Assessment of YouTube videos on post-dural puncture headache: a cross-sectional study (#102406)

First submission

Guidance from your Editor

Please submit by 13 Oct 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

5 Table file(s)

1 Raw data file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Т	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Assessment of YouTube videos on post-dural puncture headache: a cross-sectional study

Seher İlhan Corresp., 1, **Turan Evran** 2

Corresponding Author: Seher İlhan Email address: seheri@pau.edu.tr

Background: Post-dural puncture headache (PDPH) is a common complication of central neuroaxis anesthesia or analgesia, causing severe headaches. YouTube is widely used for health information, but the reliability and quality of PDPH-related content are unclear. This study evaluates the content adequacy, reliability, and quality of YouTube videos on PDPH. Methods: This cross-sectional study analyzed English-language YouTube videos on PDPH with good audiovisual quality. Two independent reviewers assessed the videos using the DISCERN instrument, Journal of American Medical Association (JAMA) benchmark criteria, and Global Quality Scale (GQS). Correlations between video characteristics and their reliability, content adequacy, and quality scores were examined. Results: Out of 71 videos, 42.3% were uploaded by health-related websites, 36.6% by physicians, and 21.1% by patients. Strong correlations were found between DISCERN, JAMA, and GQS scores (p<0.001). Videos from physicians and health-related websites had significantly higher scores than those from patients (p<0.001). No significant correlations were observed between descriptive characteristics and scores (p>0.05). **Conclusion:** YouTube videos on PDPH uploaded by health-related websites or physicians are more reliable, adequate, and higher in quality than those uploaded by patients. Source credibility is crucial for evaluating medical information on YouTube.

¹ Department of Anesthesiology and Reanimation, Pamukkale University School of Medicine, Denizli, Kınıklı, Turkey

Department of Anesthesiology and Reanimation, Pamukkale University School of Medicine, Denizli, Turkey

Assessment of YouTube Videos on Post-Dural Puncture Headache: A Cross-Sectional Study

3 Seher İlhan¹, Turan Evran¹

4

- 5 Pamukkale University School of Medicine, Department of Anesthesiology and Reanimation,
- 6 Pamukkale/Denizli

7

- 8 Corresponding Author:
- 9 Seher İlhan¹
- 10 Pamukkale University School of Medicine
- 11 Department of Anesthesiology and Reanimation
- 12 Address: Kınıklı, Pamukkale Ünv. Hastane Yolu,
- 13 20070 Kınıklı/Pamukkale/Denizli
- 14 E-mail: drseher79@gmail.com

15

16 **Abstract**

- 17 **Background:** Post-dural puncture headache (PDPH) is a common complication of central
- 18 neuroaxis anesthesia or analgesia, causing severe headaches. YouTube is widely used for health
- 19 information, but the reliability and quality of PDPH-related content are unclear. This study
- 20 evaluates the content adequacy, reliability, and quality of YouTube videos on PDPH.
- 21 **Methods:** This cross-sectional study analyzed English-language YouTube videos on PDPH with
- 22 good audiovisual quality. Two independent reviewers assessed the videos using the DISCERN
- 23 instrument, Journal of American Medical Association (JAMA) benchmark criteria, and Global
- 24 Quality Scale (GQS). Correlations between video characteristics and their reliability, content
- adequacy, and quality scores were examined.
- 26 **Results:** Out of 71 videos, 42.3% were uploaded by health-related websites, 36.6% by
- 27 physicians, and 21.1% by patients. Strong correlations were found between DISCERN, JAMA,
- and GQS scores (p<0.001). Videos from physicians and health-related websites had significantly
- 29 higher scores than those from patients (p<0.001). No significant correlations were observed
- 30 between descriptive characteristics and scores (p>0.05).
- 31 Conclusion: YouTube videos on PDPH uploaded by health-related websites or physicians are
- 32 more reliable, adequate, and higher in quality than those uploaded by patients. Source credibility
- 33 is crucial for evaluating medical information on YouTube.
- 34 **Keywords:** Post-Dural Puncture Headache, Consumer Health Information, Digital Technology,
- 35 Social Media, YouTube

36 37

38

39

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

Introduction

Post-dural puncture headache (PDPH) is a prevalent and significant complication associated with central neuroaxis anesthesia or analgesia, characterized by dural breach, cerebrospinal fluid leakage, and subsequent postural headache development (Alatni et al. 2024; Aniceto et al. 2023; Bishop et al. 2023). Its incidence varies depending on the demographic and clinical characteristics of the exposed (Aniceto et al. 2023; Bishop et al. 2023). The etiology of PDPH has yet to be fully clarified (Aniceto et al. 2023; Thon et al. 2024). Typically, PDPH presents with postural features that are exacerbated when sitting or standing and alleviated in the supine position. Although PDPH often resolves spontaneously, specific pharmacological or procedural interventions may be required in certain patients (Aniceto et al. 2023). Additionally, adjunctive measures such as bed rest and fluid and caffeine intake are often used in treating PDPH despite the lack of solid evidence showing their benefits (Alatni et al. 2024; Aniceto et al. 2023; Bishop et al. 2023; Thon et al. 2024). In the age of digital media, social media platforms such as YouTube have become increasingly popular sources of medical information for people seeking information about their health conditions (Do et al. 2023). Despite lacking peer review, YouTube's health-related content is attracting the attention of an increasingly larger audience (Chan et al. 2021; Erkin et al. 2023; Lee et al. 2020; Saffi et al. 2020). However, given that these contents consist of a mix of expert-contributed material and potentially contradictory or misleading information, concerns have been raised regarding the reliability and quality of such non-peerreviewed content (Erkin et al. 2023; Madathil et al. 2015; Saffi et al. 2020; Yildizgoren & Bagcier 2023). Infodemiology, defined as the study of the dissemination and determinants of medical information through electronic media, has gained prominence in recent years (Goadsby et al.

64

65

66

67

68

69

70

71

72

73

74

2023). For many years, "headache" has consistently been among the most searched terms on Google, reflecting the widespread interest in headache-related content on social media platforms (Do et al. 2023; Goadsby et al. 2023). Incorporating unstructured, self-reported data from social media into a scientific framework and relevant medical insights requires methodological rigor (Goadsby et al. 2023). In parallel with this requirement, the number of studies assessing the quality of health-related information on YouTube has risen (Yildizgoren & Bagcier 2023). Although there are some studies that assessed the content and quality of YouTube videos on migraine and cluster headaches, none of these addressed PDPH (Chaudhry et al. 2022; Gupta et al. 2023; Reina-Varona et al. 2022; Saffi et al. 2020). To this end, this study was carried out to assess the quality and reliability of YouTube videos on PDPH and identify the sources that provide high-quality and dependable content.

Materials & Methods

- 75 Study Design
- 76 This study was designed as a cross-sectional observational study of YouTube videos on PDPH.
- 77 The study protocol was approved by the local ethical committee (approved on December 26, 2023,
- 78 with approval number 21). A video-based search was performed on the YouTube online video-
- 79 sharing platform (https://www.youtube.com/) using the English keywords "post-puncture," "dura,"
- 80 "headache," and "post-dural puncture headache" on 20/01/2024. The keywords were strategically
- 81 chosen to encompass a broad spectrum of information, including patient characteristics, procedural
- 82 features, preventive measures, intervals for diagnostic suspicion, conservative and
- 83 pharmacological treatment modalities, harmful maneuvers, follow-up details, long-term
- 84 complications, and use of epidural patches.
- 85 *Content Analysis*

86 Two independent reviewers identified PDPH-related videos on the YouTube website, ranked by popularity. Any bias due to search history and cookies has been avoided using Google Incognito 87 with a private window function. Unaware of each other's evaluation, two authors independently 88 89 screened the titles and video descriptions for all videos. 90 The initial search revealed 150 consecutive videos about PDPH. Of these videos, duplicate videos, 91 those published in any language other than English, and those lacking the audiovisual quality 92 needed for accurate assessment were excluded from the study. In the end, the study material consisted of 71 videos. 93 94 Videos' Descriptive Characteristics Videos' descriptive characteristics, i.e., title, publication date, the number of days since upload, 95 96 video source, country/continent in which the video was uploaded, and video duration (in seconds), 97 were determined and recorded. Video sources were categorized as health-related websites, physicians, and patients. 98 99 The number of views, likes, dislikes, and comments were also recorded for each video. Based on 100 these data, the video power index (VPI) was calculated for each video using the following formula: 101 VPI=video like ratio [like/(like+dislike) $\times 100$] x video view ratio [number of views/days]/ 100^{15} . 102 Reliability Assessment 103 The DISCERN instrument and the Journal of American Medical Association (JAMA) benchmark 104 criteria were used to assess the reliability of the health/medical information in the videos. The 5-105 point Likert-type DISCERN tool includes 15 "yes/no" items. While eight of these items assess the reliability of the videos, seven assess the quality of information on treatment choices. The total 106 107 DISCERN score is calculated by adding up the points assigned to the 15 items. Total DISCERN 108 scores between 63-75, 51-62, 39-50, 27–38, and lower than 27 are classified as excellent, good,

109 fair, poor, and very poor and assigned 5, 4, 3, 2 points, and 1 point, respectively (Chaudhry et al. 2022; Erkin et al. 2023; Yildizgoren & Bagcier 2023). The higher the total DISCERN score, the 110 higher the reliability (Chang & Park 2021; Charnock et al. 1999; Erkin et al. 2023). Accordingly, 111 the total DISCERN scores assigned higher than 3 points, 3 points, and lower than 3 points were 112 113 considered to indicate high, moderate, and low reliability, respectively (Chaudhry et al. 2022). 114 JAMA benchmark criteria have also been used to assess the accuracy and reliability of the videos. 115 To this end, four JAMA benchmark criteria, i.e., authorship, disclosure, currency, and attribution, were assigned a score between 0 and 1. Accordingly, the total JAMA score can be between 0 and 116 117 4. The higher the JAMA score, the higher the reliability (Chang & Park 2021; Charnock et al. 1999; Erkin et al. 2023; Yildizgoren & Bagcier 2023). The total JAMA scores assigned 4 points, 118 119 2 or 3 points, and 0 points or 1 point were considered to indicate completely sufficient, partially 120 sufficient, and insufficient videos, respectively (Erkin et al. 2023). Quality Assessment 121 The 5-point Likert type Global Quality Scale (GQS) was used to assess the quality of the 122 health/medical information in the videos. Videos assigned four and five points, three points, and 123 one and two points were considered high, medium, and low-quality videos, respectively (Chang 124 125 & Park 2021; Chaudhry et al. 2022; Duran & Kizilkan 2021; Erkin et al. 2023). The third reviewer made the final decision in case of a discrepancy between the two reviewers. 126 127 Statistical Analysis 128 In this study, we evaluated the content adequacy, reliability, and quality of the health/medical information provided by the YouTube videos on PDPH. To this end, the descriptive statistics 129 130 obtained from the collected data were tabulated as median and range (minimum-maximum) values 131 for continuous variables and frequencies and percentages for categorical variables. The normal

132 distribution characteristics of the continuous variables were analyzed using the Shapiro-Wilk, Kolmogorov-Smirnov, and Anderson-Darling tests based on sample sizes. 133 In comparing the categorical variables between the groups, Pearson's chi-square test was used for 134 2x2 tables with expected cells of five or higher, Fisher's exact test was used for 2x2 tables with 135 expected cells less than five, and Fisher-Freeman-Halton test was used for RxC tables. On the 136 137 other hand, Kruskal-Wallis H and Dwass-Steel-Critchlow-Fligner tests were used to compare normally and non-normally distributed continuous variables between independent groups, 138 respectively. Spearman's Rho correlation coefficient was used to examine the relationships 139 140 between non-normally distributed variables. Accordingly, correlations with r values between 0.80-1.0, 0.60-0.79, 0.40-0.59, 0.20-0.39, and less than 0.20 were considered very strong, strong, 141 142 moderate, weak, and very weak, respectively. 143 Jamovi project 2.3.28 (Jamovi, version 2.3.28.0, 2023, retrieved from https://www.jamovi.org) and JASP 0.18.3 (Jeffreys' Amazing Statistics Program, version 0.18.3, 2024, retrieved from 144 145 https://jasp-stats.org) software packages were used in the statistical analyses. Probability (p) statistics of ≤ 0.05 were deemed to indicate statistical significance. 146

Results

147

148

149

150

151

152

153

154

The median interval between the upload and evaluation time of the 71 YouTube videos was 836 (min. 17, max. 4921) days. Real-world data was the most common content type, used in 60.6% of evaluated videos. Of the 71 videos, 42.3% were uploaded by health-related websites, 36.6% by physicians and 21.1% by patients. The videos were most commonly sourced from the USA (n=24, 33.8%), followed by India (n=12, 16.9%). The median view, like, dislike, and comment counts were 1130, 26, six, and nine, respectively. The median VPI was 1.15 (min. 0, max. 48.5). The upload and descriptive characteristics of the videos are given in Table 1.

155	Based on the DISCERN-quality scores, 13 (18.3%) were high quality. In addition, based
156	on total DISCERN scores, a total of 8 (11.2%) videos were classified as good (5.6%) or excellent
157	(5.6%) (Table 2).
158	The JAMA quality scores revealed that 53.5% and 12.7% of the videos were partially and
159	completely sufficient, respectively, whereas GQS scores indicated that only 29.6% and 18.3% had
160	intermediate and high quality. The r values for the correlations between DISCERN-total and
161	JAMA, DISCERN-total and GQS, and JAMA and GQS scores were 0.703, 0.785, and 0.745,
162	respectively, indicating strong correlations between the reliability and quality scores (p<0.001 for
163	all cases). The reliability and quality scores of the videos are given in Table 2.
164	There were positive correlations between video duration and content adequacy, reliability,
165	and quality scores of the videos (p<0.05) (Table 3). Of these correlations, the one between the
166	video duration and the DISCERN-total score was moderate, whereas the ones between the video
167	duration and JAMA and GQS scores were weak (r=0.473, r=0.278 and r=0.313, respectively).
168	Videos' other descriptive characteristics, i.e., view, like, dislike, and comment counts, were not
169	found to be correlated with DISCERN-total, JAMA, and GQS scores (p>0.05). The correlations
170	between videos' descriptive characteristics, content adequacy, reliability, and quality scores are
171	detailed in Table 3.
172	The comparison of the videos based on their sources revealed significant differences in
173	content type (p<0.001). Accordingly, real-world videos were more commonly uploaded by
174	physicians and patients than health-related websites, whereas videos with text content were more
175	commonly uploaded by health-related websites and physicians than patients. The median duration

and VPI of the videos uploaded by health-related websites and patients were higher, albeit not

significantly, than those uploaded by physicians (p=0.621 and p=0.486, respectively). The distribution of videos' characteristics by video sources is given in Table 4.

There were significant differences between the reliability and quality scores of the videos categorized according to their sources (p<0.05). Accordingly, the DISCERN-reliability, DISCERN-quality, DISCERN-total, JAMA, and GQS scores in the videos uploaded by physicians and health-related websites were significantly higher than those uploaded by the patients (p<0.001). There was no significant difference between the reliability and quality scores of those videos uploaded by physicians and health-related websites (p>0.05 for all cases). The rate of low and very low-quality videos based on DISCERN-quality and DISCERN-total scores uploaded by patients was significantly higher than those uploaded by physicians and health-related websites (p=0.006 and p=0.008, respectively). Similarly, the rate of videos of inadequate and low quality based on JAMA and GQS scores uploaded by patients was significantly higher than those uploaded by physicians and health-related sites (p<0.001 and p=0.007, respectively). The correlations between the descriptive characteristics and reliability and quality scores of the videos categorized according to their sources are detailed in Table 5.

Discussion

Our study revealed that YouTube videos on PDPH uploaded by physicians or health-related websites were more prevalent and had significantly higher content adequacy, reliability, and quality than those uploaded by patients. We found significant correlations between the videos' descriptive characteristics, content adequacy, reliability, and quality scores, both overall and when the videos were classified by their source.

The role of social media in disseminating headache-related information is increasing. However, there are a limited number of studies that assessed YouTube videos on headaches, such

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

as migraine or cluster headaches (Chaudhry et al. 2022; Do et al. 2023; Goadsby et al. 2023; Gupta et al. 2023; Reina-Varona et al. 2022; Saffi et al. 2020). In one of these studies, Chaudhry et al. analyzed 134 YouTube videos on cluster headaches and found that almost half of the videos were of low quality according to the GQS scores, and nearly three-quarters of the videos were of low quality according to the DISCERN scores (2022). The findings of our study, the first to investigate the reliability and quality of YouTube videos in PDPH, are consistent with Chaudhry et al.'s findings (2022). These findings raise concerns about the potential risks faced by patients who rely on YouTube for medical information and point to the need to improve the quality and reliability of even content provided by healthcare providers (Altunisik & Firat 2022; Baker et al. 2021; Mohile et al. 2023). It is reported in the literature that YouTube videos about medical topics are most commonly created by physicians (Erkin et al. 2023; Saffi et al. 2020). Gupta et al. reported that nearly two-thirds of the videos on migraine were published by physicians, hospitals, and healthcare providers (2023). Another study reported that videos published by healthcare professionals/institutions and videos featuring personal healthcare experiences were more frequent than others (Chaudhry et al. 2022). Saffi et al. reported that only about one-fourth of the videos have been published by healthcare professionals/institutions and universities (2020). In comparison, we found that almost four-fifths of the videos were uploaded by health-related websites and physicians. Several studies assessed videos' content adequacy, reliability, and quality by their sources

Several studies assessed videos' content adequacy, reliability, and quality by their sources (Arslan et al. 2023; Gupta et al. 2023; Ng et al. 2021; Onder & Zengin 2021). In one of these studies, where patients were not specified as a separate source, no significant difference was found between the GQS and DISCERN-reliability scores of YouTube videos categorized according to their sources (Gupta et al. 2023). Other studies reported that the YouTube videos on diseases

uploaded by healthcare professionals had better quality than those uploaded by different sources (Ng et al. 2021; Onder & Zengin 2021). Similarly, we found that the videos uploaded by physicians and health-related websites had higher content adequacy, reliability, and quality scores than those uploaded by patients. These findings underscore the importance of considering the source when evaluating the credibility of online medical information (Bayram & Pinar 2023). On the other hand, the discrepancies between the findings of the studies in question may be attributed to the fact that primarily GQS, which does not focus on the information itself, has been used to rate the videos' quality and content adequacy along with differences in the technical characteristics of the videos and the characteristics of medical topics explored, such as popularity (Chaudhry et al. 2022).

The correlations between the descriptive characteristics and the reliability and quality scores of the videos have been investigated in various studies. Accordingly, most studies reported that higher view and like counts were significantly associated with higher reliability and quality of the videos, while some studies reported negative correlations between the audience engagement parameters and DISCERN and GQS scores (Duran & Kizilkan 2021; Erkin et al. 2023). In comparison, we did not find significant correlations between these parameters. Then again, the sources of the videos may impact their descriptive characteristics. As a matter of fact, YouTube videos about migraine uploaded by "others" had higher VPI values than those uploaded by other subcategories (Gupta et al. 2023). These higher VPI values were attributed to higher view counts, reflecting the content's straightforwardness, greater ease of understanding, and public relatability.

In contrast, even though we found strong correlations between the content adequacy, reliability, and quality scores of the videos categorized according to their sources, we did not find any significant difference between their descriptive characteristics.

The primary limitation of our study was its cross-sectional design, featuring the YouTube videos on PDPH published in English only. The fact that the PDPH videos published only on YouTube were included in the study may be deemed another limitation.

Conclusions

Our study sheds light on the reliability and quality of the YouTube videos on PDPH. Our finding that the YouTube videos on PDPH uploaded by physicians or health-related websites were more prevalent and had higher content adequacy, reliability, and quality scores than those uploaded by patients underscores the importance of considering the source of the video when assessing the credibility of the medical information addressed in the videos.

References

Alatni RI, Alsamani R, and Alqefari A. 2024. Treatment and Prevention of Post-dural Puncture
Headaches: A Systematic Review. *Cureus* 16:e52330. 10.7759/cureus.52330

Altunisik E, and Firat YE. 2022. Quality and Reliability Analysis of Essential Tremor Disease
Information on Social Media: The Study of YouTube. *Tremor Other Hyperkinet Mov (N Y)* 12:32. 10.5334/tohm.727

Aniceto L, Goncalves L, Goncalves L, Alves R, Goncalves D, Laranjo M, and Valente E. 2023.
Incidence and Severity of Post-dural Puncture Headache in Non-obstetric Patients
Undergoing Subarachnoid Block. *Cureus* 15:e47442. 10.7759/cureus.47442

Arslan S, Dinc E, and Arslan T. 2023. Are YouTube videos claiming to describe lumbar spinal

manipulation techniques adequate? J Man Manip Ther 31:449-455.

268 10.1080/10669817.2023.2244398

269	Baker JD, Baig Y, Siyaji ZK, Hornung AL, Zavras AG, Mallow GM, Zbeidi S, Shepard NA, and
270	Sayari AJ. 2021. Assessing the Quality and Credibility of Publicly Available Videos on
271	Cervical Fusion: Is YouTube a Reliable Educational Tool? <i>Int J Spine Surg</i> 15:669-675.
272	10.14444/8088
273	Bayram Y, and Pinar E. 2023. Assessment of the Quality and Reliability of YouTube as an
274	Information Source for Transforaminal Interbody Fusion. Cureus 15:e50210.
275	10.7759/cureus.50210
276	Bishop R, Chen A, Yates WD, Fowler J, and Macres S. 2023. Update and Advances on Post-
277	dural Puncture Headache. Adv Anesth 41:71-85. 10.1016/j.aan.2023.05.005
278	Chan C, Sounderajah V, Daniels E, Acharya A, Clarke J, Yalamanchili S, Normahani P, Markar
279	S, Ashrafian H, and Darzi A. 2021. The Reliability and Quality of YouTube Videos as a
280	Source of Public Health Information Regarding COVID-19 Vaccination: Cross-sectional
281	Study. JMIR Public Health Surveill 7:e29942. 10.2196/29942
282	Chang MC, and Park D. 2021. YouTube as a Source of Patient Information Regarding Exercises
283	and Compensated Maneuvers for Dysphagia. Healthcare (Basel) 9.
284	10.3390/healthcare9081084
285	Charnock D, Shepperd S, Needham G, and Gann R. 1999. DISCERN: an instrument for judging
286	the quality of written consumer health information on treatment choices. J Epidemiol
287	Community Health 53:105-111. 10.1136/jech.53.2.105
288	Chaudhry BA, Do TP, Ashina H, Ashina M, and Amin FM. 2022. Cluster headache - The worst
289	possible pain on YouTube. <i>Headache</i> 62:1222-1226. 10.1111/head.14368

290	Do TP, Andreou AP, de Oliveira AB, Shapiro RE, Lampi C, and Amin FM. 2023. The
291	increasing role of electronic media in headache. BMC Neurol 23:194. 10.1186/s12883-
292	023-03196-5
293	Duran MB, and Kizilkan Y. 2021. Quality analysis of testicular cancer videos on YouTube.
294	Andrologia 53:e14118. 10.1111/and.14118
295	Erkin Y, Hanci V, and Ozduran E. 2023. Evaluation of the reliability and quality of YouTube
296	videos as a source of information for transcutaneous electrical nerve stimulation. PeerJ
297	11:e15412. 10.7717/peerj.15412
298	Goadsby P, Ruiz de la Torre E, Constantin L, and Amand C. 2023. Social Media Listening and
299	Digital Profiling Study of People With Headache and Migraine: Retrospective
300	Infodemiology Study. J Med Internet Res 25:e40461. 10.2196/40461
301	Gupta R, Kumar R, Teja D, Kadiyala G, Gautam P, and Khalatkar M. 2023. Migraine
302	Information on the Web for Patients: A YouTube Content Analysis Based on a Scoring
303	System. Cureus 15:e51054. 10.7759/cureus.51054
304	Lee KN, Son GH, Park SH, Kim Y, and Park ST. 2020. YouTube as a Source of Information and
305	Education on Hysterectomy. J Korean Med Sci 35:e196. 10.3346/jkms.2020.35.e196
306	Madathil KC, Rivera-Rodriguez AJ, Greenstein JS, and Gramopadhye AK. 2015. Healthcare
307	information on YouTube: A systematic review. <i>Health Informatics J</i> 21:173-194.
308	10.1177/1460458213512220
309	Mohile NV, Jenkins NW, Markowitz MI, Lee D, and Donnally CJ, 3rd. 2023. YouTube as an
310	Information Source for Lumbar Disc Herniations: A Systematic Review. World
311	Neurosurg 172:e250-e255. 10.1016/j.wneu.2023.01.004

Ng MK, Emara AK, Molloy RM, Krebs VE, Mont M, and Piuzzi NS. 2021. YouTube as a
Source of Patient Information for Total Knee/Hip Arthroplasty: Quantitative Analysis of
Video Reliability, Quality, and Content. J Am Acad Orthop Surg 29:e1034-e1044.
10.5435/JAAOS-D-20-00910 References are not written according to
journal rules. Onder ME, and Zengin O. 2021. YouTube as a source of information on gout: a quality analysisment is
Rheumatol Int 41:1321-1328. 10.1007/s00296-021-04813-7
Reina-Varona A, Rodriguez de Rivera-Romero B, Cabrera-Lopez CD, Fierro-Marrero J,
Sanchez-Ruiz I, and La Touche R. 2022. Exercise interventions in migraine patients: a
YouTube content analysis study based on grades of recommendation. <i>PeerJ</i> 10:e14150.
10.7717/peerj.14150
Saffi H, Do TP, Hansen JM, Dodick DW, and Ashina M. 2020. The migraine landscape on
YouTube: A review of YouTube as a source of information on migraine. Cephalalgia
40:1363-1369. 10.1177/0333102420943891
Thon JN, Weigand MA, Kranke P, and Siegler BH. 2024. Efficacy of therapies for post dural
puncture headache. Curr Opin Anaesthesiol 37:219-226.
10.1097/ACO.00000000001361
Yildizgoren MT, and Bagcier F. 2023. YouTube as a source of information and education on
ultrasound- guided dry needling. Med Ultrason 25:398-402. 10.11152/mu-4206

Table 1(on next page)

Characteristics and descriptive data of YouTube videos on post-dural puncture headache.

1 **Table 1.** Characteristics and descriptive data of YouTube videos on post-dural puncture headache.

		Overall (n=71)
Days since upload date †		836.0 [17.0 – 4921.0]
Duration in seconds †		530.0 [61.0 – 3411.0]
Content type ‡	Animation	5 (7.0)
	Real-world	43 (60.6)
	Text	23 (32.4)
Video source ‡	Physicians	26 (36.6)
	Health-related websites	30 (42.3)
	Patients	15 (21.1)
Country of origin ‡	United States of America	24 (33.8)
	India	12 (16.9)
	Canada	3 (4.2)
	Others	12 (16.9)
	Unknown	20 (28.2)
View count †		1130.0 [2.0 - 63366.0]
Likes ‡	No	10 (14.1)
	Yes	61 (85.9)
Number of likes †		26.0 [1.0 – 324.0]
Dislikes ‡	No	50 (70.4)
	Yes	21 (29.6)
Number of dislikes †		6.0[2.0-25.0]
Comments ‡	No	28 (39.4)
	Yes	43 (60.6)
Number of comments †		9.0 [1.0 – 129.0]
VPI †		1.15 [0.0 – 48.5]
· median [min-may] : n (%)		

^{†:} median [min-max], ‡: n (%)

VPI: Video popularity index

Table 2(on next page)

Data about the reliability, content adequacy, and quality parameters of YouTube videos on post-dural puncture headache.

1 Table 1. Data about the reliability, content adequacy, and quality parameters of YouTube videos on post-

2 dural puncture headache.

		Overall (n=71)	
Part 1: DISCERN-reliability †		19.0 [8.0 – 40.0]	
Part 2: DISCERN-treatment †		16.0 [7.0 – 35.0]	
Part 3: DISCERN-quality [†]		2.0 [1.0 – 5.0]	
	Poor (score <3)	38 (53.5)	
Reliability categories based on DISCERN-quality ‡	Moderate (score 3)	20 (28.2)	
quincy	High (score >3)	13 (18.3)	
DISCERN-total †		34.0 [15.0 – 75.0]	
Categories for DISCERN-total ‡	Very poor (15-27)	17 (23.9)	
	Poor (28–38)	29 (40.8)	
	Fair/medium (39–50)	17 (23.9)	
	Good (51–62)	4 (5.6)	
	Excellent (63–75)	4 (5.6)	
JAMA source †		2.0 [1.0 – 5.0]	
JAMA content/quality categories ‡	Insufficient (scores 0 and 1)	24 (33.8)	
	Partially sufficient (scores 2 and 3)	38 (53.5)	
	Completely sufficient (score 4)	9 (12.7)	
GQS [†]		2.0 [1.0 – 5.0]	
GQS categories ‡	Low (scores 1 and 2)	37 (52.1)	
	Intermediate (score 3)	21 (29.6)	
	High (scores 4 and 5)	13 (18.3)	

^{†:} median [min-max], ‡: n (%)

JAMA: Journal of American Medical Association benchmark criteria, GQS: Global Quality Score.

Table 3(on next page)

Correlation of the descriptive data of the videos with the DISCERN-total, JAMA, and GQS scores.

Table 3. Correlation of the descriptive data of the videos with the DISCERN-total, JAMA, and GQS scores.

	DISCERN-total JAMA source		source	GQS		
	r	p	r	p	r	p
Duration in seconds	0.473	< 0.001	0.278	0.019	0.313	0.008
View count	-0.211	0.077	-0.108	0.370	-0.196	0.102
Number of likes	-0.104	0.425	-0.012	0.928	-0.031	0.811
Number of dislikes	-0.294	0.195	-0.031	0.895	-0.021	0.928
Number of comments	-0.213	0.170	-0.182	0.244	-0.136	0.385

JAMA: Journal of American Medical Association benchmark criteria, GQS: Global Quality Score.

r: Spearman's rho coefficient.

Table 4(on next page)

Characteristics and descriptive data of YouTube videos on post-dural puncture headache based on video sources.

Table 4. Characteristics and descriptive data of YouTube videos on post-dural puncture headache based on 1 2 video sources.

		Video Source		
	Physicians (n=26)	Health-related websites (n=30)	Patients (n=15)	р
Days since upload date †	802.5 [17.0 – 4771.0]	791.0 [116.0 – 4639.0]	1609.0 [263.0 – 4921.0]	0.212
Duration in seconds †	383.0 [74.0 – 3411.0]	616.5 [73.0 – 2494.0]	595.0 [61.0 – 1966.0]	0.621
Content type ‡				
Animation	$0(0.0)^{a}$	5 (16.7) ^b	$0 (0.0)^{a, b}$	
Real-world	18 (69.2) a	10 (33.3) b	15 (100.0)°	<0.00 1
Text	8 (30.8) a	15 (50.0) a	0 (0.0) ^b	-
Country of origin ‡				
United States of America	6 (23.1)	10 (33.3)	8 (53.3)	
Duration in seconds † Content type ‡ Animation Real-world Text Country of origin ‡ United States of America India Canada Others Unknown View count †	6 (23.1)	5 (16.7)	1 (6.7)	
	0 (0.0)	2 (6.7)	1 (6.7)	0.484
Others	5 (19.2)	6 (20.0)	1 (6.7)	
Unknown	9 (34.6)	7 (23.3)	4 (26.7)	
View count †	769.5 [2.0 – 63366.0]	772.5 [32.0 – 40626.0]	6018.0 [61.0 – 36690.0]	0.053
Likes ‡	20 (76.9)	28 (93.3)	13 (86.7)	0.228
Number of likes †	23.5 [2.0 – 309.0]	24.0 [1.0 – 324.0]	55.0 [3.0 – 290.0]	0.327
Dislikes ‡	7 (26.9)	7 (23.3)	7 (46.7)	0.251
Number of dislikes †	3.0 [2.0 – 25.0]	7.0 [2.0 – 14.0]	6.0 [4.0 – 17.0]	0.404
Comments ‡	15 (57.7)	16 (53.3)	12 (80.0)	0.210
Number of comments †	6.0 [1.0 – 46.0]	3.5 [1.0 – 129.0]	11.5 [2.0 – 114.0]	0.277
VPI †	0.6 [0.0 – 48.5]	1.3 [0.0 – 21.9]	1.3 [0.0 – 25.9]	0.486

^{†:} median [min-max], ‡: n (%)

3

VPI: Video popularity index

Table 5(on next page)

Comparison of the reliability, content adequacy, and quality of YouTube videos on post-dural puncture headache based on video sources.

Table 5. Comparison of the reliability, content adequacy, and quality of YouTube videos on post-dural
 puncture headache based on video sources.

	Video Source			
	Physicians (n=26)	Health-related websites (n=30)	Patients (n=15)	р
Part 1: DISCERN-reliability †	18.0 [14.0 – 40.0]	21.0 [12.0 – 40.0]	12.0 [8.0 – 19.0]	<0.00 1
Part 2: DISCERN-treatment †	16.0 [9.0 – 35.0]	17.0 [7.0 – 35.0]	13.0 [7.0 – 23.0]	0.165
Part 3: DISCERN-quality †	3.0 [1.0 – 5.0]	3.0 [1.0 – 5.0]	1.0 [1.0 – 3.0]	<0.00 1
Reliability categories based on DISC	ERN-quality ‡			
Poor (score <3)	11 (42.3) a	13 (43.3) a	14 (93.3) ^b	
Moderate (score 3)	11 (42.3) a	8 (26.7) a, b	1 (6.7) ^b	0.006
High (score >3)	4 (15.4) a, b	9 (30.0) ^b	$0(0.0)^{a}$	
DISCERN-total †	34.0 [23.0 – 75.0]	38.0 [20.0 – 75.0]	27.0 [15.0 – 42.0]	<0.00 1
Categories for DISCERN-total ‡				
Very poor (15-27)	3 (11.5) ^a	4 (13.3) a	10 (66.7) b	
Poor (28–38)	13 (50.0) a	12 (40.0) a	4 (26.7) a	
Fair/medium (39–50)	8 (30.8) a	8 (26.7) a	1 (6.7) a	0.008
Good (51–62)	1 (3.8) a	3 (10.0) a	$0(0.0)^{a}$	
Excellent (63–75)	1 (3.8) a	3 (10.0) a	$0(0.0)^{a}$	
JAMA source †	2.0 [1.0 – 4.0]	2.0 [1.0 – 5.0]	1.0 [1.0 – 2.0]	<0.00 1
JAMA quality/content categories ‡				
Insufficient (scores 0 and 1)	4 (15.4) a	6 (20.0) a	14 (93.3) b	
Partially sufficient (scores 2 and 3)	20 (76.9) a	17 (56.7) a	1 (6.7) ^b	<0.00 1
Completely sufficient (score 4)	2 (7.7) a, b	7 (23.3) ^b	$0(0.0)^{a}$	
GQS [†]	3.0 [2.0 – 5.0]	3.0 [1.0 – 5.0]	1.0 [1.0 – 3.0]	<0.00
GQS categories ‡				
Low (scores 1 and 2)	10 (38.5) a	13 (43.3) a	14 (93.3) ^b	
Intermediate (score 3)	10 (38.5) a	10 (33.3) a	1 (6.7) ^b	0.007
High quality (scores 4 and 5)	6 (23.1) a	7 (23.3) a	$0 (0.0)^{b}$	

^{†:} median [min-max], ‡: n (%)

3

JAMA: Journal of American Medical Association benchmark criteria, GQS: Global Quality Score.

