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Abstract 29 

DNA-based methods and developments in sequencing technologies are integral 30 

to macrobenthos biodiversity studies, and their implementation as standardized 31 



monitoring methods is imminent. Evaluating the efficacy and reliability of these 32 

technological developments is crucial for bulk macrobenthos biodiversity assess-33 

ments.  34 

In this study, we compared three DNA-based techniques for assessing the biodi-35 

versity of bulk macrobenthos samples from the Belgian North Sea. Specifically, 36 

we compared the results of Illumina MiSeq metabarcoding, Oxford Nanopore 37 

metabarcoding and Illumina NovaSeq metagenomic shotgun sequencing. The 303 38 

bp COI Leray region served as the target region for the metabarcoding analysis.  39 

Our results indicate that Nanopore and MiSeq metabarcoding performed compa-40 

rable in terms of alpha and beta diversity, revealing highly similar location-spe-41 

cific community compositions. The NovaSeq metagenomics method resulted in 42 

lower alpha diversity and different community compositions compared to the 43 

metabarcoding approach. Despite these differences, location specific community 44 

compositions were maintained across all platforms.  45 

Notably, read counts of the NovaSeq metagenomics showed the weakest correla-46 

tion to morphological abundance and half of the species found using morpholog-47 

ical identification were undetected with DNA based methods, primarily due to 48 

insufficient reference sequences.  49 

Our findings underscore the critical importance of database completeness prior to 50 

implementing DNA-based techniques as standardized monitoring method stand-51 

ardized monitoring method. Nevertheless, our findings emphasize that Oxford 52 

Nanopore metabarcoding proves to be a viable alternative to the conventional Il-53 

lumina MiSeq metabarcoding platform for macrobenthos biodiversity monitoring.  54 

Introduction 55 

The European Union established the Marine Strategy Framework Directive 56 

(MSFD, 2008/56/EC), alongside the European Water Framework Directive 57 

(WFD, 2000/60/EC) and the European network for protected areas for conserving 58 

the most valuable North Sea species and habitats (Natura 2000 network, Habitat 59 

Directive). These directives form the basis of ecosystem management and use a 60 

variety of monitoring-based assessments (e.g., Borja et al., 2010) that aim to in-61 

form (non-)governmental decisions on marine environmental health. However, 62 

taxonomy-based monitoring practices rely on great taxonomic expertise, are time-63 

consuming and limited in taxonomic resolution (Danovaro et al., 2016; Paw-64 

lowski et al., 2018), particularly when identifying understudied taxonomic groups 65 

and species at different life stages (Ammon et al., 2018; Gleason et al., 2023). 66 

Consequently, DNA-based technological developments have attracted particular 67 

interest in study of marine biodiversity (Bucklin et al., 2011; Cordier et al., 2019; 68 

Elbrecht et al., 2017; Lanzén et al., 2017; Leray & Knowlton, 2016). A reduction 69 

in labour time and the growing reference sequence libraries demonstrate DNA 70 

based methods to be a promising alternative for monitoring (Baird & Hajibabaei, 71 



2012; DeSalle & Goldstein, 2019; Gostel & Kress, 2022; Leray & Knowlton, 72 

2015). Different DNA-based monitoring studies have demonstrated correspond-73 

ence with morphological findings (Derycke et al., 2021; Mauffrey et al., 2021). 74 

As a result, DNA-based methods are repeatedly proposed as a suitable routine 75 

biodiversity assessment strategy to inform policy (Aylagas et al., 2020; Goodwin 76 

et al., 2017; Hering et al., 2018; Hinz et al., 2022; Pawlowski et al., 2018; 77 

Thalinger et al., 2019).  78 

Generally, DNA-based biodiversity assessments are based on DNA metabarcod-79 

ing, which allows for the identification of species from environmental samples 80 

based on a short DNA fragment that is amplified using universal primer pairs. 81 

This amplified DNA is then sequenced with next-generation sequencing plat-82 

forms to identify the taxa found in samples (Taberlet et al., 2012). It is important 83 

to consider the biases that can be introduced at each stage (van der Loos & 84 

Nijland, 2021). This includes decisions on the sampling method and the appropri-85 

ate use of preservation techniques (Gaither et al., 2011; Ransome et al., 2017), 86 

DNA extraction methods, using sufficient replicates (Van den Bulcke et al., 87 

2021), and using appropriate primer pair(s) (Creer et al., 2016; Devloo-Delva et 88 

al., 2018; Leray & Knowlton, 2016). Bioinformatics pipelines are also crucial to 89 

take into consideration as the pipeline choice, and the processing settings greatly 90 

influence the output (Antich et al., 2021). 91 

Current developments in DNA-based methods have resulted in the availability of 92 

several different third-generation sequencing platforms, such as Illumina, Ion Tor-93 

rent, Oxford Nanopore sequencing and Pacific Biosciences (Hu et al., 2021). 94 

These platforms provide exciting opportunities to study the environment in con-95 

venient ways that include obtaining abundance data (Klunder et al., 2022), epige-96 

netic modifications (Zhao et al., 2023) and population genetics (Jahnke et al., 97 

2022). For metabarcoding of gene fragments shorter than 500 bp, Illumina MiSeq 98 

is currently the standard platform because of its high accuracy (M. Meyer & 99 

Kircher, 2010). In comparison to Illumina MiSeq, the Oxford Nanopore sequenc-100 

ing platform measures an electrical current that is produced when the nucleotides 101 

of a sequence pass through a transmembrane nanopore, allowing for real-time se-102 

quencing and base calling (Bleidorn, 2016; Y. Wang et al., 2021). The advantages 103 

of Nanopore sequencing include lower costs, the sequencing of long fragments 104 

and its suitability for real-time in-field experiments (Krehenwinkel et al., 2019). 105 

However, the error rates of raw Nanopore sequences are currently higher (87-99% 106 

accuracy) compared to Illumina platforms, therefore different bioinformatics pro-107 

cessing pipelines have been used to circumvent this problem (Baloğlu et al., 2021; 108 

Doorenspleet et al., 2023; Egeter et al., 2020). Short read Nanopore sequencing 109 

has been shown to have consensus with Illumina MiSeq in low-diversity samples 110 

(Egeter et al., 2020; van der Reis et al., 2023). However, comparisons of the se-111 

quencing platforms also showed the lack of several bacterial taxa when comparing 112 



high diversity samples (Heikema et al., 2020; Stevens et al., 2023). Thus, it re-113 

mains unclear to what extent short read Nanopore sequencing is directly compa-114 

rable to Illumina data. 115 

Recently, metagenomics and shotgun sequencing have gained interest as alterna-116 

tives to metabarcoding for community analysis (Bernatchez et al., 2024; Theissin-117 

ger et al., 2023). Shotgun sequencing can bypass some methodological disad-118 

vantages that are inherent to metabarcoding such as PCR (Zhou et al., 2013) and 119 

primer amplification bias (Leray & Knowlton, 2015), because DNA is directly 120 

processed for sequencing. Moreover, shotgun sequencing has been previously 121 

suggested to cover the full spectrum of biota in a sample and provide a correlation 122 

with morphological biodiversity studies. This method is seen as a viable contest-123 

ant to metabarcoding methods to monitoring genetic biodiversity (Bista et al., 124 

2018; Lopez et al., 2022; Monchamp et al., 2022; Stat et al., 2017). However, 125 

metagenomics can be limited by i) the sequencing depth, which has become more 126 

cost-efficient with the advent of current sequencing platforms such as NovaSeq, 127 

and ii) the availability of reference sequences within databases, given that the 128 

shotgun sequencing process is non-selective. Thus, it is inconclusive whether 129 

shotgun sequencing is currently more useful for both diversity detection and rel-130 

ative abundance data for macrobenthos studies. 131 

In this study, we compare different DNA-based methods: pair ended Illumina 132 

MiSeq metabarcoding, nanopore MinION metabarcoding and Illumina NovaSeq 133 

Metagenomics shotgun sequencing. We used bulk macrobenthos community 134 

samples collected from different soft-bottom habitats along the Belgium North 135 

Sea. By using different DNA-based methods and sequencing platforms for 136 

metabarcoding, we assessed the suitability of these methods for monitoring ben-137 

thic community composition and diversity. We hypothesized that the metabarcod-138 

ing data from both sequencing platforms and the shotgun metagenomics method 139 

are robust and resemble the morphologically identified community both in alpha 140 

and beta diversity, despite incomplete reference databases.  141 

Materials and methods 142 

Sample collection 143 

Sampling was conducted at four locations in the Belgian North Sea that contained 144 

different macrobenthos communities with high, medium, and low diversity (see 145 

Breine et al., 2018) (Figure 1). The bulk samples have been previously used to 146 

optimize the metabarcoding protocols and to test the method reproducibility 147 

(Derycke et al., 2021; Van den Bulcke et al., 2021, 2023). Samples were collected 148 

from a coastal muddy fine-sand habitat with a high taxa diversity of sessile tube-149 

forming organisms and high bioturbation (location 120 - Abra alba community). 150 

Samples were also collected from a medium sand habitat with a medium taxa di-151 

versity of mobile organisms (location 330 - Nepthys cirrosa community), a coarse 152 

sand habitat with high taxa diversity for sessile interstitial species (location 840 - 153 



Hesionura elongata community) and lastly, a muddy habitat with low taxa diver-154 

sity (location ZVL - Macoma balthica community) (Breine et al., 2018). A Van 155 

Veen grab was used to collect three biological replicates per location (A, B, C). 156 

All sediment samples were sieved using a 1 mm sieve, and the remaining material 157 

(for example, shells and rocks) was fixed using absolute ethanol and stored at -20 158 

°C prior to further processing. 159 

Morphological identification 160 

The morphological identification followed the protocols described by Derycke et 161 

al. (2021) and van den Bulcke et al. (2021; 2023). Organisms from one replicate 162 

per location (120 - B, 840 - C, 330 - C, ZVL - A) were identified to species level 163 

and juveniles to genus level, except for specimens belonging to Nemertea, Antho-164 

zoa and Oligochaeta, which were identified up to phylum, class, and order level, 165 

respectively. The complete list of species identified in each location is available 166 

(Table S1). Species were recorded per individual hence no biomass information 167 

was available for this dataset. To correct for the lack of biomass data, the count 168 

data were multiplied by the average size (from each each size class). This was 169 

done to compare whether there was a correlation between the morphology abun-170 

dance data and the read count of each DNA based method for the identified spe-171 

cies.    172 

DNA extraction 173 

For molecular comparison, all specimens isolated from each field replicate were 174 

retained to obtain a bulk sample. Bulk samples were homogenized with a blender 175 

or, if the sample was < 100 ml, with a mortar and pestle.  Subsamples of 2 ml 176 

were taken and stored in Eppendorf tubes at -20 °C before processing at three 177 

institutes (Table S2). Samples used for Illumina MiSeq and Oxford Nanopore se-178 

quencing were extracted at Naturalis Biodiversity Centre (Leiden, The Nether-179 

lands) and used by Wageningen University and research (Wageningen, The Neth-180 

erlands). Samples used for Illumina NovaSeq were processed at Nord University 181 

(Bodø, Norway). DNA was extracted from all samples according to Van den 182 

Bulcke et al. (2021). In short, the Eppendorf tubes were centrifuged for 3 min at 183 

10,000 RPM, and the supernatant was removed. Samples were incubated at 50 °C 184 

for 1 hr to evaporate the remaining ethanol. Three subsamples from each biolog-185 

ical replicate (3X3) were incubated with 10 µL proteinase K overnight at 56 186 

°C.  DNA was extracted from each subsample using the DNeasy PowerSoil kit 187 

(Qiagen, USA) according to the manufacturer's protocol. After extraction, the 188 

DNA extracted from each subsample was pooled and cleaned using the Wizard 189 

DNA clean-up system (Promega, USA) and eluted in 50 µL TE buffer. After pro-190 

cessing, samples were stored at -20 °C before amplification or shotgun sequencing 191 

(Figure 1). 192 



PCR amplification 193 

For amplification, part of the DNA barcode region, COI Folmer was used (Leray 194 

et al., 2013) with the nanopore extension sequence (Wageningen University) for 195 

the Nanopore metabarcoding results (Table S2). Amplification was performed on 196 

each sample in triplicate. Each reaction contained 8.5 µL nuclease-free water, 197 

12.5 µL 2x KAPA HiFi HotStart ReadyMix (Roche, USA), 0.75 µL (10 µM) for-198 

ward and 0.75 µL (10 µM) reverse primer and 2.5 µL of DNA template. For Na-199 

nopore sequencing, DNA template was diluted 10x prior to amplification. PCR 200 

conditions were 3 min at 95 °C, 35 cycles of 30 s at 98 °C, 30 s at 57 °C, 30 s at 201 

72 °C and a final extension for 1 min at 72 °C. PCR replicates were pooled, and 202 

a clean-up was performed using a 2:1 mixture with AMPURE beads (Beckman 203 

Coulter Inc., USA) and >70% ethanol. Amplification was confirmed using gel 204 

electrophoresis (1% gel, ethidium bromide).   205 

Illumina MiSeq metabarcoding 206 

Index PCR   207 

For the index PCR, 5 µL nuclease-free water, 12.5 µL 2X KAPA HiFi HotStart 208 

ReadyMix (Roche, USA) and 2.5 µL of each index primer (Nextera XT primer 1 209 

and 2) was used with 2.5 µL of initial pooled PCR product. The PCR program 210 

was 3 min at 95 °C, 8 cycles of 30 s at 95 °C, 30 s at 55 °C, 30 s at 72 °C and a 211 

final extension for 3 min at 72 °C. Amplification was confirmed using gel-elec-212 

trophoresis (1% gel, ethidium bromide). The purified Index PCR products were 213 

equimolarly pooled and sequenced using the Illumina MiSeq 2*300bp platform 214 

(sequenced by Baseclear BV.). 215 

Bioinformatics of Illumina MiSeq reads. 216 

After Illumina MiSeq sequencing, the quality of the demultiplexed reads was 217 

checked using MultiQC (Ewels et al., 2016), and primers were removed using 218 

Trimmomatic (Bolger et al., 2014). Amplicon sequence variants (ASV) were gen-219 

erated using the DADA2 pipeline in the Dada2 v1.17.0 package (Callahan et al., 220 

2016) in R Studio v4.0.2 (R Core Team, 2020). Standard settings were used and 221 

an error rate of 3 mismatches was allowed. Reads with a quality score lower than 222 

30 were removed. Unique paired-end reads were determined, merged, and filtered 223 

for chimeras for each sample. Taxonomy was assigned using the assignTaxonomy 224 

function in the Dada2 package (Q. Wang et al., 2007) using the Ribosomal Data-225 

base Project (RDP) (Q. Wang et al., 2007) with a minimum bootstrap confidence 226 

parameter of 80. A public reference database that contains 1992 COI sequences 227 

of 565 North Sea invertebrate species was used for taxonomic identification 228 

(dx.doi.org/10.5883/DS-GEANS1).  229 



Nanopore metabarcoding  230 

Nanopore sequencing 231 

The PCR barcoding kit 96 (EXP-PCB096) was used for the barcoding PCR, and 232 

the sequence library was prepared with the SQK-LSK114 kit (Oxford Nanopore 233 

Technologies, UK). Several adaptations deviated from the manufacturer’s instruc-234 

tions: barcoding PCR was achieved in a total volume of 10 µL using 0.3 µL 10 235 

µM PCR barcode primer pair and 10-50 ng amplicon. The following PCR pro-236 

gram was used: initial denaturation at 95 °C for 3 min, 15 cycles of 95 °C for 10 237 

s, 62 °C for 15 s, 65 °C for 90 s, followed by a final extension at 65 °C for 180 s.  238 

The concentration of the barcoded PCR products was measured using the Qubit 239 

HS kit (Thermo Fisher Scientific, USA) on the non-purified products, after which 240 

barcoded PCR products were pooled in equimolar ratios. The pooled amplicon 241 

sequence library was cleaned twice using AMPURE beads (Beckman Coulter 242 

Inc., USA). The first clean-up step used 70% ethanol and the second used Short 243 

Fragment Buffer (SFB) to enrich for the target size fragments. After end prep and 244 

adapter ligation, the library was again washed with SFB during the final clean-up 245 

of the protocol. A total of 5 µL library containing 98.5ng DNA was loaded onto 246 

an R10.4.1 flow cell (Oxford Nanopore Technologies, UK) mounted on a Minion 247 

Mk1C device. Sequencing continued until an average sequencing depth of 200 k 248 

reads was obtained per barcode.  249 

Sequence read processing  250 

Sequence read processing was performed according to the post-processing proto-251 

col as described by (Doorenspleet et al., 2023).  Base-calling of the fast5 pass files 252 

was performed using Guppy (Version 6.5.7, Oxford Nanopore Technologies, UK) 253 

in super high accuracy (SUP) mode. The Decona pipeline was used 254 

(https://github.com/Saskia-Oosterbroek/decona) for trimming, clustering, and 255 

taxonomic assignment of the reads. Raw base-called reads were trimmed to be-256 

tween 250-400 bases for each sequence. A cluster similarity of 85% was set as the 257 

clustering threshold of the sequences. Medaka consensus sequences were gener-258 

ated from each cluster larger than 5 reads (Decona -f -q 10 -T 18 -l 300 -m 320 -259 

c 0.85 -g “GGWACWGGWTGAACWGTWTAYCCYCC;max_er-260 

ror_rate=0.1;min_overlap=20...GRTTYTTYGGHCAYCCHGAR-261 

GTHTA;max_error_rate=0.1;min_overlap=19”  -n 5 -r 0.99 -R 500 -k 6 -M).  262 

Taxonomic assignment 263 

The consensus sequences were classified using BLASTn (NCBI, version 2.11.0) 264 

and the North Sea invertebrate species reference database was used for taxonomic 265 

identification (dx.doi.org/10.5883/DS-GEANS1). This database was the same as used for 266 

the Illumina MiSeq metabarcoding taxonomic assignment. Top hits were consid-267 

ered at species level when there was a minimal alignment length of 250 nucleo-268 

tides with <4 bp mismatches and >98% identity.  269 
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Read abundance correction 270 

After taxonomic assignments, a tag correction was performed on the Nanopore 271 

data to correct the tag jumping that had occurred. Tag jumping had occurred when 272 

both forward and reverse barcode tags were on sequences that did not belong to 273 

that barcode. After troubleshooting, most of the contamination could be alleviated 274 

by removing 1% of the total read count of each species from each barcode. This 275 

correction is intended to correct proportionally for the total read abundance of 276 

each taxon. Although the negative PCR control did not show a positive band after 277 

barcode PCR, contamination was detected in the sequence data.  278 

First, the total read count was calculated for all species in all barcodes using the 279 

mutate() function in the dplyr v1.1.0 package (R Core Team, 2023). Second, 1% 280 

of the total read count was calculated and rounded to a whole number of reads 281 

using the round()and mutate() functions (R Core Team, 2023). Then 1% of the 282 

total read count of each species was subtracted from each barcode using mutate(). 283 

NovaSeq shotgun sequencing 284 

Preparations for sequencing  285 

After DNA extraction and clean-up, libraries were directly prepared using NEB-286 

Next® Ultra™ II DNA Library Prep Kit for Illumina (New England Biolabs, 287 

USA). Samples were indexed using NEBNext® Multiplex Oligos for Illumina 288 

(New England Biolabs, USA).  The final quality check was conducted using the 289 

Agilent Tapestation system (Agilent Technologies, USA). Samples were pooled 290 

in equimolar concentrations and sent to the Norwegian Sequencing Center in Oslo 291 

to be sequenced using the NovaSeq S4 quarter flow cell.   292 

Sequence read processing 293 

The NovaSeq reads were trimmed using cutadapt (--minimum-length=100, q=30), 294 

and merged with PEAR v 1.7.2 (Zhang et al., 2014) using the default parameters. 295 

In the first iteration of the data analysis, reads were assembled into contigs and 296 

aligned against the complete NCBI database for use in shotgun sequencing. De-297 

spite the large number of high-quality alignments, many were false positives. 298 

Therefore, this workflow was discarded and instead the merged sequences were 299 

directly aligned against the GEANS ref v4 database (>97 % identity, e-value set 300 

at -10, and alignment length over 100 bp). Single alignments were discarded for 301 

the data analysis.  302 

Data analysis 303 

Data analysis was carried out in RStudio v4.2.2 (R Core Team, 2022). A rarefac-304 

tion curve (Vegan v2.6.4) was plotted to understand the effect of differential se-305 

quencing depths between samples. Each sample showed a flattening curve (Figure 306 

S1), which indicated that for each DNA-based method, an appropriate sequencing 307 

depth was achieved. Therefore, the data were not rarefied but normalized using a 308 

Commented [RGS4]: Did you know this because there was 

a positive control of known sequence? I am curious as to how 

this tag jumping happened, as the samples were pooled after 

the barcodes were added and the ligation of adapters in Na-

nopore libraries happens afterwards. Would lab contamina-

tion rather than tag-jumping be an easier explanation?    

Commented [RGS5]: I have a bit of trouble understanding 

what was done. Please correct me if I am wrong. You suspect 

that 99% of the reads of each species are in the right sample, 

and 1% might be in the wrong sample. So you calculate, for 

each  species, what is 1% of their reads. And for each species-

sample combination you substract the value for that species.  

Commented [RGS6R5]: Also, the dplyr package is not 

from the R Core team. I think the usage of mutate is not add-

ing information here - I would explain the process, add that 

you perform it in R, and add the script which does it to the re-

pository or the supplemental 

Commented [RGS7]: Rstudio was not made by the R Core 

Team. I think you mean in RStudio using R v4.2.2 



log10 transformation. For alpha diversity, species level richness, and evenness 309 

(Shannon, log 10 transformed) of the read counts were calculated using the diver-310 

sity() function (Vegan v2.6.4)) and visualized using boxplot (ggplot2, v3.4.0). 311 

Normality of the data was tested using Shapiro-Wilk for normal distribution, Q-312 

Q plots, and a histogram. Based on these results a 2-way ANOVA using the aov() 313 

function (stats, v3.6.2) was carried out to determine the differences between sam-314 

pling locations and the DNA-based method used and whether an interaction effect 315 

could be observed. For a pairwise comparison, a post hoc analysis was performed 316 

using the Tuckey test (HSD) using the TukeyHSD() function (stats, v3.6.2). For 317 

beta diversity, non-metric multidimensional scaling (‘bray’) was performed on 318 

each dataset separately (Nanopore metabarcoding, Illumina MiSeq metabarcod-319 

ing and Shotgun metagenomics sequencing) in combination with betadisper to 320 

check for homogeneity of variance. A PERMANOVA was used (Adonis2ado-321 

nis2(), Vegan v2.6.4) to analyse which locations were significantly different from 322 

each other, within each dataset. A Spearman correlation was used (stats v3.6.2), 323 

to compare the size class corrected morphological abundance findings with each 324 

DNA-based method.  325 

Results 326 

Read processing comparison between DNA-based methods  327 

From the Illumina MiSeq metabarcoding samples, a total of 2,538,798 sequences 328 

were obtained with 2,153,086 used after processing. Of these, 1,724,841 reads 329 

were used as ASVs for taxonomy assignment. An overview is available of the 330 

sequencing output of each DNA-based method after sequencing and processing 331 

(Table S3). From the Oxford Nanopore metabarcoding dataset, 2,426,017 reads 332 

were basecalled of which 1,841,385 remained after clustering and consensus 333 

building. A total of 1,191,853 of the remaining reads were used as consensus se-334 

quences for taxonomy. From the 3,060,417,120 data obtained from the Illumina 335 

NovaSeq metagenomics run, 2,425,520,473 reads passed the quality values for 336 

direct taxonomic assignment of the reads. In total, 42,262 reads could be assigned 337 

to species level, which resembled 0.0017% of the total filtered reads. This illus-338 

trates that 100 times more reads were used for the taxonomic assignment of the 339 

metabarcoding data, indicating an imbalanced final read count between methods. 340 

This was however, not reflected in the rarefaction curves (Figure S1). All the 341 

curves showed flattening curves and indicated that for both methods, enough se-342 

quencing depth was reached. 343 

Alpha diversity obtained with the three DNA-based methods 344 

A two-way ANOVA showed a significant interaction effect between sequencing 345 

techniques (Illumina MiSeq, Nanopore, NovaSeq), and location (120, 330, 840 346 

and ZVL) for species richness (F = 8.68, p < 0.05). Main effects were also ob-347 

served for both sequencing techniques, (F = 9.94, p < 0.05) and location (F = 348 

98.79 p < 0.05). Post-hoc analysis using a Tuckey’s HSD test showed that there 349 
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were significant differences in richness between the NovaSeq metagenomics and 350 

MiSeq metabarcoding (p = 0.021, Table S5) and between NovaSeq metagenomics 351 

and Nanopore metabarcoding (p <0.001, Table S5) but not between Nanopore and 352 

MiSeq metabarcoding (p = 0.31). In addition, post-hoc analysis showed a signif-353 

icant difference between location 120 and all other locations (Table S5), where 354 

120 had the highest richness (Figure 2a). A significant difference was also ob-355 

served between ZVL and all other locations (Table S5), where ZVL had the lowest 356 

richness. No significant difference was found between location 330 and 840 (p = 357 

0.99). As for the interaction effect, the NovaSeq had significantly lower richness 358 

in location 120 compared to the other techniques (Nanopore: p <0.01; NovaSeq: 359 

p < 0.01, Figure 2a). A two-way ANOVA showed a significant interaction of 360 

Shannon indices between sequencing techniques and locations (F = 4.89, p < 0.01, 361 

Table S5). The main effects were only significant for the factor location (F = 362 

69.76, p < 0.01, FS5) but not for the factor method (F = 0.94, p = 0.403). Post-363 

hoc analysis using a Tuckey’s HSD test showed significant differences in Shan-364 

non indices between location 120, and all other locations (Table S5), where 120 365 

had the highest Shannon index (Figure 2b). A significant difference was also 366 

found between ZVL and all other locations (Table S5), where ZVL had the lowest 367 

Shannon index (Figure 2b). As for the interaction effect, the NovaSeq was signif-368 

icantly different from both Nanopore and MiSeq for location ZVL (Table S5, fig-369 

ure 2b), where ZVL was significantly higher than NovaSeq. Overall, these results 370 

highlight that all sequencing techniques similarly observe alpha diversity between 371 

locations, except for the richness in high diversity at location 120, where the No-372 

vaSeq shotgun metagenomics retrieved less species than the metabarcoding ap-373 

proaches. Shannon indices were higher for NovaSeq for the low diversity location 374 

ZVL. 375 

Beta diversity obtained from the three DNA-based methods 376 

The PERMANOVA demonstrated significant differences in macrobenthic com-377 

munity compositions between locations (F = 26.03, p < 0.01) and between tech-378 

niques used (F = 6.88, p < 0.01) (Table S6, Figure 3). In addition, a significant 379 

interaction effect was observed between location and the DNA-based approach 380 

used (F = 2.48, p < 0.01), indicating that benthic community composition and 381 

location depend on the DNA-based method used and the other way around (Table 382 

S6). Post-hoc pairwise PERMANOVA tests showed that there was a significant 383 

difference in community composition between all locations (p < 0.01) except be-384 

tween locations 330 and 840 (Table S6, p = 0.108). Post-hoc analysis also showed 385 

a significant difference in community composition between Nanopore and No-386 

vaSeq (p < 0.01) but not between Nanopore and Illumina (p = 0.99) and Illumina 387 

and NovaSeq (p = 0.08). The NMDS plot showed a clear clustering for each lo-388 

cation, except for locations 330 and 840 (Figure 3). The plot also illustrates that 389 

location is responsible for the biggest contrasts in community composition, indi-390 



cating that the location explains most of the variation between community com-391 

positions. Similarly, the NMDS plot also indicated that NovaSeq has a different 392 

community composition in some locations. An interaction effect was also ob-393 

served, as the NovaSeq samples clustered closer to each other within each location 394 

compared to the other DNA-based methods. Clustering between DNA-based 395 

methods was not found in Illumina and Nanopore, as these approaches clustered 396 

together within each location.  397 

Comparison of DNA-based methods for assessing location-specific species 398 

composition  399 

All three DNA-based methods (Figure 4) shared 27 species and an additional 27 400 

species were shared between just the metabarcoding methods (Figure 4, S3). At 401 

location 120, 23 species were shared between the two metabarcoding methods 402 

whereas only 12 species were shared between all three DNA-based methods (Fig-403 

ure 4, S3). The Nanopore metabarcoding data had 6 unique species for all loca-404 

tions (Figure 4b, Figure S3), and found the most unique species for each location 405 

(Figure 4b, Figure S3). For example, several species such as, Crepidula fornicate, 406 

Eumida mackiei and Magelona mirabilis, occurred at location 330 using the Na-407 

nopore dataset but with less reads than in location 120 (Figure 4b). However, these 408 

species were only in location 120 using the MiSeq dataset. Nevertheless, all DNA-409 

based methods detected unique species with each method. In general, the No-410 

vaSeq dataset had lower diversity across all the locations compared to the other 411 

DNA-based methods (Figure 2, Figure 4c). Interestingly, Nypthys cirrosa occured 412 

in a high relative abundance in the metabarcoding datasets and is a dominant spe-413 

cies at location 330 but remained absent in the NovaSeq results. Nevertheless, the 414 

key species of location 840, Hesionura elongata, was only detected using the No-415 

vaSeq method.  416 

Comparison of species presence and abundance between DNA-based methods 417 

and morphology 418 

For the morphological identification, one biological replicate was available 419 

(120B, 330C, 840C and ZVLA) for each location. This resulted in the identifica-420 

tion of 56 species. A total of 39, 13, 10 and three species were identified at loca-421 

tions 120, 330, 840 and ZVL, respectively (Table S1). Of the 56 species identified, 422 

25 species were identified using morphology only (Figure 5a). Of these 25 spe-423 

cies, 19 did not have a reference sequence available in the chosen reference data-424 

base (Table S4, colour red). In addition, 12 of the species that did not have a ref-425 

erence sequence available belonged to the phylum Annelida (Table S4, colour 426 

green), which are known to have low primer efficiency and are therefore harder 427 

to include in COI reference databases (Carr et al., 2011). This indicated that a total 428 

of 6 species were unique findings in the morphological dataset (Table S4, orange). 429 

Of the 32 species that were identified using the both the DNA-based methods and 430 
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morphology, 10 species were identified using all three DNA-based methods, 13 431 

species were identified using the metabarcoding-based methods only. Lastly, 5 432 

species were identified in only one of the three DNA-based methods (Figure 5a, 433 

Figure S4).  434 

Three species were identified with all three DNA-based methods (Figure 5a), that 435 

were not identified with morphology and an additional six were identified using 436 

only the metabarcoding methods. These six species included Scoliopsis bonnieri 437 

and Cylista troglodytes which represented a substantial amount of the identified 438 

reads (Figure S2). This indicated that the DNA-based methods can identify spe-439 

cies that are missed using morphological identification. Nanopore identified an 440 

additional nine species that were unique (Figure 5a) but that were found in low 441 

read count of only one read (Table S4).       442 

A Spearman correlation between morphological size class corrected counts and 443 

relative read abundance between each DNA-based method across all locations 444 

showed the highest positive correlation with both the metabarcoding methods 445 

(Sp= 0.24 (MiSeq), Sp =0.27 (Nanopore), although this correlation was not sig-446 

nificant (Figure 5b, c, d). However, the metagenomics method did not show a 447 

correlation with the size class corrected morphological counts (Figure 5b, c).  448 

Discussion 449 

We compared three different DNA-based methods: two metabarcoding ap-450 

proaches (MiSeq, Nanopore) and a metagenomics approach (NovaSeq). We as-451 

sessed the robustness between techniques in terms of alpha and beta diversity to 452 

understand the suitability of these techniques for macrobenthos monitoring. We 453 

have demonstrated that the two metabarcoding methods showed a similar diver-454 

sity richness and evenness as well as location-specific species compositions. The 455 

NovaSeq metagenomics method had lower macrobenthos richness and as a result, 456 

different community compositions than the metabarcoding methods. Interest-457 

ingly, almost half of the species found in the morphological dataset were not iden-458 

tified with molecular techniques mostly due to a lack of references in the database. 459 

Nevertheless, all methods showed that most species were shared within each lo-460 

cation. The NovaSeq metagenomics method correlated best with the morpholog-461 

ical species count. Nevertheless, improvements can be implemented to optimize 462 

the suitability of DNA methods for macrobenthos monitoring, especially with re-463 

gards to improving the reference databases. 464 

Macrobenthos communities are highly similar using metabarcoding despite us-465 

ing different sequencing platforms 466 

No difference was found between alpha and beta diversity when comparing a 467 

standardized lab protocol with Illumina MiSeq sequencing (Van den Bulcke et al., 468 

2023) to Nanopore-based metabarcoding. Furthermore, both methods identified 469 

similar species composition and community structure at each location. Therefore, 470 
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this study clearly demonstrated that Nanopore and Illumina MiSeq metabarcoding 471 

performed evenly well for monitoring macrobenthos biodiversity. Previous re-472 

search showed that the Nanopore technique can miss certain taxonomic groups 473 

and therefore does not perform as well as MiSeq (Heikema et al., 2020; Stevens 474 

et al., 2023) which contrasts our results. More recent comparisons ((Chang et al., 475 

2023; van der Reis et al., 2023; Voorhuijzen-Harink et al., 2019) have shown that 476 

the Nanopore datasets are overall comparable with Illumina MiSeq results. Thus, 477 

the findings of this study also suggest that metabarcoding with both sequencing 478 

platforms performs similarly for macrobenthos biodiversity regardless of the ex-479 

pected richness of an area of interest.   480 

Nanopore sequencing had the most unique species (9 vs 2, respectively; Fig S5). 481 

These unique taxa were found mostly in very low relative read abundance and did 482 

not influence the alpha and beta diversity. For this comparison, we used the same 483 

DNA extract; it is therefore likely that either the lab procedure, the sequencing 484 

platform or the bioinformatics method have resulted in slightly different results.  485 

When assessing the reproducibility of laboratories minor variations in detected 486 

species have previously been reported (Van den Bulcke et al., 2021). These de-487 

tections could be explained as an effect of the stochastic nature of PCR that is 488 

observed in each dataset (van der Loos & Nijland, 2021) or further emphasize the 489 

influence of lab-specific factors.  490 

Another potential explanation for these differences is that the Nanopore chemistry 491 

and its protocols might be more prone to introducing false positive detections of 492 

species. This is because the Nanopore dataset had some species with only several 493 

reads in one of the replicates, while in another location this species was abundant. 494 

Using the other methods, the same species was found in only one location. Even 495 

though a simple correction of tag leakage was used for this study (as presented in 496 

the materials and methods), it is possible that tag jumping, or barcode leakage was 497 

still a problem for this dataset. After routine testing, this problem was related to 498 

the temperature at which barcoded samples were pooled for the Nanopore se-499 

quencing library (personal communication). In addition, barcode leakage prob-500 

lems have been reported often in metabarcoding studies (Beentjes et al., 2019; van 501 

der Loos & Nijland, 2021). Therefore, it is important to consider protocols that 502 

minimize the possibility of barcode leakage. This includes using negative controls 503 

at each stage, minimizing the handling and amplification of tagged product, or 504 

correcting for a crossover of tags between samples (Beentjes et al., 2019). Similar 505 

other platforms, Nanopore uses two cycles of PCR, one for the amplification of 506 

the region of interest and a second PCR for the barcode attachment using Na-507 

nopore-specific protocols and kits for barcoding. The protocol used for this study 508 

could be optimized in such a way that individual samples could be amplified with 509 

already tagged initial barcodes to circumvent the second PCR step (Srivathsan et 510 

al., 2021) or by using amplicon-free barcode kits (Toxqui Rodríguez et al., 2023; 511 

van der Reis et al., 2023).  512 
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The bioinformatics pipeline used in this study could also be responsible for the 513 

little observed difference in metabarcoding results. The newest 10.4.1 flow cells 514 

were used, which greatly improved the quality of the metabarcoding data (Zhang 515 

et al., 2023). Nevertheless, clustering and consensus building of the data with bi-516 

oinformatics processing might also result in overlooking some elements of the 517 

biodiversity (Brandt et al., 2021). Therefore, the reads that were not included in a 518 

cluster for consensus building were also considered when they met the threshold 519 

for taxonomy assignment. Including this portion of the reads may have led to the 520 

detection of additional species, although this is unlikely since it did not result in 521 

obtaining extra species (data not shown). 522 

Despite these minor differences between metabarcoding methods, this did not lead 523 

to significant differences in commonly used biodiversity indices. Therefore, this 524 

study suggests that Nanopore and Illumina MiSeq metabarcoding can be used 525 

equally well for macrobenthos monitoring.  526 

NovaSeq Shotgun sequencing identified a reduced number of species com-527 

pared to metabarcoding 528 

The primer and PCR-free shotgun metagenomics method yielded lower richness 529 

compared to the metabarcoding methods and resulted in a significant but slightly 530 

different community compositions. These different community compositions be-531 

tween methods were mostly due to the reduced number of species, as most species 532 

that were detected by NovaSeq metagenomics were also detected by the two 533 

metabarcoding methods.   534 

This study, therefore, does not reflect current environmental metagenomics stud-535 

ies that show equal or higher levels of biodiversity compared to amplicon-based 536 

approaches (Bista et al., 2018; Garlapati et al., 2019; Monchamp et al., 2022; 537 

Paula et al., 2022). However, in these studies, an environmental sample was taken 538 

that was not targeted to a certain taxonomic group and therefore, reflected a wider 539 

spectrum of biota. In contrast, this study aimed to test whether metagenomics is 540 

suitable for macrobenthos biodiversity monitoring and therefore the data pre-541 

sented are not directly comparable to other metagenomics studies. 542 

For this comparison the reference database that was used contained the most 543 

North Sea macrobenthos and contained only COI rRNA sequences. On average, 544 

~3,500 reads of the ~200,000,000 reads per sample had a hit within the database. 545 

Considering the relatively low amount of mitogenomic sequences in a DNA ex-546 

tract (Quiros et al., 2017) let alone sequences that represents the COI region, sug-547 

gests that searching solely for COI is a needle in a haystack situation. Therefore, 548 

it is not surprising to have such a low retrieval of reads that align with a target 549 

species. These results suggest that with the current available references, a much 550 

higher sequencing depth is needed to improve the performance of this technique. 551 

Regarding costs, the present study’s findings align with previous research that 552 



suggest that shotgun sequencing metagenomics is hardly feasible for environmen-553 

tal studies (Ficetola & Taberlet, 2023; Quince et al., 2017).  These results also 554 

indicate the necessity to improve reference databases, particularly for full 555 

(mito)genomes of macrobenthos, as the limited availability of references largely 556 

contributed to the reduced number of species found. Currently, reference data-557 

bases are mainly focused on genetic regions that are popular for metabarcoding 558 

(Weigand et al., 2019) and references of full (mito)genomes are still in their in-559 

fancy (Blasiak et al., 2020; Leray et al., 2022).  560 

Similarly, of the species that were identified using the metagenomics approach, 561 

there was also no correlation with the, for size class corrected read count of the 562 

morphologically identified samples. Unfortunately, no biomass data was obtained 563 

from the morphologically identified samples, which would be a more appropriate 564 

representation of the actual abundance. Nevertheless, a better correlation was 565 

found with the metabarcoding data, which is in contrast with findings that suggest 566 

a better correlation between found metagenomics reads and biomass (Bista et al., 567 

2018). Since in the study by Bista et. al., the mitogenomes of mock community 568 

was available, the lack of correlations in this study further suggests that the met-569 

agenomics method is presently not feasible for reliable DNA-based monitoring of 570 

macrobenthos biodiversity. In the future, focussing on reference databases and 571 

especially databases that contain complete (mito)genomes will greatly improve 572 

detection rates and may revolutionize DNA-based monitoring.     573 

Morphology identification retrieved more species due to lack of annelid se-574 

quences in the reference database 575 

Most taxa were detected using both morphology and a DNA-based technique, but 576 

there were also 25 species that were not identified using any DNA-based method. 577 

This was especially apparent in the high diversity samples. However, only 6 of 578 

those species were represented in the COI reference database for North Sea mac-579 

robenthos. The incompleteness of biodiversity databases, especially in relation to 580 

marine invertebrates has often been reported as a limiting factor (Aylagas et al., 581 

2016; Günther et al., 2018; Steyaert et al., 2020; Willassen et al., 2022). Several 582 

efforts have been made to improve (Lavrador et al., 2023) and increase the cov-583 

erage of these databases (Leray et al., 2018; Radulovici et al., 2021). Approxi-584 

mately 22-43% of all European marine species have reference sequences available 585 

in the widely used reference database BOLD (Weigand et al., 2019) and 50% in 586 

a pan-European gap analysis of aquatic invertebrates (Csabai et al., 2023). Multi-587 

ple studies in the North Sea have emphasized the importance of enhancing these 588 

databases (Christodoulou et al., 2021), indicating a need for sustained long-term 589 

efforts. 590 

There were also 15 species from the phylum Annelida that were not identified 591 

using DNA-based methods. Annelida, and especially certain Polychaeta, are 592 

known to be especially difficult to sequence using conventional markers for 593 
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metabarcoding because this group has high variation within the COI region and 594 

therefore, lower primer efficiency (Carr et al., 2011). This also causes the COI 595 

reference databases to be biased towards a lower representation of Annelida. Us-596 

ing multiple markers that are more specific to certain taxonomic groups might 597 

therefore greatly improve the capability to detect species from metabarcoding 598 

methods. However, consequently this may increase laboratory time and costs 599 

(Cordier et al., 2019; Gielings et al., 2021; A. Meyer et al., 2021). Metagenomic 600 

methods can also improve the detection of annelids as this technique doesn’t rely 601 

on the amplification of specific regions. Nevertheless, the metagenomics method 602 

in this study did not result in the retrieval of more annelids and this is probably 603 

due to the chosen reference database that is solely based on the commonly used 604 

region of the COI gene. Especially, the low percentage (0.002%) of reads eventu-605 

ally used for taxonomic identification suggests that the lack of a reference data-606 

base for this method has strongly hampered the power of the metagenomics 607 

method used in the present study.  608 

The DNA-based methods also found taxa with a high read count (>13000 reads) 609 

that were not reported during the morphological analysis. These taxa include soft 610 

bodied organisms such as the Anthozoa Sagartia, whose tissue becomes hard or 611 

impossible to recognize when not intact. It is, therefore, not surprising that these 612 

species are easier to identify with molecular methods while only classified to a 613 

high taxonomic rank during morphological analysis (Robinson et al., 2022).  In 614 

conclusion, although DNA-based methods missed 25 species compared to mor-615 

phological analysis, the DNA-based methods detected an additional 17 species 616 

that were otherwise undetected. This is in line with previous reports, also con-617 

firming that DNA-based methods and morphology should remain complementary 618 

(Cahill et al., 2018; Kelly et al., 2017; A. Meyer et al., 2021). However, improve-619 

ments to the databases and the choice of multi-marker approach for specific tax-620 

onomic groups might further improve detection sensitivity and at some point, may 621 

surpass morphological identification.   622 

Conclusions 623 

In recent years, there has been increased interest in implementing DNA-based 624 

tools into routine biodiversity monitoring practices. To achieve this, standardized 625 

protocols are necessary to ensure reproducibility and data robustness across stud-626 

ies and regions, particularly as sequencing technology is evolving rapidly (Van 627 

den Bulcke et al., 2023).  628 

In this study, we showed that similar alpha and beta diversity patterns were found 629 

regardless of the metabarcoding platform used. Thus, Illumina MiSeq and Na-630 

nopore sequencing results are, at this stage, highly similar and can both be used 631 

to monitor macrobenthos biodiversity. Incomplete reference databases still ham-632 

per detection, as most morphologically identified species did not have a repre-633 

sentative sequence in the database. NovaSeq metagenomics has the potential for 634 

Commented [RGS17]: It is here when I realice that the 

GEANS ref v4 database  is a COI database. So it seems that 

the experiment is playing for metabarcoding advantages and 

not to metagenomics strengths. I see the reason is the rate of 

false positives, which I think should be addressed, but I think 

the experiment as it is now, could be summarised as: If you 

want to use COI for species detection, then amplify COI.  



environmental monitoring especially for better representation of abundance data 635 

but is at this stage not ideal for macrobenthos monitoring of bulk samples as fewer 636 

species were identified compared when using the metabarcoding methods. These 637 

findings demonstrate that newer next-generation sequencing platforms are ready 638 

to be integrated for standard monitoring practices. We emphasize the importance 639 

of improving sequence reference databases to implement and enhance next-gen-640 

eration of sequencing methods for robust and harmonized monitoring practices. 641 
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this with other DNA based methods and sequencing platforms and therefore 675 

serves another purpose. 676 
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