 collection records and census data available for tropical South America. PLoS One 10(4): 675 e0125629. DOI 10.1371/journal.pone.0125629.
- 676 Fernandes, M.F., Cardoso, D. & Queiroz, L.P. 2020. An updated plant checklist of the Brazilian 677 Caatinga seasonally dry forests and woodlands reveals high species richness and endemism. 678 Journal of Arid environments 174: 104079. DOI 10.1016/j.jaridenv.2019.104079.
- 679 Ferreira, D.M.C., Palma-Silva, C., Néri, J., Medeiros, M.C.M.P.D., Pinangé, D.S., Benko-Iseppon, A.M. & Louzada, R.B. 2021. Population genetic structure and species 680 681 delimitation in the Cryptanthus zonatus complex (Bromeliaceae). Botanical Journal of the Linnean Society 196(1): 123-140. DOI 10.1093/botlinnean/boaa094. 682
- 683 Fick, S.E. & Hijmans, R.J. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for 684 global land areas. International journal of climatology 37(12): 4302-4315. DOI 685 10.1002/joc.5086.

- Fischer, G., Nachtergaele, F., Prieler, S., Teixeira, E., Tóth, G., Van Velthuizen, H.T., Verelst,
 L. & Wiberg, D. 2008. Global agro-ecological zones assessment for agriculture (GAEZ
 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy, 10.
- Frajman, B., Záveská, E., Gamisch, A., Moser, T., Steppe Consortium, & Schönswetter, P.
 2019. Integrating phylogenomics, phylogenetics, morphometrics, relative genome size and ecological niche modelling disentangles the diversification of Eurasian *Euphorbia* seguieriana sl (Euphorbiaceae). *Molecular Phylogenetics and Evolution* 134: 238-252. DOI 10.1016/j.ympev.2018.10.046.
- Gomes, A.P.S., Sales, M.F. & Melo, A.L. 2010. Novidades taxonômicas em *Croton* sect.
 Argyroglossum Baill. e C. sect. *Lasiogyne* Klotzsch (Crotonoideae-Euphorbiaceae). Acta
 Botanica Brasilica 24: 905–908. DOI 10.1590/S0102-33062010000400004.
- Gordillo, M.J.M. & Ramírez, J.J. 1990. Dos especies nuevas de Croton (Euphorbiaceae) de
 Guerrero, México. Anales del Instituto de Biológia de la Universidad Nacional Autónoma
 de México. Série Botánica 60: 40.
 - Govaerts RD, Frodin G, Radcliffe-Smith A. 2000. World checklist and bibliography of Euphorbiaceae. Kew: The Royal Botanic Gardens.

700

701

711 712

- Guimarães, K.L., Rosso, J.J., Souza, M.F., Díaz de Astarloa, J.M. & Rodrigues, L.R. 2021.
 Integrative taxonomy reveals disjunct distribution and first record of *Hoplias misionera* (Characiformes: Erythrinidae) in the Amazon River basin: morphological, DNA barcoding
 and cytogenetic considerations. *Neotropical Ichthyology* 19: e200110. DOI 10.1590/1982 0224-2020-0110.
- Hazzi, N.A., Moreno, J.S., Ortiz-Movliav, C. & Palacio, R.D. 2018. Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes.
 Proceedings of the National Academy of Sciences 115(31): 7985-7990. DOI 10.1073/pnas.1803908115.
 - Hurbath, F., Stubbs, R. L., Cordeiro, I. & Cellinese, N. 2021. Biogeography of succulent spurges from Brazilian Seasonally Dry Tropical Forest (SDTF). *Taxon* 70(1): 153-169. <u>DOI</u> 10.1002/tax.12423.
- 714 IUCN International Union for Conservation of Nature. 2022. Guidelines for Using the IUCN
 715 Red List Categories and Criteria v.15.1.
- 716 Lanjouw, J. 1931. The Euphorbiaceae of Surinam. J. H. de Bussy, Amsterdam.
- Lavor, P., Calvente, A., Versieux, L. M., & Sanmartin, I. 2019. Bayesian spatio-temporal
 reconstruction reveals rapid diversification and Pleistocene range expansion in the
 widespread columnar cactus *Pilosocereus*. *Journal of Biogeography* 46(1): 238-250. DOI
 10.1111/jbi.13481.
- 721 Lôbo, D., Tabarelli, M. & Leal, I.R. 2011. Relocation of *Croton sonderianus* (Euphorbiaceae)
 722 seeds by *Pheidole fallax* Mayr (Formicidae): a case of post-dispersal seed protection by
 723 ants?. *Neotropical entomology* 40: 440–444. DOI 10.1590/S1519-566X2011000400005.
- Lucena, M.F.D.A. & Sales, M.F. 2006. Tricomas foliares em espécies de Croton L.
 (Crotonoideae-Euphorbiaceae). Rodriguésia 57: 11-25. DOI 10.1590/2175-7860200657102.

- 726 Lundell, C.L. 1942. Studies of American Spermatophytes II. Contributions from the University of 727 Michigan Herbarium, no 7. University of Michigan Press. 56pp.
- 728 Medina, R., Lara, F., Goffinet, B., Garilleti, R. & Mazimpaka, V. 2012. Integrative taxonomy 729 successfully resolves the pseudo-cryptic complex of the disjunct epiphytic moss 730 Orthotrichum consimile s.l. (Orthotrichaceae). Taxon 61(6): 1180-1198. DOI 10.1002/tax.616002. 731
- 732 Moonlight, P.W., Baldaszti, L., Cardoso, D., Elliott, A., Särkinen, T. and Knapp, S., 2024. Twenty years of big plant genera. Proceedings of the Royal Society B 291: 20240702. DOI 733 734 10.1098/rspb.2024.0702.
- 735 Moonlight, P.W., Banda-r, K., Phillips, O.L., Dexter, K.G., Pennington, R.T., Baker, T.R., de 736 Lima, H.C., Fajardo, L., González-M., R., Linares-Palomino, R., Lloyd, J., 737 Nascimento, M., Prado, D., Quintana, C., Riina, R., Rodríguez M., G.M., Villela, D.M., 738 Aquino, A.C.M.M., Arroyo, L., Bezerra, C., Brunello, A.T., Brienen, R.J.W., Cardoso, 739 D., Chao, K.J., Coutinho, I.A.C., Cunha, J., Domingues, T., Santo, M.M.E., 740 Feldpausch, T.R., Fernandes, M.F., Goodwin, Z.A., Jiménez, E.M., Levesley, A., 741 Lopez-Toledo, L., Marimon, B., Miatto, R.C., Mizushima, M., Monteagudo, A., 742 Moura, M.S.B., Murakami, A., Neves, D., Chequín, R.N., Oliveira, T.C.S., Oliveira, 743 E.A., Queiroz, L.P., Pilon, A., Ramos, D.M., Reynel, C., Rodrigues, P.M.S., Santos, R., 744 Särkinen, T., Silva, V.F., Souza, R.M.S., Vasquez, R., Veenendaal, E. 2020. Expanding 745 tropical forest monitoring into Dry Forests: The DryFlor protocol for permanent plots.
- 747 Oliveira, J., Rossine, Y., Ribeiro, R. & Athiê-Souza S. 2023. Croton L.(Crotonoideae, 748 Euphorbiaceae) in a protected area in Northeast Brazil. Biota Neotropica 23: e20231506. DOI 10.1590/1676-0611-BN-2023-1506. 749

Plants, People, Planet 3(3): 295-300. DOI 10.1002/ppp3.10112.

746

750 751

752

753

- Ondo, I., Dhanjal-Adams, K.L., Pironon, S., Silvestro, D., Colli-Silva, M., Deklerck, V., Grace, O.M., Monro, A.K., Nicolson, N., Walker, B., & Antonelli, A. 2024. Plant diversity darkspots for global collection priorities. New Phytologist 243(7): online early view. DOI 10.1111/nph.20024.
- 754 Padial, J.M., Miralles, A., De La Riva, I. & Vences, M. 2010. The integrative future of 755 taxonomy. Frontiers in Zoology 7: 1-14. DOI 10.1186/1742-9994-7-16.
- 756 Pezzini, F.F., Dexter, K.G., Carvalho-Sobrinho, J.G., Kidner, C.A., Nicholls, J.A., Queiroz, L.P., & Pennington, R.T. 2020. Phylogeny and biogeography of Ceiba Mill. (Malvaceae, 758 Bombacoideae). Frontiers of Biogeography 13(2): e49226. DOI 10.21425/F5FBG49226.
- 759 Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E. & Blair, M. 2017. Opening the black 760 box: an open-source release of Maxent. Ecography 40: 887-893. DOI 10.1111/ecog.03049.
- Pinto-Silva, N.P., Souza, K.F., Silva, O.L.M., Vitarelli, N.C., Pereira, A.P.N., Soares, D.A., 761 Sodré, R.C., Medeiros, D., Caruzo, M.B.R., Carneiro-Torres, D.S., Silva, M.J., Meira, 762 R.M.S.A., Riina, R. & Feio, A.C. 2023. Trichomes in the megadiverse genus Croton 763 764 (Euphorbiaceae): a revised classification, identification parameters and standardized 765 terminology. Botanical Journal of the Linnean Society 203: 37-49. DOI 766 10.1093/botlinnean/boad008.

- Pittier, H. 1930. Botanical notes on, and descriptions of, new and old species of Venezuelan
 plants.— III. Old and new species of Euphorbiaceae. *Journal of the Washington Academy of Sciences* 20: 4-12.
- QGIS Development Team. 2020. QGiS Geographic information System. Open Source Geospatial
 Foundation Project. Available at: http://qgis.osgeo.org. Accessed September 2022.
- Queiroz, L.P., Cardoso, D., Fernandes, M.F., & Moro, M.F. 2017. Diversity and evolution of flowering plants of the Caatinga domain. *In:* Silva, J.C.; Leal, I. & Tabareli, M. (Eds),
 Caatinga: the Largest Tropical Dry Forest Region in South America. Springer, Cham. Pp. 23–63.
- Quintana, C., Girardello, M., Barfod, A. S., & Balslev, H. 2017. Diversity patterns,
 environmental drivers and changes in vegetation composition in dry inter-Andean valleys.
 Journal of Plant Ecology 10(3): 461-475. DOI 10.1093/jpe/rtw036.
- 779 Rambaut, A. & Drummond, A.J. 2007. Tracer. Version 1.6. Available at:
 780 http://beast.bio.ed.ac.uk/Tracer. Accessed 28 September 2023.

781

782

783

796

797

- Riina, R., Berry, P.E., Secco, R.D.S., Meier, W., & Caruzo, M.B.R. 2018. Reassessment of *Croton* sect. *Cleodora* (Euphorbiaceae) Points to the Amazon Basin as Its Main Center of Diversity 1. *Annals of the Missouri Botanical Garden* 103(3): 330-349.
- Riina, R., van Ee, B.W., Caruzo, M.B.R., Carneiro-Torres, D.S., Santos, R.F. & Berry, P.E.
 2021. The Neotropical *Croton* sect. *Geiseleria* (Euphorbiaceae): Classification Update,
 Phylogenetic Framework, and Seven New Species from South America. *Annals of the Missouri Botanical Garden* 106: 111-166. DOI 10.3417/2021669.
- Rossine, Y., Melo, A.L., Athiê-Souza, S.M. & Sales, M.F. 2023. Understanding the
 "Marmeleiros": a taxonomic treatment of *Croton* sect. *Lasiogyne* (Euphorbiaceae) in Brazil.
 Phytotaxa 584(4): 219-250. DOI 10.11646/phytotaxa.584.4.1.
- Salvador-Montoya, C.A., Robledo, G.L., Cardoso, D., Borba-Silva, M.A., Fernandes, M.,
 Drechsler-Santos, E.R. 2015. Phellinus piptadeniae (Hymenochaetales:
 Hymenochaetaceae): taxonomy and host range of a species with disjunct distribution in
 South American seasonally dry forests. Plant Systematics and Evolution 301: 1887-1896.
 DOI 10.1007/s00606-015-1201-6.
 - Sassone, A.B., Arroyo, M.T., Arroyo-Leuenberger, S.C., García, N. & Román, M.J. 2021. One species with a disjunct distribution or two with convergent evolution? Taxonomy of two South American garlies. *Taxon* 70(4): 842-853. DOI 10.1002/tax.12500.
- Silva, J.S., Sales, M.F., Gomes, A.P.S. & Carneiro-Torres, D.S. 2010. Sinopse das espécies de
 Croton L. (Euphorbiaceae) no estado de Pernambuco, Brasil. Acta Botanica Brasilica 24:
 441-453. DOI 10.1590/S0102-33062010000200015.
- Silva, O.L.M., Riina, R., & Cordeiro, I. 2020. Phylogeny and biogeography of *Astraea* with new insights into the evolutionary history of Crotoneae (Euphorbiaceae). *Molecular Phylogenetics and Evolution* 145: 106738. DOI 10.1016/j.ympev.2020.106738.
- 805 Simpson, M.G. 2006. Plant Systematics, 3rd edition. Elsevier Academic Press. 590 pp.

- 806 Sodré, R.C., Sales, M.F., Berry, P.E. & Silva, M.J. 2019. Taxonomic synopsis of Croton section 807 Geiseleria (Euphorbiaceae) in Brazil, including description of a new species. Phytotaxa 808 417: 1-105. DOI 10.11646/phytotaxa.417.1.1.
 - Souza, A.V.V.D., Britto, D., Santos, U.S., Bispo, L.P., Turatti, I.C.C., Lopes, N.P., Oliveira, A.P., & Almeida, J.R.G.S. 2017. Influence of season, drying temperature and extraction time on the yield and chemical composition of 'marmeleiro' (Croton sonderianus) essential oil. Journal of Essential Oil Research, 29: 76-84. DOI 10.1080/10412905.2016.1178183.
 - Stafleu, F.A. & Cowan, R.S. 1985. Taxonomic Literature: A Selective Guide to Botanical Publications and Collections with Dates, Commentaries and Types (Second edition, vol. 5). Bohn, Scheltema, and Holkema.
- 816 Swofford, D.L. 2003. PAUP 4.0a169. Phylogenetic Analysis Using Parsimony. Version 4. Sinauer 817 Associates, Sunderland, Massachusetts.
- 818 Tapiquén, C.E.P. 2020. Geografía, SIG y Cartografía Digital Shape. Available at 819 http://www.efrainmaps.es. Downloaded in 05 Oct. 2023.
 - Thiers, B. 2024, continuously updated. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. http://sweetgum.nybg.org/science/ih/ last accessed 09 July 2024.
 - Turland, N.J., Wiersema, J.H., Barrie, F.R., Greuter, W., Hawksworth, D.L., Herendeen, P.S., Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold, K., May, T.W., McNeill, J., Monro, A.M., Prado, J., Price, M.J. & Smith, G.F. (eds.) 2018: International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159. Glashütten: Koeltz Botanical Books. DOI 10.12705/Code.2018.
 - van Ee, B.W., Riina, R. & Berry, P.E. 2011. A revised infrageneric classification and molecular phylogeny of New World Croton (Euphorbiaceae). Taxon 60: 791-823. DOI 10.1002/tax.603013.
- 832 Wurdack, K.J. 2023. A new, disjunct species of Bahiana (Euphorbiaceae, Acalyphoideae): 833 Phytogeographic connections between the seasonally dry tropical forests of Peru and Brazil, 834 and a review of spinescence in the family. PhytoKeys 219: 121-144. DOI 835 10.3897/phytokeys.219.95872.

Figure Legends

809

810

811

812

813

814 815

820

821

822

823

824

825

826

827

828

829

830 831

836 837

838

839 Figure 1 Phylogenetic reconstruction of the Croton anomalus group illustrated by a majority 840 consensus tree obtained from the Bayesian analysis of combined ITS and trnL-F datasets. Names in bold are those newly generated in this study. 841

Figure 2 Main morphological features of Croton anomalus. (A) flowering branch, showing the 842 843 monopodial branching, disposition of stipules and leaves, and terminal inflorescences. (B-E) leaf 844 blades, (B) leaf blade with entire margins; (C) stellate-porrect trichomes found on petioles; (D) leaf 845 blade with slightly serrate margins, showing the detail of a section of the margin; (E) leaf blade

846 with irregularly erose margins; (F) narrowly lanceolate stipule, (G) linear (right) and 3-lobed (left)

Deleted: s

Deleted: ed

Formatted: Font: Italic

Deleted: distinguishing

Figure 3 Croton anomalus general aspects. (A) shrubby habit; (B) general aspect of leaves and inflorescences, (C) stipules, (D) adaxial and (E) abaxial view of the leaf blade; (F) early anthesis of the inflorescences with only pistillate flowers open; (G) branches with unigexual staminate inflorescences; (H) bisexual inflorescence; (I) infructescence and (J) capsule showing the stellate porrect trichomes, and (K) ventral and dorsal views of a seed. Photographs: A, B, F, G (C. Dominguez-Rodríguez); C, D (J. Mota); H (E. S. Velásquez Arellanes), reproduced with permission. Beleted: s Deleted: s Deleted: s Deleted: s Deleted: http://www.cfrainmate.com/display/blue circles. new records. New records from Mexico and Suriname are based on the synonymizations proposed here. Shapefiles were downloaded from http://www.cfrainmaps.es. (Americas) and http://www.dryflor.info/data/datasets (Dry Forests). Figure 5 Distribution maps of C. blanchetianus and C. jacobinensis in the Caatinga phytogeographic domain. Records outside the Caatinga are in transition zones with Atlantic Forest. Figure 6 Point-wise mean of the modeled distribution for species recognized in the Croton anomalus group. (A) Croton anomalus, (B) C. blanchetianus, and (C) C. jacobinensis. Figure 7 Morphological comparison of species in the Croton anomalus group. (A-C) Croton anomalus, (D-F) C. blanchetianus, and (G-I) C. jacobinensis. Figure 7 Morphological comparison of species in the Croton anomalus group. (A-C) Croton anomalus, (B) C. blanchetianus, and (G-I) C. jacobinensis. Figure 8 Distribution for species in the Croton anomalus group. (A-C) Croton anomalus, (B) C. blanchetianus, and (G-I) C. jacobinensis. Figure 7 Morphological comparison of species in the Croton anomalus group. (A-C) Croton anomalus, (B) C. blanchetianus, and (G-I) C. jacobinensis. Figure 8 Distribution for species in the Croton anomalus group. (A-C) Croton anomalus, (B) C. blanchetianus, and (G-I) C. jacobinensis. Figure 7 Morphological comparison of species in the Croton	850 β51 852 853	bracts; (H) staminate flower; (I-J) pistillate flower, (I) pistillate flower with 6 sepals; (J) pistillate flower with 5 sepals, showing a detail of the trichomes on the stigmatic tips; (K) capsule, showing a detail of the inner surface of the sepals with stellate and stellate-porrect trichomes; (L) ventral (left) and dorsal (right) view of a seed.		Deleted: the Deleted: the
blue circles: new records. New records from Mexico and Suriname are based on the synonymizations proposed here. Shapefiles were downloaded from http://www.efrainmaps.es . 62 blue circles: new records. New records from Mexico and Suriname are based on the synonymizations proposed here. Shapefiles were downloaded from http://www.efrainmaps.es . 63 blue circles: new records. New records from Mexico and Suriname are based on the synonymizations proposed here. Shapefiles were downloaded from http://www.efrainmaps.es . 64 (Americas) and http://www.efrainmaps.es . 65 Figure 5 Distribution maps of C. blanchetianus and C. jacobinensis in the Caatinga phytogeographic domain. Records outside the Caatinga are in transition zones with Atlantic Forest. 66 Figure 6 Point-wise mean of the modeled distribution for species recognized in the Croton anomalus group. (A) Croton anomalus, (B) C. blanchetianus, and (C) C. jacobinensis. 67 Figure 7 Morphological comparison of species in the Croton anomalus group. (A-C) Croton anomalus, (D-F) C. blanchetianus, and (G-I) C. jacobinensis. (A, D, G) General aspects of leaves and in Placescences, (B, E, H) pistillate flowers of five and (B) six sepals, and (C, F, I) capsular 68 Commented [BP54]: I only see five sepals in (B)!	855 856 857 858 859	inflorescences, (C) stipules, (D) adaxial and (E) abaxial view of the leaf blade; (F) early anthesis of the inflorescences with only pistillate flowers open; (G) branches with unisexual staminate inflorescences; (H) bisexual inflorescence; (I) infructescence and (J) capsule showing the stellate porrect trichomes, and (K) ventral and dorsal views of a seed. Photographs: A, B, F, G (C. Domínguez-Rodríguez); C, D (J. Mota); H (E. S. Velásquez Arellanes), reproduced with		Deleted: s
Figure 5 Distribution maps of <i>C. blanchetianus</i> and <i>C. jacobinensis</i> in the Caatinga phytogeographic domain. Records outside the Caatinga are in transition zones with Atlantic Forest. Figure 6 Point-wise mean of the modeled distribution for species recognized in the <i>Croton anomalus</i> group. (A) <i>Croton anomalus</i> , (B) <i>C. blanchetianus</i> , and (C) <i>C. jacobinensis</i> . Figure 7 Morphological comparison of species in the <i>Croton anomalus</i> group. (A-C) <i>Croton anomalus</i> , (D-F) <i>C. blanchetianus</i> , and (G-I) <i>C. jacobinensis</i> . (A, D, G) General aspects of leaves and inflorescences, (B, E, H) pistillate flowers of five and (B) six sepals, and (C, F, I) capsular Forit Plate works: A P (A, S. Farinc Cotta) proposition in the Caatinga are in transition zones with Atlantic Forest. Formatted: Font: Italic Commented [BP54]: I only see five sepals in (B)!	862 863	blue circles: new records. New records from Mexico and Suriname are based on the synonymizations proposed here. Shapefiles were downloaded from http://www.efrainmaps.es .		Commented [BP53]: I think this is misleading – it's fine to indicate the type locality of C. anomalus, but it is not the only "previouslky known record." And the blue
anomalus group. (A) Croton anomalus, (B) C. blanchetianus, and (C) C. jacobinensis. Figure 7 Morphological comparison of species in the Croton anomalus group. (A-C) Croton anomalus, (D-F) C. blanchetianus, and (G-I) C. jacobinensis. (A, D, G) General aspects of leaves and in Plantacences, (B, E, H) pisting Gotting and (B) six sepals, and (C, F, I) capsular Commented [BP54]: I only see five sepals in (B)!		5		
anomalus, (D-F) C. blanchetianus, and (G-I) C. jacobinensis. (A, D, G) General aspects of leaves and inflorescences, (B, E, H) pistillate flowers of five and (B) six sepals, and (C, F, I) capsular Commented [BP54]: I only see five sepals in (B)!				Formatted: Font: Italic
	870 871	anomalus, (D-F) C. blanchetianus, and (G-I) C. jacobinensis. (A, D, G) General aspects of leaves and inflorescences, (B, E, H) pistillate flowers of five and (B) six sepals, and (C, F, I) capsular	<u></u>	Commented [BP54]: I only see five sepals in (B)!

1 TABLE 6. Morphological comparison between the species included in the Croton anomalus group.

Character	Croton anomalus	Croton blanchetianus	Croton jacobinensis (=C. sonderianus)	
Indumentum	Stellate to multiradiate, porrect	Stellate, sublepidote to lepidote	Stellate to multiradiate	
Leaf blade	Ovate to elliptic, margins entire, irregularly sinuate or slightly serrate	Ovate to ovate-lanceolate, elliptic, margins entire	Cordiform, margins entire	Deleted: 0 Deleted: C
Venation	Eucamptodromous to brochidodromous	Eucamptodromous	Actinodromous	
Inflorescences	Unissexual staminate or bisexual (1–5 cm long)	Bisexual (3–12 cm long)	Bişexual (5–18 cm long)	Deleted: s Deleted: s Deleted: s
Number of pistillate sepals	5-6 (7)	5	5	
Inner surface of pistillate sepals	Sparsely hirsute, trichomes stellate, porrect	Glabrous	Densely velutine, trichomes stellate to multiradiate	
Styles	Ascending, free	Ascending, united forming a small column	Patent or ascending, free (rare slightly united at the base)	Deleted: is
Capsule trichomes	Stellate to multiradiate, porrect	Lepidote, rare <u>ly</u> sublepidote	Stellate to multiradiate	
Seed surface	Smooth, slightly papillose	Smooth	Rugose	
Geographic distribution	SDTFs of Bolivia, Brazil, Mexico, Suriname and Venezuela	Caatinga SDTF (Brazil)	Caatinga SDTF (Brazil)	