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ABSTRACT
Background. The advancement of sequencing technology has led to a rapid increase
in the amount of DNA and protein sequence data; consequently, the size of genomic
and proteomic databases is constantly growing. As a result, database searches need to
be continually updated to account for the new data being added. However, contin-
ually re-searching the entire existing dataset wastes resources. Incremental database
search can address this problem.
Methods. One recently introduced incremental search method is iBlast, which wraps
the BLAST sequence search method with an algorithm to reuse previously processed
data and thereby increase search efficiency. The iBlast wrapper, however, must be
generalized to support better performing DNA/protein sequence search methods
that have been developed, namely MMseqs2 and Diamond. To address this need, we
propose iSeqsSearch, which extends iBlast by incorporating support for MMseqs2
(iMMseqs2) and Diamond (iDiamond), thereby providing a more generalized
and broadly effective incremental search framework. Moreover, the previously
published iBlast wrapper has to be revised to be more robust and usable by the general
community.
Results. iMMseqs2 and iDiamond, which apply the incremental approach, perform
nearly identical to MMseqs2 and Diamond. Notably, when comparing ranking
comparison methods such as the Pearson correlation, we observe a high concordance
of over 0.9, indicating similar results. Moreover, in some cases, our incremental
approach, iSeqsSearch, which extends the iBlast merge function to iMMseqs2 and
iDiamond, provides more hits compared to the conventional MMseqs2 and Diamond
methods.
Conclusion. The incremental approach using iMMseqs2 and iDiamond demonstrates
efficiency in terms of reusing previously processed data while maintaining high ac-
curacy and concordance in search results. This method can reduce resource waste in
continually growing genomic and proteomic database searches. The sample codes
and data are available at GitHub and Zenodo (https://github.com/EESI/Incremental-
Protein-Search; DOI: 10.5281/zenodo.14675319).
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INTRODUCTION
In the realm of genomic and proteomic research, the advent of high-throughput sequenc-
ing technologies has precipitated an unprecedented expansion in the volume of nucleic
acid and amino acid sequence data. This deluge of data has, in turn, necessitated the
development and expansion of comprehensive sequence databases to catalog and make
sense of the wealth of information. However, the traditional approach of exhaustive
search within ever-growing sequence data repositories poses a significant challenge in
terms of computational efficiency and resource allocation.

This rapid accumulation of sequence data is not merely a technical challenge but a fun-
damental shift in our ability to understand biological systems. The exponential growth of
databases like UniProtKB/Swiss-Prot, which now contain millions of protein sequences,
offers new opportunities for discovering evolutionary relationships, predicting protein
structures, and understanding molecular functions. However, the growth of databases
also presents substantial computational hurdles that demand innovative solutions.

We recently introduced Naïve Bayes taxonomic classifier (NBC++), an incremental
taxonomic Naïve Bayes classifier that updates its database with new data (Zhao, Cristian &
Rosen, 2020). The novelty of NBC++ is that the classifier does not need to be completely
retrained when the training data is expanded. However, in the original NBC++, queries
previously classified using the database results are not automatically updated with this
incremental approach. Subsequently, an incremental search method using BLAST, known
as iBlast by Dash et al. (2021), was developed. This method automatically updates hit
results by merging the previous hits with the results retrieved when searched against
new data. Therefore, iBlast reduces the computational burden by leveraging previously
processed data within the BLAST framework (Altschul et al., 1990). Despite its utility, the
advent of more advanced and efficient search tools such as Diamond (Buchfink, Reuter &
Drost, 2021) and MMseqs2 (Steinegger & Söding, 2017), which offer superior performance
in handling large-scale sequence data, has rendered the traditional BLAST-based methods
less optimal. BLAST is generally slower than modern tools, such as MMSeqs2 and
Diamond, and may identify fewer hits under certain search conditions, particularly for
large and complex datasets. An important observation is that none of these modern tools,
including BLAST, MMseqs2, and Diamond, natively support incremental search. For
BLAST, incremental functionality is only available through a standalone module called
iBlast, which is restricted to handling XML outputs. Similarly, MMseqs2 provides incre-
mental capabilities exclusively for clustering tasks, highlighting a key limitation: while
these tools excel in speed and scalability, they lack built-in support for incremental search.

Here we introduce a methodology that integrates the incremental search principle of
iBlast with the advanced search capabilities of Diamond and MMseqs2. (Note that while
MMSeqs2 has an incremental clustering ability (Steinegger & Söding, 2017; Nguyen et al.,
2023), we focus on incremental search). Our approach is designed to enhance search
efficiency in the face of continuously expanding sequence databases, thereby ensuring
sustainable and effective data management and retrieval. Specifically, we present a novel
approach that allows for rapid integration of new sequences into existing search results,
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without the need for complete database re-scans. Furthermore, we introduce an extended
file format, m8e, which enhances the standard m8 format by incorporating critical meta-
data.

MATERIALS & METHODS
We propose an incremental method, called iSeqSearch, for efficient protein sequence
similarity searches, utilizing the Scope Astral protein database provided by Fox, Brenner
& Chandonia (2014) as our benchmark dataset. This study implements an incremental
method that utilizes Spouge statistics by Park et al. (2012). Our approach is similar
to the iBlast method which maintains accuracy while improving the processing speed
for new data. The Spouge statistics method used in this study is directly adopted from
the iBlast framework. The novelty of iSeqSearch lies in applying iBlast’s incremental
approach, including its use of Spouge statistics, to MMseqs2 and Diamond. By integrating
Spouge statistics with these widely used modern tools, we enable the benefits of iBlast’s
incremental process in new contexts. Our method employs a two-step process: (1) initial
database search using BLAST, MMseqs2, or Diamond with their default parameters, and
(2) incremental updates using our custom algorithm based on Spouge statistics. Portions
of this text were previously published as part of a preprint (https://www.biorxiv.org/
content/10.1101/2024.09.09.612094v1).

Instead of complex XML files, iSeqSearch uses the m8 or m8e file format for data
merging, simplifying the conversion and integration of these files. The m8 format
contains tab-separated fields: query id, subject id, percent identity, alignment length,
mismatches, gap opens, q. start, q. end, s. start, s. end, evalue, and bit score. Additionally,
we propose an extended version of the m8 file format, herein named m8e (m8 extension).
The m8e format includes the total length of the database within the file, adding an extra
line at the beginning of each file to store this information. We note that the m8e format
is identical to the m8 file format, except for the first line. The first line explicitly specifies
the length of the database, eliminating the need to recalculate the database length during
the merging function. This simple addition offers an outsized advantage of improved
processing speed. The database length is crucial for accurate E-value calculations during
incremental updates, and the m8e format allows for the automatic integration of two
result files. The m8e format also eliminates the need for separate measurements of
DB length, saving time and improving overall efficiency. The Supplementary Material
provides examples to illustrate the new format.

We implemented our method in Python (version 3.8+), utilizing the Biopython
library (version 1.79) for sequence handling and NumPy (version 1.21.0) for numerical
operations. To evaluate the incremental method’s performance, we conducted compre-
hensive benchmarks comparing our incremental approach against full database searches.
To do so, we divided the Scope Astral protein database into 10 batches, with the first
batch stratified based on protein class and the remaining nine batches all stratified in
the same way as the first batch (and then the individual batches randomly partitioned).
The first batch serves as the query set, while the remaining nine batches were sequentially
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Figure 1 The left graph (A) illustrates increasing e-values and hit counts when comparing incremental
methods (iSeqsSearch including iBlastp, iMMseqs2, iDiamond) to non-incremental methods (Blastp,
MMseqs2, Diamond). The x-axis represents the ratio of the number of hits identified by incremental
methods to those identified by non-incremental methods. The y-axis represents the ratio of the av-
erage e-values obtained by incremental methods to those obtained by non-incremental methods. In
this graph, only e-values below 1e-5 are considered. The right graph (B) compares the processing times
of these methods, showing that incremental methods are faster. Additional Batch for Merge refers to
a scenario in incremental search where the database size increases progressively with the addition of
multiple batches. The value of Additional Batch for Merge determines the number of batches con-
tributing to the database size.

Full-size DOI: 10.7717/peerj.19171/fig-1

combined to form increasingly larger search databases, simulating database growth
over time. Experiments used Blastp, MMseqs2, and DIAMOND with default settings
unless otherwise stated (changing the hits returned under an e-value threshold and also
extending the limit of the returned hits beyond the default limits), only adjusting the
number of threads to 32 for consistency. For each database size (from 2 to 10 batches),
we performed both full and incremental searches.

RESULTS
Our analysis of the incremental method for protein sequence searches revealed improve-
ments in both search effectiveness and computational efficiency compared to traditional
non-incremental methods.

Figure 1A illustrates two primary findings: First, iSeqsSearch methods including
iBlastp, iMMseqs2, and iDiamond consistently yield higher hit counts compared to
their non-incremental counterparts (Blastp, MMseqs2, Diamond). This increase in hits
suggests that incremental methods are capable of identifying additional potential matches,
thereby enhancing the comprehensiveness of the search. The e-values of the additional
hits fall within acceptable ranges, ensuring that these matches are statistically significant
and biologically plausible. Second, the processing times for incremental methods are
substantially reduced, as shown in the right graph of Fig. 1B. This time efficiency is crucial
for large-scale protein database searches where computational resources are often a
limiting factor.
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It is important to note that while incremental methods result in increased hit counts,
they also lead to larger e-values (Fig. 1A). Although larger e-values typically indicate less
statistically significant matches, we only include hits below the commonly used threshold
of 1e-5 in Fig. 1A). According to Choudhuri (2014), e-values less than and equal to 1e-5
are typical thresholds for judging homology, suggesting that additional matches, while
potentially less statistically confident, may still be biologically relevant and worthy of
consideration in many applications. As a case study, we examine one type of protein for
hits that have the ‘‘correct’’/‘‘right’’ protein family label vs. hits that have incorrect labels.
This case study demonstrates the utility of incremental methods in identifying biologically
meaningful hits across diverse protein folds, highlighting their adaptability to larger
datasets. Further details of the case study, including the dataset and analysis methodology,
are provided in the Supplementary Material. In general, the incremental version had
higher e-values than the non-incremental version. For instance, while Blast and MMSeqs2
(Figs. S22 and S23) returned more hits per batch, the hits returned by Diamond (Fig. S24)
were fewer but had much lower e-values, indicating greater statistical significance.

When incremental batch learning is used, there is a reduction in queries with no
hits. This reduction further underscores the effectiveness of the incremental method
in improving search coverage. As shown in Fig. 15 in the Supplementary Materials, the
proportion of queries with zero hits using incremental methods is lower than that of non-
incremental methods, illustrating the potential capability of incremental methods to cover
a broader range of relevant sequences.

To assess the quality and consistency of search results, we show the results of several
correlation measures. While there are several similarity measures available, including the
Pearson correlation coefficient (Pearson, 1896), the Kendall tau correlation coefficient
(Kendall, 1938), and the Spearman correlation coefficient (Spearman, 1904), here we
utilize: (1) Pearson to assess the concordance of the search methods in their e-value
and (2) Kendall tau to assess the concordance between the methods’ rankings. Figure 2
presents heatmaps of the Kendall tau and Pearson correlation coefficients for each search
method. The Pearson correlation heatmap reveals high similarity between incremental
and non-incremental methods in the e-values of overlapping hits between methods,
with iBlastp and Blastp achieving a score of 0.97, while iMMseqs2 and MMseqs2, as well
as iDiamond and Diamond, show perfect correlation with a score of 1.0 (Fig. 2). These
high correlation scores indicate that incremental methods maintain a quality of results
comparable to their non-incremental counterparts.

The Kendall tau correlation, which measures rank consistency, also shows strong
agreement between incremental and non-incremental methods. iBlastp and Blastp score
0.57, while iDiamond and Diamond achieve 0.48, both higher than other method pairs
(Fig. 2). These results suggest that the incremental methods preserve the ranking of hits,
an important factor in sequence similarity searches.

The quality of the searches is also measured using log discounted cumulative gain
by Järvelin & Kekäläinen (2002) and normalized discounted cumulative gain byWang
et al. (2013). We evaluate the search quality using log discounted cumulative gain
(DCG). The consistent increase in log DCG values across incremental methods indicates
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Figure 2 Heatmaps representing the Kendall tau correlation coefficient and the Pearson correlation
coefficient for each search result. In the searches, 1/10th of the Scope Astral protein dataset is used as the
query, and the remaining dataset is used as the database. The database is randomly sampled and divided
into nine equal batches, which are then incrementally combined based on the search results of the fully
combined dataset. In the Pearson correlation heatmap, iBlastp and Blastp achieve a score of 0.97, which
was the highest among the methods, while iMMseqs2 and MMseqs2, as well as diamond and Diamond,
show a score of 1.0, indicating the highest similarity. For the Kendall tau correlation, iBlastp and Blastp
scored 0.93, which was higher than the other methods, and iDiamond and Diamond also had a higher
score of 0.85. These observations indicate that iBlastp and Blastp, iMMseqs2 and MMseqs2, and iDiamond
and Diamond all provide similar results.

Full-size DOI: 10.7717/peerj.19171/fig-2

improvements in the quality of search results, reflecting both better ranking of hits and
more effective identification of relevant protein sequences as shown in Fig. S16.

Furthermore, we compare the average number of hits per query for each method with
and without maximum target hit limits (Table 1). iBlastp achieves a remarkably high
average of 725.93 hits per query, surpassing both Blastp with no limit (253.58 hits) and
with the default limit (240.89 hits). Without a maximum limit, Diamond achieves an
average of 435.78 hits per query, higher than the 22.14 hits with the default limit and
120.38 hits with iDiamond (which uses default Diamond parameters).

The efficiencies of incremental methods are further highlighted by their reduced
search times. For instance, iDiamond completes searches approximately 19 times faster
than Diamond without a hit limit. iMMseqs2 was about two times faster, and iBlastp
was around 16 times faster than their non-incremental counterparts. Venn diagram
analysis (Figs. 12, 13 and 14 in Supplementary Materials) reveals that over 90% of the
hits from non-incremental methods are included in the hits from incremental methods,
demonstrating that incremental methods maintain comprehensive coverage while
improving efficiency.

As a further test of our methodologies, we attempted reclassification of protein queries
across seven major classes in the Scope Astral protein database (Chandonia et al., 2022).
The graphs (Figs. 9, 10, and 11 in Supplementary Material) compare the protein class F1
score of non-incremental methods and incremental methods based on the e-value top
hit criterion. The results of the incremental experiments show a consistent increase in
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Table 1 Comparison of average hits (e-value is less than 1e−5) per query and time (seconds) for differ-
ent methods.Default limits are 25, 300, 500 for Diamond, MMseqs2, Blastp.

Method Average hits per query Time (seconds) Average hits per time

Blastp (No Limit) 253.58 48000 158.90
Blastp (Default) 240.89 13566 543.93
iBlastp (each batch avg.) 446.05 2820 4831.2198
iBlastp (after all batches run) 725.93 22566 983.9676
MMseqs2 (No Limit) 682.29 48160 430.86
MMseqs2 (Default) 166.74 771 6609.69
iMMseqs2 (each batch avg.) 316.77 435 22252.33
iMMseqs2 (after all batches run) 517.08 3381 4672.31
Diamond (No Limit) 435.78 1792 7428.64
Diamond (Default) 22.14 249 2716.60
iDiamond (each batch avg.) 73.29 73 30649.67
iDiamond (after all batches run) 120.38 581 6331.61

F1 score across all cases, with classification performance improving steadily as more data
is added. The performace reaches 99% when data for all Scope Astral protein classes is
included. We also observed a similar trend of increasing F1 scores for both incremental
and non-incremental methods. While the performance of incremental methods was
sometimes slightly better (e.g., iMMseqs2) or slightly worse (e.g., iDiamond), the overall
trend remains similar.

An additional experiment was conducted that queries an experimentally-obtained
metatranscriptome obtained from wastewater samples against a chronologically in-
creasing Swiss-Prot database from the years 2005, 2010, 2015, 2020, and 2024. For the
query, one of the wastewater samples from Southern California by Rothman et al. (2023)
was selected. The search results of the proposed incremental method, iMMseqs2, were
compared against the conventional MMseqs2. The comparison revealed that the results
were similar, and consistent with previous experiments: iMMseqs2 demonstrated time
savings while providing a greater variety of hit results. Detailed experimental procedures
and results are provided in the supplementary material.

DISCUSSION
Our study confirmed that incremental methods in protein sequence searches provide
broader coverage by generating more hits than non-incremental methods. Additionally,
by using DCG, a ranking metric often used in recommendation systems, we verified
that the additional hits identified by incremental methods are ranked effectively. This
observation suggests that incremental methods not only increase the number of hits but
also yield qualitatively significant results.

The reduced processing times of incremental methods offer additional substantial
advantages, particularly when searching large-scale databases. A potential future area of
investigation would be to determine if there are potential performance differences across
databases of varying sizes and designs.
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While there is a tendency for e-values to increase, we found that applying a 1e-
5 threshold provided effective filtering. These results demonstrate that incremental
methods, while yielding more hits, offer results with comparable reliability to those of
non-incremental methods. Therefore, incremental methods can maintain statistically
significant results while encompassing a broader range of hits.

In terms of Scope Astral protein classification, incremental methods showed improved
performance in some categories. Notably, iMMseqs2 achieved higher F1 scores, suggesting
that incremental methods can also be useful for protein classification tasks. Future
research should explore the applicability of incremental methods in other classification
systems, such as CATH and Pfam.

Incremental search methods also show potential in addressing the challenges associated
with complex, little-studied environmental samples. For instance, these methods can be
applied to the analysis of wastewater samples, enabling the detection of a broader range
of taxonomic groups that might be missed by conventional approaches. This capability
provides valuable insights into microbial diversity and contributes to the identification of
potential environmental and public health risks.

CONCLUSIONS
Our results demonstrate that the incremental method implemented in iSeqSearch offers
advantages over traditional sequence search methods. Incremental-Protein-Search
using iSeqSearch increases hit counts, reduces computational time, and maintains result
quality and ranking consistency. The trade-off between slightly higher e-values and
increased hit counts should be carefully considered in the context of specific research
goals. Higher e-values can lead to the inclusion of more false positives, which may lower
the overall accuracy of the results. The incremental learning method applied to any base
search enhances both efficiency and accuracy in large-scale protein database searches,
contributes not only to scaling Blast but also other search methods like MMSeqs2 and
Diamond. Our proposed approach supports any search tool that outputs results in the
m8 file format, making it adaptable to new methods that also utilize this format. In
conclusion, iSeqSearch offers the advantage of providing faster and more comprehensive
retrieval by leveraging previous results, especially as the size of large-scale databases
continues to grow.
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